

TO:

# ecology and environment, incl

CLOVERLEAF BUILDING 3, 6405 METCALF, OVERLAND PARK, KANSAS 66202, TEL. 913/432-9961

International Specialists in the Environment

40107624



MEMORANDUM

KECEIVEL

THRU: Sharon Martin, FITOM

Pete Culver, RPO

OCT 31 1991

FROM: Bob Overfelt, AFITOM

SAFE SECTION

DATE: October 30, 1991

SUBJECT: Recommendations and HRS Considerations for the big River Mine

Tailings site, Desloge, Missouri. TDD #F-07-9004-011 PAN #FM00616XA

Site #Y60 Project #003

Superfund Contact: Greg Reesor FIT Project Leader: Robert Overfelt

The Big River Mine Tailings site covers approximately 600 acres. It consists mainly of lead mine tailings, ranging from 0 to more than 100 feet deep. An active sanitary landfill and landfill office are cated on 60 acres of the southwest portion of the site. The majority the site is situated within a horseshoe meander of the Big River. Therefore, the site is bordered by Big River on its west, north, and east sides. Residential areas and the town of Desloge are adjacent to be site to the south and southeast, respectively. The site is the result of 30 years (1929 to 1958) of stockpiling lead mining wastes from a stope and pillar mine and mill operation located near the southeast edge of the site.

The site was first brought to the attention of the EPA in 1977, after an estimated 50,000 cubic yards of the tailings slumped into Big River during a heavy rainfall. The tailings contained elevated levels of lead, cadmium, and zinc, as well as other metals of concern. Because the tailings consist of powder, silt, and sand-sized particles, they are easily eroded via wind and water. Due to the proximity of the site to Big River and to the town of Desloge, as well as the existence of the on-site landfill, there were major concerns about the influence of the surface water and sediment quality of Big River, the shallow ground water quality, and the ambient air quality on and off site.

A Listing Site Inspection (LSI) was conducted by E & E/FIT, July 21 through 29, 1990. The objectives of the LSI were to determine the level of toxic metals of concern present in the tailings on site and characterize how the site is influencing the ambient air, surface water, and ground water quality on site, as well as in the surrounding area. Therefore, tailings, soil, surface water, sediment, ground water, and air samples were collected to establish the heavy metal concentrations of the tailings and determine if the metals are migrating off site. The sample results confirmed that the tailings contain

recycled paper

Recommendations and HRS Considerations Big River Mine Tailings Page 2

significantly elevated levels of lead, cadmium, and zinc, as well as other metals of concern. Surface water and sediment sample results indicate that heavy metal laden tailings material is influencing the ambient air on site and is migrating at least 1,500 feet off site.

A fully documented HRS package has been prepared for the site. The surface water pathway score with an observed release is 100. The air migration pathway score with an observed release is also 100. The score for the soil exposure pathway is 94. The HRS site score calculated using these three pathways is 84.9. The ground water pathway was not evaluated because of its complexity relative to the other pathways and also because each of the other three pathways generates a score high enough to produce an overall site score above 28.5.

# Surface Vater Pathway

An observed release to surface water was scored based on visual direct releases and on surface water and sediment sample data. Besides the castrophic tailings release of 1977 to Big River, more minor events have occurred and will continue. Tailings are in continuous contact with Big River at numerous locations along the perimeter of the site. Although a warning was issued by the Missouri Department of Natural Resources to not eat bottom feeding fish from Big River, many local residents continue to fish and swim in Big River at the site and downstream.

#### Air Pathway

The tailings physical nature can be described as dust, silt, and sand-sized particles. Therefore, the tailings are easily airborne and once they enter the ambient air, are easily transported off site. The air pathway was also scored based on a visual direct release, as well as on hi-volume air sample data. The principle receptors of the heavy metal laden particulates are the people who breath the material. Seven people work full-time on site. Residential areas that include a school and a day care center are adjacent to the south and southeast borders of the site. Approximately 20,000 people reside within a 4-mile radius of the site.

# Soil Exposure Pathway

Although the ground water pathway was not scored, data indicates that the shallow ground water on site contains elevated level of toxic metals. Metals were detected at extremely high concentrations in shallow ground water near the landfill operation. This may be the result of landfill leachate mobilizing the metals. Also, the drinking water well at the landfill office contained dissolved lead at concentrations (14J  $\mu$ g/L) higher than the proposed MCL. Many other private drinking water wells exist in the area. The nearest municipal well is located 3,000 feet southeast of the site. Approximately 20,000 people in a 4-mile radius of the site utilize ground water for drinking.

Lead, cadmium, zinc, and other toxic metals of concern are present at elevated levels in the tailings at the Big River Mine Tailings site. These contaminants are actively being transported via wind and water erosion into the ambient air and Big River. It is recommended that a

Recommendations and HRS Considerations Big River Mine Tailings Page 3

comprehensive stabilization plan be drafted in order to control surface water and air releases at the site.

The ground water on site also contains elevated levels of metals. Samples collected around the landfall indicate that leachate may be mobilizing and releasing metals in even greater concentrations. It is therefore recommended that further study of the on-site ground water be performed to determine the effects of the on-site landfill.

It should be emphasized that while the LSI has identified the Big River Mine Tailings site as a major source of toxic metal contamination in the area, the problem is regional and multi-source. Many other lead tailings piles contribute to the toxic metal contamination of the Old Lead Belt area. Therefore, it is recommended that a comprehensive study of the entire region be conducted in order to characterize each potential source, the regional air quality, and the effects of the region on the Big River drainage basin. This investigation should also include lead-blood level sampling of local residents and lead dust sampling in local residences.

Final Report
Listing Site Inspection
Big River Mine Tailings
Desloge, St. Francois County, Missouri
TDD #F-07-9004-011 PAN # FM00616XA
Site #Y60 Project #003
Submitted to: Region VII EPA by E & E/FIT

Superfund Contact: Greg Reesor
FIT Task Leader: Bob Overfelt, AFITOM
Date: October 30, 1991

OCT 31 1991

SAFE SECTION

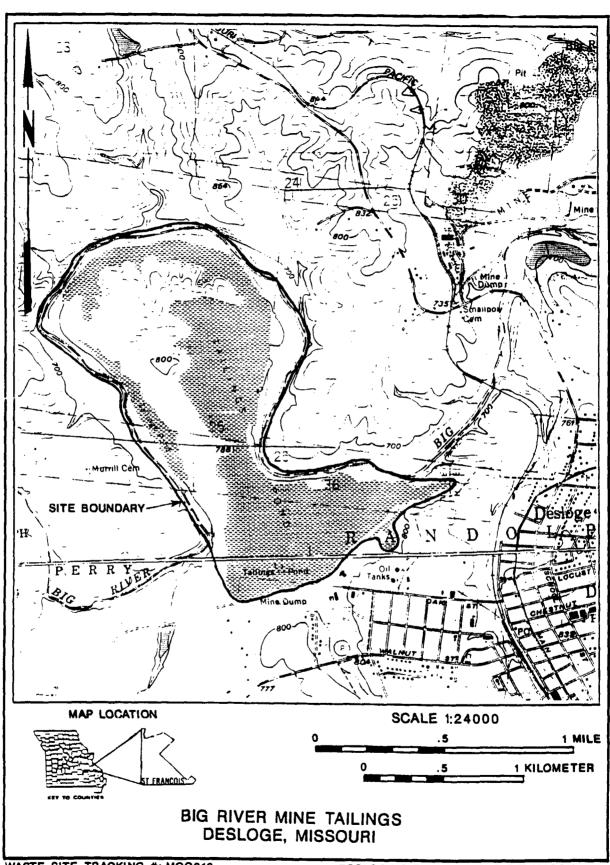
# Table of Contents

| Section |                                                                                                                                        | Page                                   |
|---------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1       | INTRODUCTION                                                                                                                           | 1-1                                    |
| 2       | SITE DESCRIPTION AND HISTORY 2.1 SITE DESCRIPTION                                                                                      | 2-1<br>2-1<br>2-6<br>2-11<br>2-18      |
| 3       |                                                                                                                                        | 3-1<br>3-1<br>3-4<br>3-6<br>3-6<br>3-7 |
| 4       | SUMMARY OF WASTE SOURCE AND CHARACTERISTICS                                                                                            | 4-1                                    |
| 5       | PHYSICAL AND CULTURAL SETTING                                                                                                          | 5-1<br>5-1<br>5-2<br>5-4               |
| 6       | FIELD ACTIVITIES  6.1 SOIL AND TAILINGS SAMPLING  6.2 SEDIMENT AND SURFACE WATER SAMPLING  6.3 GROUND WATER SAMPLING  6.4 AIR SAMPLING | 6-1<br>6-2<br>6-2<br>6-7<br>6-10       |
| 7       | ANALYTICAL RESULTS 7.1 SOIL AND TAILINGS 7.2 SEDIMENT AND SURFACE WATER 7.3 GROUND WATER 7.4 AIR                                       | 7-1<br>7-1<br>7-7<br>7-16<br>7-24      |
| 8       | SUMMARY AND CONCLUSIONS                                                                                                                | 8-1                                    |
| ^       | DINI TOODADUV                                                                                                                          | 0 1                                    |

# LIST OF APPENDICES

| Appendix |                                                              | Page |
|----------|--------------------------------------------------------------|------|
| A        | PLATES 1, 2, AND 3                                           | A-1  |
| В        | TECHNICAL DIRECTIVE DOCUMENT                                 | B-1  |
| С        | SITE CONTACTS AND PROPERTY OWNERS                            | C-1  |
| D        | EPA DATA TRANSMITTAL                                         | D-1  |
| E        | FIELD SHEETS AND CHAIN-OF-CUSTODY RECORDS                    | E-1  |
| F        | PHOTOGRAPHIC RECORD                                          | F-1  |
| G        | WELL LOGS FOR MONITORING WELLS                               | G-1  |
| Н        | DETAILED TOPOGRAPHIC MAP OF THE BIG RIVER MINE TAILINGS SITE | H-1  |
| I        | WASTE CHARACTERISTICS                                        | K-1  |
| Ţ        | ATP CALCILLATIONS AND UTND POSES                             | T_1  |

# LIST OF FIGURES


| Figure       |                                                                            | Page |
|--------------|----------------------------------------------------------------------------|------|
| 1-1          | Site Location Map                                                          | 1-2  |
| 2-1          | Major Erosional Features                                                   | 2-10 |
| 3-1          | National Fisheries Research Laboratory Study-Sample Locations on Big River | 3-2  |
| 5–1          | Generalized Statigraphic Column                                            | 5-6  |
|              |                                                                            |      |
|              | LIST OF TABLES                                                             |      |
| <u>Table</u> |                                                                            | Page |
| 2-1          | Site History and Stabilization Efforts                                     | 2-12 |
| 2-2          | Metal Analyses of Tailings - UMC Report                                    | 2-15 |
| 3-1          | Metals Concentrations in Water Samples - NFRL Report                       | 3-3  |
| 3–2          | Metals Concentrations in Sediment Samples - NFRL Report                    | 3-4  |
| 3-3          | Metals Concentrations in Edible Portions of Fish - NFRL Report             | 3-5  |
| 5-1          | Population Surrounding the Site in Four-Mile Radius                        | 5-1  |
| 5–2          | Municipal Ground Water Usage in Four-Mile Radius of the Surrounding Site   | 5-7  |
| 6-1          | Soil and Tailings Sample Summary                                           | 6-3  |
| 6–2          | Sediment Sample Summary                                                    | 6-4  |
| 6-3          | Surface Water Sample Summary                                               | 6-5  |
| 6-4          | Ground Water Sample Summary                                                | 6-8  |
| 6-5          | Air Sample Summary                                                         | 6-12 |
| 7–1          | Selected Metals Detected in Soil and Tailings Samples .                    | 7–2  |
| 7–2          | Selected Metals Detected in Sediment Samples                               | 7-8  |
| 7-3          | Selected Metals Detected in Surface Water Samples                          | 7-9  |
| 7-4          | Selected Metals Detected in Ground Water Samples                           | 7–18 |
| 7-5          | Selected Metals in Air Samples                                             | 7-26 |

#### SECTION I: INTRODUCTION

The Ecology and Environment, Inc., Field Investigation Team (E & E/FIT) was tasked by the U.S. Environmental Protection Agency (EPA) under Technical Directive Document (TDD) #F-07-9004-011 (Appendix B) to conduct a Listing Site Inspection (LSI) of the Big River Mine Tailings site near Desloge, Missouri.

The Big River Mine Tailings site is located in St. Francois County adjacent to the north and west boundaries of the town of Desloge, Missouri (Figure 1-1). This area of southeast Missouri is a region known as the "Old Lead Belt" and was formerly a major producer of lead. The coordinates of the approximate center of the site are 37° 53′ 11.4" N latitude and 90° 33′ 00.0" W longitude (USGS 1982).

The objectives of the LSI were to determine the level of toxic metals of concern present in the tailings on site and characterize how the site is influencing the ambient air, surface water, and ground water quality on site as well as in the surrounding area. The LSI field work was conducted July 21 through 29, 1990 by E & E/FIT members: Bob Overfelt, team leader and sampler; Chris Williams, Site Safety Officer and sampler; Sharon Martin, sampler; Curt Enos, sampler and HRS information; Annette Sackmann, air sampling trainer; Otavio Silva, air and soil sampler; Patty Roberts, air and soil sampler; and Wes McCall, air and soil sampler.



WASTE SITE TRACKING #: MOO616 PREPARED BY: R. OVERFELT ECOLOGY & ENVIRONMENT FIT MARCH 1988 SOURCE: USGS 7.5' BONNE TERRE & FLAT RIVER, MO QUADS. 1982

# SECTION 2: SITE DESCRIPTION AND HISTORY

# 2.1 SITE DESCRIPTION

The Big River Mine Tailings site covers approximately 600 acres (Appendix A; Plates 1 and 3). It consists mainly of mine tailings ranging from 0 to more than 100 feet deep (EAP 1981). An active sanitary landfill and landfill office are located on the south end of the site. The landfill is operated by the St. Francois County Environmental Corporation (SFCEC) which has a state permit to fill approximately 60 acres (Hudwalker 1988). There are six monitoring wells installed around the landfill. The well logs for these wells are included as Appendix G. These wells are drilled to the base of the tailings. The average thickness of the tailings calculated from the well logs is approximately 50 feet. The majority of the site is situated within a horseshoe meander of the Big River (Plate 3). Therefore, the site is bordered by Big River on its west, north, and east sides. Residential areas and the town of Desloge are adjacent to the site to the south and southeast.

In order to simplify referencing specific areas on site, the three main areas discussed will be referred to as the meander area, the landfill area, and the St. Joe Minerals property. The landfill area and St. Joe Minerals property make up the southwest and southeast sections of the site, respectively, while the meander area consists of all property north of these areas within the Big River meander (Plate 3).

The site is the result of 30 years (1929 to 1958) of stockpiling lead mining wastes from a mine/mill operation located on the southern edge of the site (Novak 1980). After processing the lead ore, the tailings were transported to a designated disposal location on the site via a slurry pipeline. At the time of deposition, the material was about 50 percent water, and ponded areas would form on site, hence the name "tailings pond". Because the tailings are porous and highly permeable in most instances, the ponds dried up rapidly. There is only one small ponded area located on the west side of the site that always contains water (Plate 1). Other areas temporarily pond after heavy rainfall events but rapidly dry up. The vast majority of the site consists of dry, unvegetated tailings; therefore, it will be referred to

as a tailings pile.

The site was brought to the attention of the EPA in 1977, after an estimated 50,000 cubic yards of the tailings slumped into Big River during a heavy rainfall. The tailings contain elevated levels of lead, cadmium, and zinc as well as other metals of concern. Because the tailings consist of powder, silt, and sand-sized particles, they are easily eroded via water and wind. Due to the proximity of the site to the Big River and to the town of Desloge, there were major concerns about the site's influence on the surface water and sediment quality of Big River as well as ambient air quality on and off site.

Photo 1 illustrates the area of the 1977 major tailings collapse into the Big River (Appendix F). This was taken during the 1988 Preliminary Assessment (PA) reconnaissance. Photo 2 illustrates tailings erosion on top of the pile at the major area of collapse. Photo 3, taken during the 1988 PA reconnaissance, illustrates the proximity of site to Big River on the east side as well as the migration of wind blown tailings. A strong west/northwest wind was transporting the tailings in a east/southeast direction toward the town of Desloge during the January 1988 PA reconnaissance. The predominate winds that transport the tailings appear to be from the southwest, west, and northwest. This can be concluded by the dune-like migration of the tailings that is apparent on site. The primary migration appears to be from west to east, although the prevailing wind in the area is from the south (SCS 1981). Some south to north migration is evident, however, most migration appears to be west to east. This is particularly evident in the relatively flat, unvegetated, and most elevated portion of the meander area. This area lies directly west of the major collapse area and extends approximately 2,000 feet north, 1,500 feet south, and 2,000 feet west. The topographic map in Appendix H illustrates this area. Photo 4 illustrates the barchan-type dunes and ripples that have formed in this elevated portion of the meander area. The wind fence in the photo was emplaced by SFCEC to aid in prevention of the erosion. fencing has had minimal effect, and much of it is in need of repair. Other areas on site that release tailing particulates readily to the ambient air are the landfill operations area and the huge tailings pile located on St. Joe Minerals property that is elevated 75 to 100 feet

above the adjacent tailings (Photo 5). Photo 6 was taken from the top of the large St. Joe Minerals property pile and illustrates the meander area bordering Big River to the west and farmland to the east. Howard Wood, owner of the farm property to the east of the site, stated that he never had to apply agricultural lime to his property, because so much of the tailings material blows from the site and is deposited on his fields.

Tailings have been transported by surface water erosion to Big River in many areas along the perimeter of the site bordering Big River. Section 3 documents the history of these major areas. Some have been stabilized, and some are actively transporting tailings or in direct contact with the river. During the LSI reconnaissance of the river and site border, the areas where tailings are obviously being transported into the river by surface water erosion or areas where tailings are in contact with the river were documented. These areas are illustrated on Plate 3. Photos 7 and 8 illustrate two of these areas on the west side of the site. During the reconnaissance, it became obvious that a large portion along the northern border of the site had tailings in contact with the river; therefore, this area was marked on Plate 3. Photo 9 illustrates one of these numerous areas along the north perimeter. Photo 10 shows tailings in contact with the river at the east bend on the east side of the site. The bank is very steep and undercut by the river which releases additional tailings. Tailings at this location constantly exceed their angle of repose and fall into the river.

The on-site landfill is also considered a serious problem for two reasons. First, the activity around the landfill operations continuously creates dusty conditions and releases additional heavy metal-laden particulates to the ambient air. Workers on site are constantly exposed to tailings dust. The second reason for concern is the leachate production from the landfill. Landfill leachate is typically low pH and contains large quantities of organic material. This condition could possibly dissolve and mobilize heavy metals bound in the tailings. Therefore, these metals could easily migrate to the shallow ground water and to Big River. Results from a leachate sample taken during the LSI confirms that this problem does exist.

During the LSI, several previously unknown site features were docu-

mented. The most significant of these features include a drainage tunnel, artesian wells, and a swimming area.

A drainage tunnel approximately 10 feet wide, 15 feet high, and 1,500 feet long runs under the southwest corner of the site. The tunnel entrance (Photo 11) is located approximately 300 feet southeast of the landfill office (Plate 3). The tunnel trends southeast/northwest and exits at an opening (Photo 12) approximately 200 feet southeast of the west Desloge river access (Plate 3). Water flowing through the tunnel then drains directly into the Big River. In an interview with landfill manager Bryant AuBuchon, E & E/FIT learned that the tunnel was built by St. Joe Minerals. It was used to divert surface water drainage from a tributary to Big River that once traversed and drained the south part of the site. This former tributary has obviously been filled with tailings. E & E/FIT did not perform a reconnaissance through the drainage tunnel due to safety restrictions; however, AuBuchon confirmed the actual path from his experience.

The area near the drainage tunnel entrance is approximately 50 feet lower in elevation than the adjacent access road and landfill area to the north, due to the thickness of the tailings (Photo 13). Because the landfill operators had a problem with ponding water in an area approximately 200 feet north of the tunnel (Photo 14), a culvert was installed under the access road that drains from this ponded area to the drainage tunnel entrance (Photo 13). Also, a constant flow of landfill leachate seeps into the drainage tunnel in the area (Photo 15). One other notable feature near the drainage tunnel entrance is another drainage tunnel that once drained an area on the tailings pile from a drainage tower (Photo 16). This opening is approximately 20 feet north of the drainage tunnel and appears to trend in a north/south direction underneath the tailings. This tower drainage tunnel drains into the drainage tunnel leading to Big River. It appears that the tower drainage tunnel contributes a significant amount to tailings runoff.

AuBuchon stated that during heavy rainfall events, a significant amount of tailings is carried through the drainage tunnel and deposited into Big River. E & E/FIT observed that the bottom of the tunnel near the entrance was lined with tailings at least one to two feet thick (Photo 11). It is obvious that the landfill leachate also flows through

the tunnel and into Big River. Therefore, E & E/FIT sampled the leachate and tailings at the tunnel entrance and the water at the tunnel exit in order to characterize the contaminants in the water and sediment entering Big River via the tunnel.

While performing a reconnaissance near Owl Creek just west of the site, the E & E/FIT discovered four artesian wells. In an interview with Bryant AuBuchon, it was determined that these were actually former exploratory borings installed many years ago by St. Joe Minerals in order to determine the areal and vertical extent of the lead ore deposits. Apparently, the borings were never plugged after installation. These borings are cased with two-inch diameter steel casing that rises one to two feet above the ground surface. Ground water conditions in the site vicinity apparently have created artesian conditions in these borings (Photo 17). All of these artesian wells were located near the east bank of Owl Creek, north of the abandoned railroad spur, and south of the Owl Creek and Big River confluence. Two of the artesian wells are located at sample location 324 (Plates 2 and 3), and two of the wells are located at sample location 301 (Plates 2 and 3). All of these wells were producing several gallons of water per minute. This water flows directly into Owl Creek which drains into Big River. The E & E/FIT sampled one well at each location.

The E & E/FIT also determined during the LSI that a large tailings sandbar on Big River located on the northwest side of the site is used as a swimming and fishing area for the landfill workers and their friends (Plate 3). A road to access this swimming area had recently been constructed before the LSI fieldwork. AuBuchon confirmed that the area is used for swimming and fishing. The E & E/FIT sampled the surface water and sediment at this location.

It is important to realize that all of the major tailings piles in this former mining region are contributing to the contamination entering Big River and its tributaries, and that all are potentially impacting the ambient air. Consequently, the problem is regional and cannot be attributed to only one waste pile. However, the Big River Mine Tailings site (Big River pile) is unique in several ways that make it more detrimental to the environment. Because it borders Big River on three sides and is elevated above the river, tailings directly enter Big River

via wind and water erosion as well as by undercutting of the tailings by the river. None of the other piles in the area are situated on Big River. As of 1980, an estimated 90,000 cubic yards of tailings have been eroded into the Big River from the site (Novak and Hasselwander 1980). E & E/FIT has observed active deposition of tailings into the river and areas on site where tailings are continuously in contact with Big River. Another notable difference about the site is that it was deposited on relatively flat topography. Therefore, as the pile of tailings accumulated, it became topographically elevated above the surrounding area. With no vegetation to stabilize the elevated areas, tailings are more easily transported to the ambient air. This occurs over much of the site; however, the large, flat, elevated area in the east-central portion of the meander area is the most severely eroded. The topographic map of the site included in Appendix H illustrates this elevated area. Tailings constantly migrate from west to east in this area creating dune features typical of aeolian deposits. Photos 3 and 4 illustrate erosion in this portion of the meander area. Other large tailings piles, such as the Leadwood and Federal piles (See Section 2.2), were deposited in valleys of dammed tributaries. As they were deposited, they filled in these valleys. While some elevated areas exist on these piles and on other tailings piles in the area, due to the size of the Big River site and relative elevation, it appears to have greater potential to create significant tailings particulate releases to the ambient air. Air monitoring of individual tailings piles is needed to confirm or refute these observations.

The on-site landfill is another unique site characteristic. No landfills are known to exist in other tailings piles. Complications associated with the landfill were discussed previously in this section. Consequently, while the metals contamination in the area cannot be attriubted to one mining waste source, the Big River site appears to contribute a disproportionate share of the contamination due to its specific characteristics.

# 2.2 SITE HISTORY

The Big River Mine Tailings site is located in an area known as the Old Lead Belt. The Old Lead Belt is located entirely in St. Francois

County and covers an area of approximately 110 square miles (USGS 1988).

Lead was first discovered in southwestern Missouri in the early 1700s. Until the 1860s, mining in the area was restricted to shallow workings from pits or trenches. In 1864, the St. Joseph Lead Company purchased 964 acres and began mining in Bonne Terre, Missouri. Plates 1 and 2 illustrate the towns and mining waste piles of the Old Lead Belt. Diamond-bit core drilling of the area began in 1869 and determined lead rich ore deposits existed under the towns of Bonne Terre, Desloge, Flat River, Leadwood, and Elvins. As many as fifteen lead companies operated in the area from the late 1800s to early 1900s. However, by 1933, all of the properties in the area had been acquired by the St. Joseph Lead Company. The St. Joseph Lead Company is presently known as the St. Joe Minerals Corporation. The St. Joseph Lead Company operated mine/milling operations at Bonne Terre from 1864 to 1961, at Desloge (Big River Mine Tailings site) from 1929 to 1958, and at Leadwood from 1915 to 1962. Mining activity in the area began to decrease in the 1950s and 1960s as the ore deposits were depleted and with the discovery of the Viburnum Trend (New Lead Belt) which had higher grade ore. The Federal Division of the St. Joseph Lead Company was the last mine to close in the Old Lead Belt in 1972 (USGS 1988).

This area was the nation's largest producer of lead from 1907 to 1953. Approximately eight million tons of lead were produced. Mining wastes or tailings were produced and disposed of in piles directly on the land surface. Early mining methods produced coarse tailings (known locally as chat) from mechanical separators that concentrated the ore. As technology improved chemical separators were used that produced fine-grained tailings. The majority of the Big River site consists of fine-grained tailings. However, both methods produced wastes that contain elevated metals levels. An estimated 250 million tons of tailings were produced in the Old Lead Belt. The Big River drainage basin which drains the Old Lead Belt is estimated to contain 3,000 acres of tailings. Tailings from these waste piles are easily transported and released to surface water bodies and ambient air via wind and water erosion. Plates 1 and 2 illustrate the major tailings piles that make-up the Old Lead Belt wastes as well as the tributaries of Big River that drain them.

The St. Joe Minerals Corporation (formerly St. Joseph Lead Co.) owned and operated the mining and milling operation that produced the tailings at the Big River site. In 1972, the corporation donated the majority of the site, 502 acres, to St. Francois County (Novak 1980). Approximately 100 acres, which is located directly east of the present landfill, is still owned by St. Joe Minerals (Hudwalker 1988; Plate 3).

After acquisition of the 502 acres, St. Francois County leased the land to the St. Francois County Environmental Corporation (SFCEC) (AuBuchon 1987). In 1973, the non-profit SFCEC established a sanitary landfill on approximately 60 acres of the southwest section of the mine tailings pile (EAP 1981; Hudwalker 1988). AuBuchon (1987) stated that the landfill accepts typical residential refuse and debris, and that the refuse is not separated into specified cells. The landfill operation has four full-time employees: AuBuchon and three heavy equipment operators. Hudwalker and Associates, Inc., a consulting engineering firm located in Farmington, Missouri, has administered landfill operations and maintenance of the tailings pile since 1985 (Hudwalker 1988).

Part of the 100-acre area on the east side of the site owned by St. Joe Minerals Corp. is currently leased to the Morgan and White Company (Plate 3). Morgan and White use tailings and chat from this portion of the site for mixing asphalt and sell the tailings for agricultural lime. The number of workers at Morgan and White varies. There are three full time workers; however, during the peak asphalt season (April through September), there are up to five workers on site.

Marvin Hudwalker of Hudwalker and Associates, Inc., was present during the January 1988 PA reconnaissance. He stated that mine tailings were used as daily cover on the landfill trash, and that when a cell is filled, a one-yard thick clay cover is applied, and grass is planted. During the PA reconnaissance, the filled landfill cells were noted to have a continuous cover and the area was relatively clean.

A review of the Missouri Department of Natural Resources (MDNR) files regarding the landfill revealed that the landfill operation was very inadequate before Hudwalker and Associates took over administration. The facility was cited numerous times for various violations. Photographs from repeated inspections of the landfill

depict large amounts of refuse with no cover or vegetated cap (Burris 1988).

According to a 1977 University of Missouri-Columbia (UMC) report, the area experienced a severe storm event involving the section of the tailings pile known as Gap A, adjacent to the Big River on the southeast side of the meander area (Figure 2-1). This portion of the mine tailings pile became supersaturated and collapsed, releasing its contents into the Big River (Appendix F; Photo 1). Although the exact quantity of mine tailings that washed into the river is not known, estimates suggest that the quantity may have been as much as 50,000 cubic yards (Hudwalker 1988; Figure 2-1). When MDNR discovered this catastrophic event, they requested that the EPA Surveillance and Analysis team (SVAN) conduct an extensive investigation of the Big River. The SVAN conducted a survey in late 1977, and the general findings, based on aquatic population density and diversity, were that the Big River was degraded by the mine tailings that entered the river. The degradation was mainly the result of physical changes in the benthic zone of the river rather than chemical toxicity of the river water (EAP 1981).

In 1980, the Missouri Department of Conservation (MDC) submitted evidence that some fish sampled downstream from the tailings pile contained elevated lead levels (EAP 1981). This report concluded that the high concentrations of lead were found in the edible tissue of fish found in the Big River downstream from the location where mine tailings had entered the river during the 1977 rupture. The highest concentration, 1.30 parts per million (ppm), was found in sample nine from four golden red-horse fish collected immediately downstream from the collapsed Desloge tailings pile. The World Health Organization (WHO) dietary limit for lead is 0.3 ppm (Czarneski 1984).

As a result of these findings, the state of Missouri issued a press release cautioning local residents not to eat bottom-feeders taken from a 50-mile stretch of the Big River from the city of Leadwood (near the Desloge tailings pile) downstream to Washington State Park (Gale et al. 1982). Since 1980, numerous research projects have focused on the impact of the mine tailings piles in the Old Lead Belt on the Big River. Results of various studies are presented in Section 3.

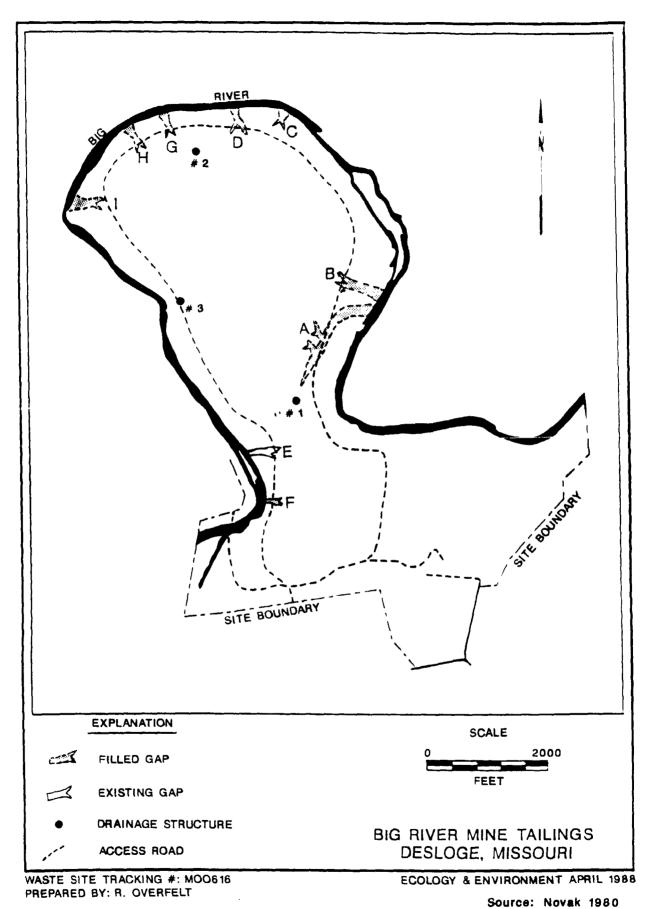



Figure 2-1: Major Erosional Features

By December 1981, St. Joe Minerals Corporation, under a cooperative agreement with the state of Missouri, began limited remedial action on the pile in an effort to fill the erosional gaps and stabilize the pile (Mattson 1987). Many smaller erosional events have been documented since the massive 1977 release. Section 2.3 details the past and present erosional problems as well as the efforts undertaken to stabilize the pile.

In the spring of 1985, the Desloge Tailings Task Force was organized to deal with the existing problems of the Desloge Mine Tailings site. The Task Force, organized by St. Joe Minerals, consisted of representatives from St. Joe Minerals, the landfill, and MDNR, as well as local officials and others. Specific Task Force activities are detailed in Section 2.3. The Task Force focused on three primary objectives:

- 1. Provide adequate site supervision to ensure proper repair and maintenance.
- Develop and implement short-term measures to stabilize the site.
- 3. Develop a long-term stabilization plan for the site.

Landfill authorities requested a permit from the state of Missouri to expand operation into 200 additional acres of the tailings pile. In January 1987, as a result of this proposed expansion, the MDNR requested that six monitoring wells be installed around the existing landfill to determine whether the ground water contained significant quantities of landfill leachate (Plate 3). The well logs for these six monitoring wells are included as Appendix G. Water samples were taken from the wells during the LSI. Table 2-1 summarizes the pertinent site history events as well as stabilization efforts.

# 2.3 STABILIZATION EFFORTS

After the massive release of mine tailings into the Big River in 1977, efforts to stabilize this mine tailings pile were initiated. A number of remedial efforts have been accomplished. Reports from several agencies detail the problems that exist at the site and present solutions to these problems.

| Date                | Chronology of Pertinent Site Events                                                                                                                                                                                                                                     |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1929-1958           | Mining occurred and tailings were deposited in slurry form.                                                                                                                                                                                                             |
| 1973                | St. Joe Minerals Corporation donated 502 acres to St. Francois County. St. Francois County leased the land to the St. Francois County Environmental Corporation which opened the existing landfill.                                                                     |
| 1977                | Collapse of tailings in Gaps A and B; SVAN reports degradation of Big River due to influx of tailings during collapse.                                                                                                                                                  |
| 1980                | Missouri Department of Conservation determined elevated Pb levels in bottom-feeding fish and issued a press release cautioning local residents not to eat these fish.                                                                                                   |
| 1981                | St. Joe Minerals began remedial activity in an attempt to stabilize the tailings.                                                                                                                                                                                       |
| 1983                | Gaps G and H were formed by overtopping of the retaining berm.                                                                                                                                                                                                          |
| 1984                | 1,500 feet of wind fencing installed.                                                                                                                                                                                                                                   |
| 1985                | Desloge Tailings Task Force was orgainzed. Gap I was formed by overtopping. Burns and McDonnel long-term stabilization plan. Twenty acres near Gap I were seeded. This area appears to be growing well today. Installation of an additional 2,000 feet of wind fencing. |
| 1986                | 10,000 Black Locust trees planted; mostly near Gap I.                                                                                                                                                                                                                   |
| 1987                | Monitoring wells installed around landfill. Some 15,000 Black Locust trees planted near Gap G. Some 20,000 feet of wind fencing installed.                                                                                                                              |
| 1988 (Jan)<br>(May) | E & E/FIT Preliminary Assessment reconnaissance.<br>E & E/FIT Limited Site Inspection.                                                                                                                                                                                  |
| 1990                | E & E/FIT Listing Site Inspection.                                                                                                                                                                                                                                      |

A comprehensive report prepared in 1980 for MDNR by the UMC College of Engineering characterizes the major environmental concerns at the site including water and wind erosion and the apparent hazard of constructing a landfill in the tailings pile. The UMC investigation concluded that the tailings pile contained numerous points where tailings are entering the Big River due to water erosion. The UMC team designated six gaps, which were labeled alphabetically around the pile starting on the southeast side (Figure 2-1). Erosional Gaps G, H, and I developed after the report was completed and have been labeled as they occurred. Areas where tailings are eroding into the river via water erosion or where tailings are in direct contact with the river were noted during the LSI. These areas are illustrated on Plate 3.

Two of the original drainage structures placed by the mining company are illustrated in Photos 7 and 18 (Appendix F). These concrete drainage structures were constructed to drain the water from off the tailings pile and divert it into Big River. During the E & E/FIT PA site reconnaissance in January 1988, it was noted that drainage structure #1 near Gap A was totally collapsed and was no longer functional. According to the UMC report, drainage structure #1 became blocked, leading to the massive erosion which occurred in 1977 at Gaps A and B. The UMC report recommended that the major erosional gaps be filled with a suitable fill material and the area be reshaped to reduce further erosion. Further, the report suggested that the drainage structure located near Gap A be altered to minimize the chance for overflow (Novak and Hasselwander 1980). As Photo 18 illustrates, no further stabilization efforts had been conducted at drainage structure #1 as of July 1990, during the LSI fieldwork.

Wind erosion and the associated blowing of lead-laden dust is also a major concern (Appendix F; Photos 3 and 4). As tailings accumulate and their angle of repose is exceeded, they collaspe and fall into the river. Wind erosion is generally from west to east, which produces a continuous movement of the tailings toward the east. Because the tailings are a very fine, dolomitic sand or silt, sufficient wind velocity creates a tailings dust cloud. During the January 1988 site reconnaissance, this occurrence was observed to be a serious problem (Photo 3). A dust plume originating from the site appeared to be

transporting dust at least one mile to the southeast. Wind speeds on that day included gusts up to 35 miles per hour.

The UMC report recommended that a study be undertaken to assess the possibility for plant growth to be established on the pile to control wind erosion. Plant life is very difficult to establish in this environment for several reasons:

- o A serious nutrient deficiency exists in the tailings;
- o Wind erosion prevents establishment of seedlings;
- o Moisture cannot be retained, especially on the slopes, due to the porous nature of the tailings; and
- o The lead content of the tailings may cause plant sterilization, preventing reseeding by existing plants.

Because of these deleterious conditions, natural plant growth on the majority of the pile is almost nonexistent. Thus, experimentation was suggested as an attempt to establish a method for maintaining a vegatative cover.

The UMC report considers the on-site landfill to be a serious potential problem. The liquid runoff (leachate) that results from a landfill is typically low in pH and contains large quantities of organic material. If these conditions exist, it is very possible that heavy metals could be leached from the tailings and transported to the Big River and shallow ground water at the site. In the UMC report, tests were conducted by extracting mine tailings with nitric acid, distilled water, and ethylenediaminetetra-acetic acid (EDTA). The nitric acid extraction represents the total quantity of metals in the tailings. The distilled water extraction represents what is released by the movement of rain water through the tailings. The EDTA extraction represents the potential for extraction by landfill leachate (Table 2-2). Metals that are extracted by landfill leachate would also be chemically bound by organics and might remain in solution after entering a body of water such as the Big River. During the reconnaissance, the area where landfilling was complete and soil cover was applied was observed to be much more stable than the adjacent mines tailings. However, the benefits of soil cover are offset by the potential for landfill leachate to release lead and other metals from the tailings (Novak and Hasselwander 1980).

These three problems of water erosion, wind erosion, and the land-

fill are the primary concerns at the Desloge tailings pile. When the UMC report was submitted in 1980, no remedial action had begun. However, St. Joe Minerals Corporation began remedial activities in 1981.

Table 2-2

Metals Analyses of Tailings

Big River Mine Tailings Desloge, Missouri

University of Missouri-Columbia College of Engineering

| Clay (µg/g dry) |       |       | Sand (µg/g dry) |          |      |                  |
|-----------------|-------|-------|-----------------|----------|------|------------------|
|                 | Water | EDTA  | <u> HNO</u> 3   | Water    | EDTA | HNO <sub>3</sub> |
| Lead            | 20    | 2,200 | 2,400           | <br>  26 | 720  | 850              |
| Cadmium         | ND    | 3.2   | 14              | <br>  ND | 5.8  | 25               |
| Zinc            | 3.4   | 220   | 680             | <br>  14 | 230  | 1,000            |

Source: Novak and Hasselwander 1980

NOTE: ND: Not detected.

Water: Represents rainfall through tailings.

EDTA: Ethylenediaminetetra-acetic acid and represents

landfill leachate through tailings.

HNO3: Nitric acid and represents total metal content in

tailings.

In December 1981, St. Joe Minerals Corporation began filling Gaps A, B, C, and D. This remedial action was completed in January 1982 (Mattson 1987). C.G. Mattson, St. Joe Minerals Corporation Project Manager, provided a summary of the remedial activity and maintenance performed after the initial work on Gaps A, B, C, and D to the date of the EPA PA.

According to Mattson, inspections have been performed at least once per month from December 1981 by St. Joe Minerals and/or the engineer for

the landfill. Inspections also are made after or during heavy rainfall events. The inspections consists of confirming that all drainage structures are functional and that no observable defects have occurred in the retaining berm.

In April 1983, two small gaps, designated Gaps G and H, were formed when unusually heavy rainfall overtopped the retaining berm (Figure 2-1). The gaps were filled and a 22-inch steel pipe drainage structure was placed in each. In October 1984, 1,500 feet of fence was placed along the base of the large tailings pile on St. Joe Minerals property, and the area north of the fence was seeded, fertilized, and covered with straw mulch. This fence was built to reinforce a dune formed by a wind fence placed in 1980.

In April 1985, Gap I was formed when heavy rainfall topped the retaining berm. The gap was filled and a 22-inch steel pipe drainage structure was established. At the same time, 2,000 feet of snow fence was placed in the area of the break to build up the retaining berm with wind-blown material. The open channel spillway cut that drains the pond area was deepened and a diversion ditch was cut across natural ground to keep water from flowing into the Gap I area (Figure 2-1). A diversion dike was also built through natural ground so that water diverted by the landfill operation would not flow into Gap E (Figure 2-1).

In October 1985, the approximately 20 acres of tailings that comprise the major portion of the Gap I drainage area were fertilized and seeded. During the January 1988 FIT reconnaissance, it was apparent that the vegetation in this particular area was growing well and had helped stabilize the area. It should be noted that this area is flat and stable relative to other steep sloping, dune-like areas that also exist on the tailings pile. The condition of this area was similar during the July 1990 LSI.

In 1985, the Desloge tailings Task Force contracted the engineering firm Burns and McDonnel, Inc., to develop a long-term stabilization plan. The investigation and report were funded 25 percent by the land-fill corporation and 75 percent by St. Joe Minerals. The Burns and McDonnel (B & M) proposal was highly criticized because it included creating several ponds on the tailings pile to control surface runoff (B & M 1987). Because of the proven instability of the tailings, the

plan to create ponds on the pile was not considered a satisfactory solution. In March 1986, 10,000 Black Locust trees were planted on the Desloge tailings area; some 7,500 of them were planted in the Gap I drainage area that was sewn in October 1985. During the reconnaissance, it was apparent that the seeding of Black Locust in this area was very successful. Some trees were approximately 12 feet tall. In February 1987, 15,000 Black Locust trees were planted on the approximately 15 acres of tailings that form the drainage area for Gap G. These areas were inspected during the LSI, and the vegetation attempts appeard to be successful in the Gap I area and moderately successful in the Gap G area.

In September and October 1987, some 20,000 feet of wind fencing was installed on the upper portion of the tailings area. During the FIT reconnaissance it was noted that much of this fencing was damaged or blown down due to a recent storm. Reconstruction of the fencing, as well as reinforcement, were planned. It was obvious that the wind fencing was controlling some movement of the sand-like material, but it is ineffective during stronger winds (Mattson 1987). It should be noted that at the time of the LSI, most of the wind fencing was damaged and, therefore, ineffective.

In April 1987, the Soil Convervation Service proposed some stabilization plans for the site to the Desloge Mine Tailings Task Force. They suggested diverting the surface drainage away from critical erosion areas and planting some test plots to determine what methods might be best for revegetation. Plans in 1988 were to carry out revegetation test plot experiments in an attempt to determine what plants and planting methods are best suited to the mine tailings. No known further stabilization efforts had been completed or undertaken during the period from the 1988 PA to the 1990 LSI activity. No additional areas were vegetated and it was noted during the LSI that most of the wind fencing was in need of repair.

# 2.4 SITE CONTACTS

Persons associated with the operation and regulation of the site include the following:

Marvin Hudwalker Professional Engineer Hudwalker and Associates, Inc., Consulting Engineers Farmington, Missouri (314)756-6775

Bryant AuBuchon Landfill Manager St. Francois County Environmental Corporation Desloge, Missouri (314)431-4768

C.G. Mattson
Project Manager
St. Joe Minerals Corporation
Irvine, California
(714)975-5269

Greg Reesor Superfund Contact U.S. EPA 726 Minnesota Avenue Kansas City, Kansas (913)551-7695

Also see Appendix C for additional site contacts and property owners associated with the site sampling.

#### SECTION 3: PAST INVESTIGATIONS

Numerous investigations regarding the effects of mine tailings on the Big River have been completed since the massive erosional event in 1977. This section will address the significant results of this research.

# 3.1 METALS IN BIG RIVER WATER AND SEDIMENT

In a study conducted by the National Fisheries Research Laboratory (NFRL), the metals content in river water and sediment was measured at different locations along the Big River (Figure 3-1). The Irondale and Mineral Fork sampling locations were considered control areas while Desloge, Washington State Park, and Brown's Ford sites are 5 miles, 37 miles, and 60 miles, respectively, downstream from the Desloge Mine tailings pile.

Water sampling was done during low, medium, and high stream flow. Total metals and dissolved metals were measured for lead, cadmium, and zinc. The highest total lead (0.68 milligrams/liter [mg/l]) occurred at Washington State Park, and the highest dissolved lead (0.026 mg/l) occurred at Brown's Ford (Table 3-1).

Sediments samples were collected from corresponding locations on the Big River (Table 3-2). Total sediment lead concentrations were highest in Desloge (2215.0 milligrams/kilogram [mg/kg]) and tended to decrease with distance downstream. This value is similar to the lead content found in the tailings at the Desloge pile. Total lead concentration was lowest (49.6 mg/kg) at Irondale. Concentrations at Mineral Fork were substantially higher than at Irondale, though they were lower at Mineral Fork than at other locations. This is probably attributable to the past lead mining or ongoing barite mining activities in the Mineral Fork watershed. These sampling results show how the mine tailings had affected the benthic zone of the Big River at the Desloge mining pile and for several miles downstream (Table 3-2; Schmitt 1982).

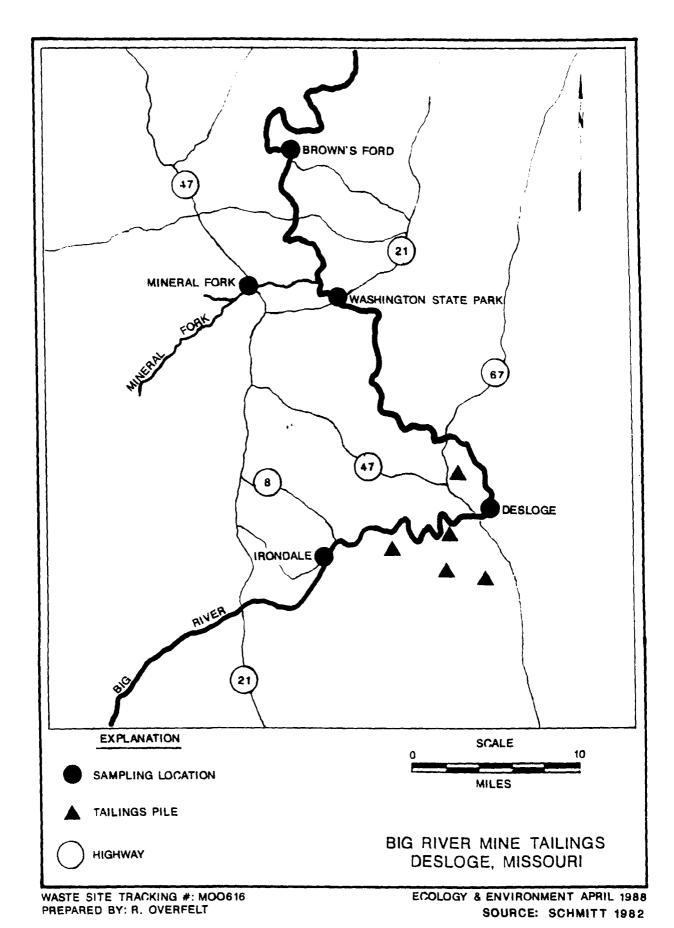



Figure 3-1 NFRL Study Sample Locations on Big River

Table 3-1
Metals Concentrations in Water Samples Collected
in the Big River
Big River Mine Tailings Site
Desloge, Missouri

|                          |         |        |       |        | *====#== | ====== |       |
|--------------------------|---------|--------|-------|--------|----------|--------|-------|
| Location/                | Flow    | Lea    | ad    | Cadı   | nium     | Zinc   |       |
| Stage                    | (CFS)   | D      | T     | D      | T        | D      | T     |
| Mineral Fo               | rk      |        |       |        |          |        |       |
| Low                      | 29.6    | 0.005  | 0.009 | 0.001  | 0.001    | <0.01  | <0.01 |
| Med.                     | 160.0   | 0.006  | 0.005 | 0.001  | 0.001    | <0.01  | <0.01 |
| High                     | 505.0   | 0.005  | 0.009 | 0.001  | 0.001    | <0.01  | <0.01 |
| Brown's For              | rd      |        |       |        |          |        |       |
| Low                      | 95.6    | 0.005  | 0.043 | 0.001  | 0.001    | 0.02   | 0.03  |
| Med.                     | 650.0   | 0.007  | 0.084 | 0.001  | 0.001    | 0.01   | 0.03  |
| High                     | 11900.0 | 0.026  | 0.440 | 0.001  | 0.001    | 0.05   | 0.17  |
| Washington<br>State Park |         |        |       |        |          |        |       |
| Low                      | 70.2    | 0.009  | 0.091 | <0.001 | 0.001    | 0.01   | 0.04  |
| Med.                     | 490.0   | <0.005 | 0.140 | <0.001 | <0.001   | 0.01   | 0.07  |
| High                     | 11395.0 | 0.021  | 0.680 | <0.001 | <0.004   |        | 0.22  |
| Desloge                  |         |        |       |        |          |        |       |
| Low                      | 45.3    | 0.020  | 0.041 | 0.002  | 0.004    | 0.31   | 0.36  |
| Med.                     | 298.0   | 0.010  | 0.085 | 0.001  | 0.001    | 0.06   | 0.11  |
| High                     | 932.0   | 0.012  | 0.110 | 0.002  | 0.004    | 0.10   | 0.16  |
| Irondale                 |         |        |       |        |          |        |       |
| Low                      | 7.1     | 0.005  | 0.005 | 0.001  | 0.001    | <0.01  | <0.01 |
| Med.                     | 160.0   | 0.005  | 0.005 | 0.001  | 0.001    | <0.01  | <0.01 |
| High                     | 300.0   | 0.005  | 0.005 | 0.001  | 0.001    | <0.01  | <0.01 |

Source: National Fisheries Research Laboratory Report (Schmitt 1982).

Note: CFS = Cubic feet per second.

D = Dissolved Metals.
T = Total Metals.

Reporting unit is mg/l.

Table 3-2
Metals Concentrations in Sediment Samples
Collected in the Big River
Big River Mine Tailings Site, Desloge, Missouri

\_\_\_\_\_\_\_\_\_\_\_

| Location             | Lead      | Cadmium | Zinc    |  |
|----------------------|-----------|---------|---------|--|
| Irondale             | 49.6      | 1.62    | 64.9    |  |
| Desloge              | 2,215.0   | 29.96   | 1,658.4 |  |
| Washington State Par | k 1,843.4 | 10.79   | 704.3   |  |
| Brown's Ford         | 1,438.3   | 6.55    | 484.5   |  |
| Mineral Fork         | 291.5     | 2.52    | 369.7   |  |

Source: National Fisheries Research Laboratory Report (Schmitt 1982).
NOTE: Adjusted total sediment metals concentrations (ug/g dry weight).

# 3.2 METALS IN AQUATIC BIOTA

Several past studies have focused on the elevated metal levels in the Big River aquatic biota.

In the report prepared by the NFRL, cray-fish, fresh water mollusks, and fish were sampled. The sample locations were the same as for surface water and sediments. In crayfish samples, lead and cadmium levels were elevated at Desloge, Washington State Park, and Brown's Ford. The highest lead concentration (140 micrograms/gram [ $\mu$ g/g]) occurred at Desloge. The lead concentration in crayfish was 1.4  $\mu$ g/g at Irondale and 2.7  $\mu$ g/g at Mineral Fork. Since crayfish feed on aquatic macrophytes and detritus, they can accumulate sediment-bound toxins.

Pocketbook mussels were collected at all the locations except Desloge, where none could be found. Results were listed by mean concentrations. Results showed the highest mean lead concentrations at Brown's Fork ranging from 310 to 490  $\mu$ g/g in soft tissue and 18 to 19  $\mu$ g/g in the shell. Lead levels at Washington State Park were from 200 to 310  $\mu$ g/g in soft tissue and 8 to 22  $\mu$ g/g in the shell. The control sample at Irondale had mean lead levels of 2.16  $\mu$ g/g in soft tissue and 0.76  $\mu$ g/g in the shell.

The results of fish samples collected in the Big River vary with fish types (Table 3-3). Bottom-feeders, such as catfish and the Redhorse sucker, tended to have higher concentrations of metals than fish such as the smallmouth bass that do not feed on bottom sediment.

Table 3-3
Metals Concentration in Edible Portions
of Fish in the Big River
Big River Mine Tailings, Desloge, Missouri

| Species               | Lead  | Cadmium | Zinc  |         |
|-----------------------|-------|---------|-------|---------|
| 7,000                 |       | Juanaun |       | <b></b> |
| Mineral Fork          |       |         |       |         |
| Smallmouth bass       | 0.19  | 0.01    | 13.97 |         |
| Yellow bullhead       | 0.13  | 0.02    | 5.67  |         |
| Redhorse sucker       | 0.08  | 0.01    | 13.42 |         |
| Brown's Ford          |       |         |       |         |
| Smallmouth bass       | 0.21  | 0.01    | 4.50  |         |
| Flathead catfish      | 0.29  | 0.02    | 12.24 |         |
| Redhorse sucker       | 0.63  | 0.01    | 11.67 |         |
| Washington State Park |       |         |       |         |
| Smallmouth bass       | 0.27  | 0.01    | 9.49  |         |
| Flathead catfish (4   | 12.00 | 0.34    | 23.00 |         |
| Redhorse sucker       | 0.43  | 0.01    | 9.38  |         |
| Mixed suckers         | 0.38  |         |       |         |
| Desloge               |       |         |       |         |
| Smallmouth bass       | 0.05  | 0.01    | 11.73 |         |
| Channel catfish       | 0.13  | 0.03    | 5.12  |         |
| Redhorse sucker       | 0.57  | 0.03    | 16.15 |         |
| Mixed sucker          | 0.79  |         |       |         |
| [rondale              |       |         |       |         |
| Smallmouth bass       | 0.01  | <0.01   | 13.28 |         |
| Flathead catfish      | 0.06  | 0.06    | 6.75  |         |
| Redhorse sucker       | 0.02  | 0.01    | 9.32  |         |
| Mixed sucker          | 0.07  |         |       |         |

Source: National Fisheries Research Laboratory Report (Schmitt 1982).

NOTE: Means of two samples (individual fish) unless otherwise indicated. Reporting unit is ug/g wet weight.

The lead content in the Redhorse sucker was greater than the 0.3  $\mu g/g$  dietary limit recommended by the World Health Organization (WHO): 0.57  $\mu g/g$  at Desloge, 0.43  $\mu g/g$  at Washington State Park, and 0.63  $\mu g/g$  at Brown's Ford. The lead concentrations at Irondale and Mineral Fork were well below the WHO limit (Table 3-3; Schmitt 1982.)

Research conducted on fish over a five-year period by the University of Missouri-Rolla (UMR) confirms there results. UMR research shows that over a five-year period, the lead concentrations in suckers from the Big River near the lead tailings pile have consistently exceeded the WHO limit (Gale et al. 1982).

These results suggest that mine tailings have raised lead levels in the benthic zone of the Big River and in the bottom feeders that live in this zone of the river. This study also suggests that the tailings have had little effect on the heavy metals content in the river water. However, the LSI sampling results have determined that the surface water in Big River does contain elevated levels of metals which are attributable to the site.

#### 3.3 MINE TAILINGS FOR USE AS AGRICULTURAL LIME

UMR research determined that the possible use of mine tailings as agricultural lime may be acceptable. It also stated that caution should be taken because some older tailings piles have much higher concentrations of lead than more recently developed piles. It should also be noted that plant uptake studies have indicated that both lettuce and radishes tend to accumulate some lead and cadmium when tailings were mixed with soil as agricultural lime (Wixon et al. 1983).

# 3.4 PARTICULATES IN AMBIENT AIR FROM TAILINGS IN AREA

MDNR collected air quality data near Flat River, Missouri, approximately two miles southeast of the site. MDNR used one Hi-vol sampler located approximately 2,000 feet north of the St. Joe Park Tailings Pile (Federal Pile) near Flat River (Plate 1). Data was collected for a three-year period, 1981 to 1983. Monitor filters taken during the initial sampling period of January through August 1981 were analyzed for lead. They were analyzed for total suspended particulates only. No additional filters in the three-year period were analyzed for

lead. The total suspended particulate (TSP) annual geometric mean in 1981 was 50.55 micrograms/cubic meter ( $\mu g/m^3$ ): 1982 was 35.47: and 1983 was 47.43 μg/m<sup>3</sup> (MDNR 1981). The National Ambient Air Quality Standard (NAAQS) for the annual geometric mean of TSP is 75  $\mu$ g/m<sup>3</sup> (CFR 1987). The results of the lead analyses for the first three quarters of 1981 were January to March 0.14  $\mu$ g/m<sup>3</sup>, April to June 1.09  $\mu$ g/m<sup>3</sup>, and July to August 0.17  $\mu$ g/m<sup>3</sup> (MDNR 1981). The NAAQS primary standard for lead in a calendar quarter is 1.5 µg/m<sup>3</sup> (CFR 1987). These results are all within the standards for air quality and are adequate for southerly winds. Because the prevailing winds in this part of the country vary from season to season or month to month, additional Hi-vol monitoring devices situated around the tailings pile would have been more effective than one unit (USDC 1979). A background or control Hi-vol sampler was not used: therefore, no control data is available for comparisons. The Hi-vol air monitoring data collected during the LSI included a much more complete study and analysis. These results are discussed in Section 7.4.

# 3.5 E & B/FIT PREVIOUS INVESTIGATIONS

PA site reconnaissance was conducted in January 1988. Site conditions at that time were documented in the PA report submitted May 17, 1988, to EPA. Much of the background material from the PA has been updated and is included in this report. During the PA reconnaissance, 35 mile per hour westerly winds were observed transporting tailings material off site. Photographs taken during this PA thoroughly document this air release.

A limited site investigation that included surface sampling of the tailings and background soils was conducted May 16, 1988. Nine samples, including a duplicate, were collected on site, and three background soil samples were collected near a gravel road 2.5 miles northwest of the site. Concentration ranges of on-site samples were 880 to 1,400 mg/kg of lead, 8.4 to 19 mg/kg of cadmium, and 370 to 1,100 mg/kg of zinc. Concentrations of background samples were 410 to 570 mg/kg of lead, undetected cadmium, and 97 to 99 mg/kg of zinc. Tailing concentrations were elevated above these background samples; however, the background concentrations were considered very high. This probably is due to the

collection of the background samples adjacent to a gravel road.

Tailings are used for road material in the area; therefore, dust from the road may have elevated the adjacent soil. The LSI sampling yielded much lower metals concentrations in background surface soil.

# SECTION 4: SUMMARY OF WASTE SOURCE AND CHARACTERISTICS

It has been determined that the 600-acre mine tailings located at the Big River Desloge Tailings site contain significant amounts of lead, cadmium, and zinc. The tailings from the pile are migrating into the river and ambient air via water and wind erosion. Therefore, these heavy metals constituents are contaminating the river, air, and possibly the ground water. This section will discuss the three heavy metals of primary concern (lead, cadmium, and zinc), their characteristics, potential hazards, and relevant EPA Maximum Contaminant Levels (MCL). Detailed waste characteristics for these metals as well as arsenic, cobalt, and nickel are included in Appendix I.

Lead exists in nature mainly as lead sulfide (galena). Other common forms are lead carbonate (cercissite), lead sulfate (anglesite), and lead chlorophosphates (pyromorphite). Stable complexes result from the interaction of lead with the sulflydryl, carboxyl, and amine coordination site found in living matter. The toxicity of lead in water is affected by pH, hardness, organic materials, and the presence of other metals. The aqueous solubility of lead ranges from 500 micrograms/liter (µg/l) in soft water to 3 µg/l in hard water (EPA 1976).

Lead is a toxic metal that tends to accumulate in the tissues of humans and other animals. Although seldom seen in the adult population, irreversible brain damage is a frequent result of lead intoxication in children. This most commonly results from the ingestion of lead-containing paint found in older homes. The major toxic effects of lead include anemia, neurological dysfunction, and renial impairment. The most common symptoms of lead poisoning, which usually develop slowly, are anemia, severe intestinal cramps, paralysis of nerves (especially the arms and legs), loss of appetite, and fatigue. The MCL established for lead in drinking water is  $50~\mu g/l$  and proposed  $5~\mu g/l$  (EPA 1991). The National Ambient Air Quality Primary Standard for lead in the air in a calendar quarter is  $1.5~\mu g/m^3$  (CFR 1987).

Cadmium occurs mainly as a sulfide salt, frequently in association with zinc and lead ores (EPA 1976). Accumulation of cadmium in soils in the vicinity of mines and smelters may result in high local concen-

trations in nearby waters. Cadmium is deposited and accumulated in various body tissues. Cadmium may function in or may be an etiological factor for various human pathological processes including testicular tumors, renal dysfunctions, hypertension, arteriosclerosis, growth inhibition, chronic diseases of old age, and cancer (EPA 1976). The MCL established for cadmium in drinking water is 10  $\mu$ g/l and proposed at 5  $\mu$ g/l (EPA 1991).

Zinc is usually found naturally as a sulfide, and it is often associated with other metals, especially lead, copper, cadmium, and iron. It is used in galvanizing processes and in preparation of alloys. Zinc is essential and beneficial in human metabolism. Community water supplies tested have contained 11 to 27 mg/l without harmful effects. The toxicity of zinc compounds to aquatic animals is modified by environmental factors. An increase in temperature and reduction in dissolved oxygen increases the toxicity of zinc for fish. Toxic concentrations of zinc compounds cause adverse changes in the morphology and physiology of fish (EPA 1976). No primary MCL for zinc has been established.

Arsenic, nickel, and cobalt were also detected in the ground water near the on-site landfill. The MCLs for arsenic and nickel are 50  $\mu$ g/l and 100  $\mu$ g/l, respectively. No MCL for cobalt has been established.

Mean concentrations of lead, cadmium, zinc, cobalt, nickel, and arsenic were calculated from the fourteen tailings samples collected on site during the 1990 LSI. Mean concentrations are 2,215 mg/kg lead, 21.7 mg/kg cadmium, 1,044 mg/kg zinc, 15.4 mg/kg cobalt, 15.8 mg/kg nickel, and 7.6 mg/kg arsenic.

The tailings area has been established to be approximately 600 acres. The average thickness of the tailings is approximately 46 feet based on an evaluation of contours from a 1908 USGS map (before tailings deposition) compared to the current topographic elevation. Well logs also verify that the tailings are approximately 50 feet thick. Therefore, the overall volume of waste was calculated to be approximately 44,528,000 cubic yards.

#### SECTION 5: PHYSICAL AND CULTURAL SETTING

#### 5.1 SITE VICINITY AND AIR PATHWAY CONSIDERATIONS

There are several people working on site and numerous people residing in the area surrounding the site. The landfill operation employs four full-time personnel. The Morgan and White facility has three full-time employees and may have up to five during April to Septem-ber. Therefore, there are seven people that work on site year round. The nearest individual residing off site is at the Kyle residence, located 100 feet south of the southwest side of the site.

Population of the surrounding site area was determined using topographic maps, aerial photographs, US Census Bureau data, and the Graphical Exposure Modeling System (GEMS). Table 5-1 lists these results.

Table 5-1 Population Surrounding the Site in Four-mile Radius

| Distance from site (miles) | Population |
|----------------------------|------------|
| 0 - 1/4                    | 52         |
| 1/4 - 1/2                  | 235        |
| 1/2 - 1                    | 2,399      |
| 1 - 2                      | 11,443     |
| 2 - 3                      | 6,469      |
| 3 - 4                      | 238        |

Sources: USGS 1982, St. Francois 1983, EPA 1989, U.S. Census 1991

Resources in the area include the adjacent Big River and commercial agriculture. The Big River is recognized by MDNR for uses that include livestock watering, wildlife watering, swimming, boating, and aquatic life (fishing etc.) (Howland 1988). The E & E/FIT observed numerous individuals fishing and swimming in Big River at and downstream of the site. It should also be noted that during the LSI, it was determined that landfill employees had recently built an access road on site

leading to a large tailings sandbar that employees use for swimming and fishing. This area is located on the west side of the meander area and is illustrated on Plate 3. Howard Wood owns the farm that lies across the river on the east side of the site. Wood uses the land for livestock grazing and hay production. Wood stated that he does not need to apply agricultural lime to his fields due to the significant amount of tailings that blow from the site and are deposited on his property. No terrestial or aquatic sensitive environments exist within a four-mile radius of the site (Dickniete 1990).

#### 5.2 TOPOGRAPHY AND SURFACE WATER CONSIDERATIONS

The Big River Mine Tailings site lies on the eastern side of the Ozark highlands in St. Francois County, Missouri. The major physical features in the area are the St. Francois Mountains to the south, the Farmington Plain to the east, and the dissected topography of the Salem Plateau located to the north (SCS 1981). The site is between these major features on the floodplain of the Big River.

The Big River Mine Tailings site is a mounded pile of tailings that slopes from the middle toward the river boundary. Therefore, drainage on the east, north, and west sides of the site is directly into Big River. Section 3 discusses in detail site drainage as well as past and present problems. Refer to the detailed topographic map of the site included in Appendix H for specific site drainage patterns. Some of the drainage on the south end of the site enters the on-site tunnel and is transported to Big River.

The majority of the site is bordered by Big River. There are numerous areas along this perimeter where tailings constantly erode into the river. Therefore, the tailing wastes are easily transported to the river and in many areas are continuously in contact with the river.

The tailing material is processed dolomite powder, silt, and sand-sized material. Because the tailings are very porous and permeable, they will not retain water through infiltration. Also, tailings are devoid of organic nutrients. Therefore, plant growth is very difficult. Most of the site is unvegetated.

The Soil Conservation Service describes the majority of the site as Psamments soils. This unit consists of deep, nearly level to gently rolling, excessively drained, newly formed soil in tailings ponds. These soils are formed in crushed dolomite material from lead mining. Permeability is rapid, and surface runoff is slow to medium although most precipitation is absorbed into the surface. The available water capacity is low. The natural fertility is very unbalanced, and careful fertilization is required to make the soil suitable for any plant growth. The organic matter is also very low. Some areas have been seeded to grasses and legumes, but results are poor. These soils are generally unsuitable for growing grasses, shrubs, and trees, unless intensively managed (SCS 1981).

The area where natural vegetation occurs on site consists mainly of Caneyville silt loam except for a small area on the southwest portion of the site where Gasconade, flaggy, silty, clay loam occurs.

Caneyville silt loam has 2 to 5 percent slopes and is moderately deep and well drained. This soil occurs on convex ridgetops. The surface layer is a dark-brown silt loam about five inches thick.

Surface runoff is slow to medium. Available water capacity is low (SCS 1981).

Gasconade flaggy, silty, clay loam has 9 to 35 percent slopes, is excessively drained, and occurs on uneven side slopes. The surface layer is a very dark-brown flaggy, silty, clay loam about eight inches thick. The subsoil is dark-brown very flaggy, silty, clay about five inches thick. Permeability is moderately slow, and surface runoff is rapid. Available water capacity is very low (SCS 1981).

All of the soils on site are underlain by hard-bedded Bonneterre dolomite (SCS 1981).

As stated in Section 5.1, the Big River is officially recognized for uses that include swimming, boating, fishing, livestock watering, and wild-life watering (Howland 1988). E & E/FIT observed many local individuals swimming and fishing in the Big River at the site and downstream. There are no drinking water intakes on Big River within 15 miles downstream of the site. However, there is an intake on Big River in Jefferson County, at least 60 river miles from the site (Price 1991).

There are no sensitive environments or critical habitats within one mile downstream of the site (Dickniete 1990).

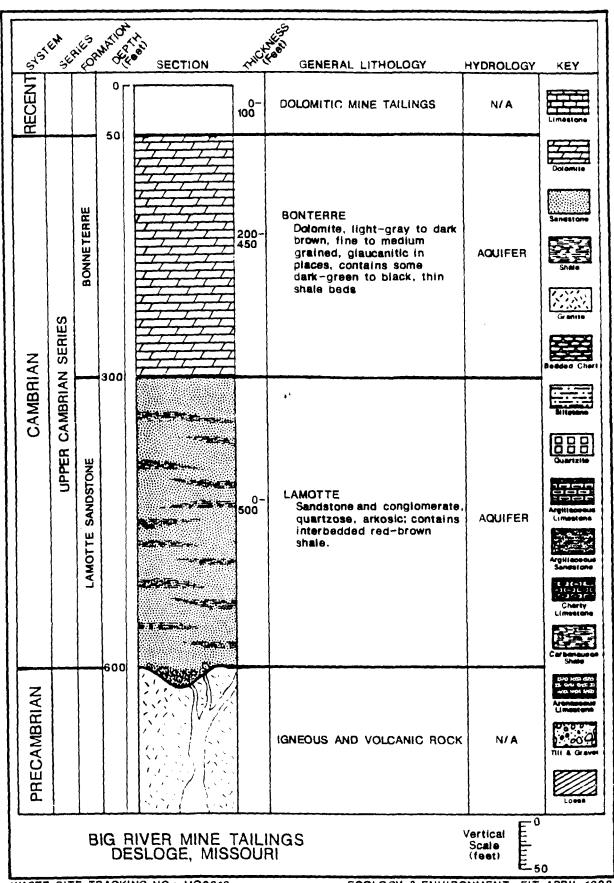
#### 5.3 HYDROGEOLOGY AND GROUND WATER CONSIDERATIONS

The regional and site specific hydrogeology is very complex due to the past mining activities. Hundreds of miles of abandoned underground mine shafts are now filled with ground water. It is estimated that 100,000 exploratory borings were also drilled in the Old Lead Belt (USGS 1988). It is assumed that most of these borings were never properly sealed. Consequently, the mining activity in the region has significantly altered ground water flow and has left the ground water more susceptible to contamination. A comprehensive, regional ground water study was beyond the scope of the LSI. However, the USGS office in Rolla, Missouri, is currently conducting a ground water study of the site and surrounding area.

The shallow ground water on site was characterized during the LSI using several sampling methods. This included sampling of monitoring wells, installing and sampling Geoprobe temporary wells, sampling springs, and sampling artesian wells. It was determined that the shallow ground water is in contact with the tailings. Monitoring wells drilled to the base of the tailings directly around the landfill had static water level (SWL) measurements ranging from 30.5 to 45.75 feet below the ground surface. These monitoring wells (UG-1, DG-3, and DG-2) were emplaced in areas where the tailings are thickest. Monitoring well DG-5, located at a lower elevation near the Big River, had a SWL of 4.25 feet below the ground surface. When the SWL is compared to the total depth of the well, which is drilled to the base of the tailings, it is apparent that shallow ground water is in contact with the tailings. Well logs for the monitoring wells are included in Appendix G. Four Geoprobe temporary wells had SWLs ranging from 9 to 12 feet below the ground surface. It can also be concluded from these SWL measurements that the shallow ground water is in contact with the tailings. This is also confirmed by the numerous springs or seeps found along the perimeter of the site and Big River boundary. Several of these springs were sampled during the LSI.

Several artesian wells located approximately 800 to 1000 feet west of the southwest border of the site were sampled. The wells are actually unsealed exploratory borings. The surface contact of these wells is topographically 60 to 80 feet lower than the southwest side of

the site. Results from the samples collected indicated that contaminated shallow ground water from the site is influencing these artesian wells. Results from all of the ground water samples collected are discussed in Section 7.3.


The site is underlain by Precambrian-age felsites and granites, which are overlain by rock units of the Upper Cambrian series (Buckley 1908; MDGSWR 1961). Figure 5-1 depicts the general stratigraphy of the site vicinity.

The Upper Cambrian Series rock units consist of in ascending order the Lamotte Formation; the Bonneterre Formation; the Elvins Group, which contains the Davis and Derby-Doerun formations, and the Potosi and Eminence formations. The Elvins Group and the Potosi and Eminence formations will not be considered in this report because they are topographically higher than the Big River Mine Tailings site (Buckley 1908; MDGSWR 1961).

The Lamotte Formation is predominantly a quartzose sandstone that grades laterally in many places into arkose and conglomerate (MDGSWR 1961). The formation is approximately 300 feet thick in the study area (Buckley 1908). The Lamotte aquifer is a regional drinking water source (MDGSWR 1983).

The Bonneterre Formation is typically a light-gray, medium to fine-grained, medium-bedded dolomite, although it consists of relatively pure limestone in some areas (MDGSWR 1961). The formation is approximately 350 feet thick in the study area and the principal source for the lead mining in the area that occurred in the late 19th and early to mid 20th centuries. The Bonneterre aquifer is also a regional drinking water source (MDGSWR 1983).

The area ground water aquifers that are topographically lower than the site are the Bonneterre and Lamotte formations. The Flat River Water District serves the towns of Desloge, Elvins, Flat River, Leadington, River Mines, and Ester, Missouri. The approximate population served is 11,000. The Big River Mine Tailings site is adjacent to the town of Desloge and is within two miles of Flat River. The Flat River Water District's water supply comes from the Bonneterre Formation via a sealed, abandoned mine shaft, located approximately two miles south of the site in River Mines, Missouri; and from the Lamotte Formation, via a



WASTE SITE TRACKING NO.: MO0616 PREPARED BY: C. WILLIAMS

ECOLOGY & ENVIRONMENT FIT APRIL 1988 SOURCE: MDGSWR 1961 well located approximately 3,000 feet east in Desloge, Missouri, that is pumped from 410 feet.

The typical shallow ground water flow around the site is assumed to be toward the river. Several springs around the site area flow into the Big River.

An unknown number of private drinking water wells are used in the area. The nearest drinking water well is located on site at the landfill office. This well is reported to be 216 feet deep. Sample results (sample 307) indicate that water from this well is also being influenced by the site (Section 7.3).

Other municipalities that use ground water for drinking and are within a four-mile radius of the site include Leadwood, Bonne Terre, and Terre DuLac. Table 5-2 lists information on municipal wells in the area.

Table 5-2
Municipal Ground Water Usage
in Four-Mile Radius
Big River Mine Tailings site
Desloge, Missouri

| Water<br>District | Munici-<br>palities<br>Served                          | Popu-<br>lation<br>Served                      | Well<br>Identific-<br>ation   | Total<br>Depth<br>(feet) | Formation                     | Distance<br>From Site                     |
|-------------------|--------------------------------------------------------|------------------------------------------------|-------------------------------|--------------------------|-------------------------------|-------------------------------------------|
| Flat<br>River     | Flat River Desloge Elvins Leadington Ester River Mines | 4,443<br>3,581<br>1,548<br>238<br>1,038<br>414 | #1 Sealed<br>mine shaft<br>#2 | 432<br>410               | Bonneterre<br>Lamotte         | ~ 2 miles<br>3000 ft.                     |
| Lead-<br>wood     | Leadwood<br>Gumbo                                      | 1,371<br>~ 90                                  | #1<br>#2                      | 700<br>790               | Unknown<br>Unknown            | ~ 2.5 miles<br>~ 2.5 miles                |
| Bonne<br>Terre    | Bonne Terre<br>E Bonneterre                            | 3,797                                          | #1<br>#2                      | 746<br>720               | Lamotte<br>Lamotte            | ~ 1.5 miles<br>~ 1.5 miles                |
| Terre<br>DuLac    | Terre DuLac                                            | ~2,000                                         | #1<br>#2<br>#3                | 1,030.5                  | Unknown<br>Unknown<br>Unknown | ~ 3.5 miles<br>~ 3.5 miles<br>~ 3.5 miles |

Sources: Tille 1988; Hedgeworth 1988; Warren 1988; Johnson 1987a; Degonia 1988.

#### SECTION 6: FIELD ACTIVITIES

The Big River Mine Tailings LSI field work was conducted August 21 through 29, 1990. Sample series #CSXCR was assigned to all samples. The E & E/FIT members and their field assignments were: Bob Overfelt, team leader and sampler; Chris Williams, Site Safety Officer and sampler; Sharon Martin, sampler; Curt Enos, sampler and HRS information; Annette Sackmann, air sampling trainer; Otavio Silva, air sampler; Patty Roberts, air sampler; and Wes McCall, air sampler.

The field activities varied slightly from the work plan; the number of samples collected was increased substantially. Because of the size of the site and the other tailings piles in the surrounding area, it was necessary to increase the number of samples in order to fully characterize the site and help establish attribution.

Additional soil and tailings samples were added in order to characterize the soil at each Hi-vol air sampler location and to more accurately establish average background concentrations.

Sediment and surface water samples were added to help establish attribution. Therefore, several more samples were collected upgradient and downgradient of the site. Also, any major tributary that could contribute significantly to the water quality of Big River was sampled.

Additional ground water samples were taken to better characterize the shallow ground water on site and in the vicinity. The Geoprobe was used to install four temporary wells along the north perimeter of the site. Numerous springs were found and sampled along the river bank at the site. Some private wells adjacent to the site were also sampled.

The number of air samples was increased because one additional Hi-vol was used and the sampling period was extended from five to six days.

Additional Quality Assurance/Quality Control (QA/QC) samples were also submitted in order to meet the necessary requirements. All sampling was conducted in accordance with the Region VII E & E/FIT Quality Assurance Project Plan. All samples were submitted for total metals analyses. Water samples were also submitted for dissolved metals analyses. All samples were delivered to EPA Region VII Laboratory on July 30, 1990.

#### 6.1 SOIL AND TAILINGS SAMPLING

Thirty samples were collected on site and in the surrounding area. Samples are summarized in Table 6-1, and locations are depicted on Plates 1 and 3. Fourteen tailings samples, including one duplicate, were collected on site. A soil sample was collected at each of the four off-site Hi-vol locations. Five background soil samples, including a duplicate, were collected from three locations several miles west of the site. Four soil samples were collected from three private residences and a day care center, all of which are within 1,500 feet of the southern site border. Four soil samples were collected at intermediate distances (one to two miles) around the site.

The majority of the samples (001 through 026 and 030) were composite samples consisting of five aliquots, one collected every 3 feet over a 15-foot linear distance. All of these samples were collected with a stainless steel spoon at a depth of 0 to 6 inches.

Samples 027, 028, and 029 were collected from a boring at surface sample location 009 at depths of 5 to 6 feet, 10 to 11 feet, and 15 to 16 feet, respectively. These samples were collected using the Geoprobe and the Probe-drive soil sampler.

#### 6.2 SEDIMENT AND SURFACE WATER SAMPLING

Because sediment and surface water samples were collected concurrently at the same sampling location, they will be discussed together. Surface water samples were collected first to avoid introducing disturbed sediment into the water. There were 21 sampling locations, including one duplicate sample location; 22 surface water and 22 sediment samples were collected. Sediment samples are summarized in Table 6-2, and surface water samples are summarized in Table 6-3. Plates 2 and 3 illustrate the sampling locations. Two background locations on the Big River were sampled several miles upstream of the site: one on the tributary that drains the Leadwood tailings pile and one downgradient of the Leadwood tributary and upgradient of the site. Two locations were sampled on Owl Creek. Eight locations, including a duplicate, were sampled on Big River where the site borders the river. Five locations downgradient of the site on Big River were also sampled. A location was sampled on Flat River, Terre Bleue Creek, and Turkey

# Soil and Tailings Sample Summary Big River Mine Tailings Site Desloge, Missouri

E & E/FIT; July 1990 Sample Series CSXCR

| Sample # | Location                                                              | Property Owner |
|----------|-----------------------------------------------------------------------|----------------|
| 001      | From residence ~750 ft S of SW edge of site                           | Kennedy        |
| *002     | On site near center of river meander area                             | County         |
| *003     | On site in SW section of river meander area                           | County         |
| *004     | On site in W central section of river meander area                    | County         |
| *005     | On site in N central section of river meander area                    | County         |
| *006     | On site in NE section of river meander area at hi-vol 3 location      | County         |
| *007     | On site in E central section of river meander section                 | County         |
| *008     | Duplicate of sample 007                                               | County         |
| *009     | On site in SE section of river meander area                           | County         |
| *010     | On site in SE section of site                                         | County         |
| *011     | On site S central section at hi-vol 4, near landfill office           | County         |
| 012      | Background ~4 miles W of site at hi-vol 7 location                    | Glore          |
| 013      | 71 mile W/SW of site at hi-vol 6 location                             | Pratte         |
| 014      | ~1.25 miles E of site at hi-vol 5 location                            | Callahan       |
| 015      | ~1,500 ft E of site at hi-vol 1 and 2 locations                       | Wood           |
| 016      | ~2 miles W of site at SE corner of Leadwood Cemetery                  | Banks          |
| 017      | Background ~6 miles NW of site and 0.25 mile S of Hwy. 47             | Stoffel        |
| 018      | Background ~4.5 miles NW of site in Terre Du Lac Development          | Whitehead      |
| 019      | Duplicate of sample 018                                               | Whitehead      |
| 020      | Background ~6 miles W of site ~1,000 ft NW of Huff Cemetery           | Valley         |
| *021     | On site at leachate seep area at S edge of property near well DG-3    | County         |
| 022      | ~100 ft S of site near landfill office                                | Ky1•           |
| 023      | ~2 miles E of site and ~0.5 mile E of Big River/Flat River confluence | Bullock        |
| 024      | ~0.75 mile N of site and ~1 mile S of Bonne Terre                     | McDowell       |
| 025      | ~2,000 ft W of site near Murrill Cemetary                             | Weible         |
| 026      | From Day Care Center playground ~1,500 ft S of site                   | Forrester      |
| *027     | On-site boring ~150 ft E of met station, 5 to 6 ft depth              | County         |
| *028     | On-site boring ~150 ft E of met station, 10 to 11 ft depth            | County         |
| *029     | On-site boring ~150 ft E of met station, 15 to 16 ft depth            | County         |
| 030      | ~1,000 ft SE of site at SW corner of Oak and 8th streets              | Goff           |

## \* Tailings Sample

Note: All samples were composite samples consisting of five aliquots and were collected from a depth of 0 to 6 inches except samples 027, 028, and 029. These samples were collected with the Geoprobe from an on-site boring at varying depths. All samples were requested to be analyzed for total metals. See Plates 1 and 3 for sample locations. See Appendix C for addresses of property owners.

Table 6-2
Sediment Sample Summary
Big River Mine Tailings Site
Desloge, Missouri
E & E/FIT; July 1990

Sample Series CSXCR

| Sample # | Location                                                                                         |
|----------|--------------------------------------------------------------------------------------------------|
| 100      | Background from Big River at Hwy. U bridge ~0.5 mile W of Irondale                               |
| 101      | Background from Big River ~1 mile downstream of the Hwy. 8 and Big River intersection            |
| 102      | From tributary to Big River that drains Leadwood tailings pile, taken N of Leadwood ~800 ft      |
|          | upgradient of Big River confluence (stainless steel spoon)                                       |
| 103      | From Big River ~1 mile downstream of Leadwood river access                                       |
| 104      | From Big River on W side of site at W bend in river ~600 ft downstream of W Desloge river access |
| 105      | From Big River on W side of site ~0.5 mile downstream of W Desloge river access                  |
| 106      | From Big River on NW side of site at swimming area                                               |
| 107      | From Big River on NE side of site ~0.9 mile downstream of swimming area (collected with shovel)  |
| 108      | From Big River on E side of site ~0.5 mile upstream of major collapse area                       |
| 109      | From Big River on E side of site where major collapse occurred in 1977                           |
| 110      | From Owl Creek on N side of abandoned RR spur (collected with spoon)                             |
| 111      | From Owl Creek ~30 ft upgradient of Big River confluence (collected with spoon)                  |
| 112      | From Big River ~3,500 ft downstream of major collapse area (collected with shovel)               |
| 112D     | Duplicate of sample 112                                                                          |
| 113      | From Big River ~1,500 ft upstream of the N Desloge river access (collected with shovel)          |
| 114      | From Big River ~0.75 mile upstream of the Hwy. 67 bridge over Big River (collected with shovel)  |
| 115      | From Flat River ~300 ft upgradient of the Big River confluence (collected with spoon)            |
| 116      | From Big River ~5 miles downgradient of the site and ~2.75 miles downstream of Flat River        |
|          | confluence                                                                                       |
| 117      | From Turkey Creek ~1,500 ft upgradient of the Big River confluence (collected with spoon)        |
| 118      | From Terre Bleue Creek ~750 ft upgradient of the Big River confluence (collected with spoon)     |
| 119      | From Big River ~10 miles downstream of the site and ~2.5 miles downstream of the Hwy. K bridge   |
| 120      | From Big River ~15 miles downstream of the site and ~0.5 mile upstream of the Hwy. E bridge      |

Note: All samples were composite samples consisting of three aliquots and collected from a depth of 0 to 6 inches. Samples were collected with an Eckman Dredge unless otherwise noted. All samples were requested to be analyzed for total metals. All samples were collected on the waterway or from public access points. A corresponding 200-series surface water sample was collected at every sediment location (Table 6-3). See Plates 2 and 3 for sample locations.

# Table 6-3 Surface Water Sample Summary Big River Mine Tailings Site Desloge, Missouri

E & E/FIT; July 1990 Sample Series CSXCR

| ample | Cond           |            | Temp       |                                                                                                                                        |
|-------|----------------|------------|------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 200   | (μmhos)<br>170 | рн<br>6.96 | (°C)<br>24 | Location  Background from Big River at Hwy. U bridge ~0.5 mile W of Irondale                                                           |
| 201   | 170            | 7.23       | 27         | Background from Big River ~1 mile downstream of the Hwy. 8 bridge and Big River intersection                                           |
| 202   | 550            | 7.20       | 26         | From tributary to Big River that drains Leadwood tailings pile, taken N of Leadwood $^{\sim}800$ ft upgradient of Big River confluence |
| 203   | 200            | 7.48       | 25         | From Big River ~1 mile downstream of Leadwood river access                                                                             |
| 204   | 290            | 7.27       | 23         | From Big River on W side of site at W bend in river ~600 ft downstream of W Desloge River access                                       |
| 205   | 280            | 7.63       | 23         | From Big River on W side of site ~0.5 miles downstream of W Desloge River access                                                       |
| 206   | 260            | 7.42       | 25         | From Big River on NW side of site at swimming area                                                                                     |
| 207   | 380            | 7.33       | 28         | From Big River on NE side of site $^{\sim}0.9$ mile downstream of swimming area                                                        |
| 208   | 360            | 7.44       | 29         | From Big River on E side of site ~0.5 mile upstream of major collapse area                                                             |
| 209   | 370            | 7.45       | 29         | From Big River on E side of site where major collapse occurred in 1977                                                                 |
| 210   | 550            | 7.33       | 18.5       | From Owl Creek on N side of abandoned RR spur                                                                                          |
| 211   | 245            | 7.60       | 26         | From Owl Creek ~30 ft upgradient of Big River confluence                                                                               |
| 212   | 290            | 7.29       | 25         | From Big River ~3,500 ft downstream of major collapse area                                                                             |
| 212D  | 290            | 7.29       | 25         | Duplicate of sample 212                                                                                                                |
| 213   | 290            | 7.55       | 26         | From Big River ~1,500 ft upstream of the N Desloge river                                                                               |
| 214   | 350            | 7.31       | 23         | From Big River ~0.75 mile upstream of Hwy. 67 bridge over Big River                                                                    |
| 215   | 550            | 8.0        | 23         | From Flat River ~300 ft upgradient of the Big River confluence                                                                         |
| 216   | 340            | 7.26       | 27         | From Big River ~5 miles downgradient of the site and ~2.75 miles downstream of Flat River confluence                                   |
| 217   | 650            | 7.58       | 23         | From Turkey Creek ~1,500 ft upgradient of the Big River confluence                                                                     |

6-5

Table 6-3 (Continued) Surface Water Sample Summary Big River Mine Tailings Site

Desloge, Missouri E & E/FIT; July 1990 Sample Series CSXCR

| Sample | Cond    |      | Temp |                                                                                             |
|--------|---------|------|------|---------------------------------------------------------------------------------------------|
| #      | (µmhos) | рН   | (°C) | Location                                                                                    |
| 218    | 205     | 7.34 | 27   | From Terre Bleue Creek ~750 ft upgradient of the Big River confluence                       |
| 219    | 315     | 7.46 | 25   | From Big River ~10 miles downstream of the site and ~2.5 miles downstream of Hwy. K bridge  |
| 220    | 310     | 7.4  | 26   | From Big River ~15 miles downstream of the site and ~0.5 mile upstream of the Hwy. E bridge |

Note: All samples are requested to be analyzed for total and dissolved metals. A corresponding 100-series sediment sample was collected at every surface water sample location (Table 6-2). All samples were collected on the waterway or from public access points. See Plates 2 and 3 for sample locations.

Creek, which are major Big River tributaries. For Hazard Ranking System (HRS) scoring purposes, the farthest downstream location was 15 miles from the site.

The sediment and surface water samples were either collected at public access points on the stream or from a johnboat.

The sediment samples were composite samples consisting of three aliquots, one collected every 5 feet over a 15-foot linear distance. Samples were collected using either an Eckman Dredge, a shovel, or a stainless steel spoon. Table 6-2 indicates if a tool other than the Eckman Dredge was used. A shovel was used when gravel on the river bottom prevented dredge use. A stainless steel spoon was used for some tributary samples.

After collection of surface water samples, specific conductivity, pH, and temperature were recorded in the field. The surface water samples were also preserved in the field to a pH <2 with 1:1 nitric acid, and then were placed in a cooler and iced to 4°C.

#### 6.3 GROUND WATER SAMPLING

Ground water samples were collected from monitoring wells, springs, Geoprobe temporary wells, artesian wells, and private wells on site and in the vicinity. Twenty-one ground water samples were collected. Six quality assurance samples were also collected. Table 6-4 summarizes the ground water samples collected, and locations are depicted on Plates 2 and 3. Five springs, including one background spring, were sampled around the site perimeter. The background spring was located across the river from the site. Four samples were collected from Geoprobe temporary wells that were installed along the north perimeter of the meander area.

Two artesian wells located just west of the site near Owl Creek were sampled. According to AuBuchon, the artesian wells are former exploratory borings installed many years ago by St. Joe Minerals. Apparently the borings were never properly plugged after installation. Several of these pipes are present in the vicinity.

Two drinking water wells were sampled. A sample was collected from the on-site well located at the landfill office. A sample was collected from a private well at a residence located approximately 750 feet south Table 6-4
Ground Water Sample Summary
Big River Mine Tailings Site
Desloge, Missouri
E & E/FIT; July 1990

Sample Series CSXCR

| Sample | Well  | Cond    |       | Temp | Location                                                      |
|--------|-------|---------|-------|------|---------------------------------------------------------------|
| #      | Depth | (µmhos) | pH    | (°C) |                                                               |
| 300    |       | 600     | 7.38  | 22   | From spring on W boundary of site at W bend in river ~600 ft  |
|        |       |         |       |      | downstream of W Desloge River access                          |
| 301    | un-   | 550     | 7.16  | 17   | From artesian well ~25 ft E of W bank of Owl Creek and ~50 ft |
|        | known |         |       |      | N of abandoned RR spur                                        |
| 302    |       | 600     | 7.25  | 28   | From spring on NE boundary of site ~0.75 mile upstream of     |
|        |       |         |       |      | major collapse area                                           |
| 303    |       | 1,100   | 7.07  | 28   | From spring on E boundary of site at major collapse area      |
| 304    |       | 600     | 7.57  | 25   | From spring on E arm boundary of site ~0.75 mile downstream   |
|        |       |         |       |      | of major collapse area                                        |
| 305    |       | 2,100   | 10.62 | 21   | From tributary to Big River carrying effluent from RESCO      |
|        |       |         |       |      | products, taken ~500 ft downstream of N Desloge River access  |
| 306    |       | 1,400   | 7.39  | 25   | From leachate seep area at S central boundary of site near    |
|        |       |         |       |      | well DG-3                                                     |
| 307    | 216   | 550     | 6.92  | 17   | From landfill office well, SWL ~63 ft                         |
| 308    | 200-  | 680     | 6.97  | 18   | From private well at Kennedy residence ~750 S of SW edge of   |
|        | 300   |         |       |      | site                                                          |
| 309    | 10.75 | 1,400   | 6.56  | 18   | From on-site MW DG-5 at E bend in river, SWL was 4.25 ft      |
| 309D   | 10.75 | 1,400   | 6.56  | 18   | Duplicate of sample #309                                      |
| 310    | 37.5  | 900     | 6.78  | 15   | From on-site MW UG-1 N of landfill in S central river meande  |
|        |       |         |       |      | area, SWL was 26 ft                                           |
| 311    | 45.75 | 1,100   | 6.56  | 17   | From on-site MW DG-3 at S border of site, SWL was 44.5 ft     |
| 312    | 30.5  | 700     | 6.45  | 16   | From on-site MW DG-2, E of landfill SWL was 25.5              |
| 314    | 9     | 470     | 7.15  | 25   | From on-site Geoprobe-TW on W side of meander area near pond  |
|        |       |         |       |      | SWL was 7 ft                                                  |
| 315    | 12    | 420     | 7.05  | 25   | From on-site Geoprobe-TW on NW side of meander area, SWL was  |
|        |       |         |       |      | 9 ft                                                          |
| 316    | 12    | 600     | 6.93  | 20   | From on-site Geoprobe-TW on N side of meander area, SWL was   |
|        |       |         |       |      | ft                                                            |
| 317    | 12    | 700     | 7.11  | 20   | From on-site Geoprobe-TW on NE side of meander area, SWL was  |
|        |       |         |       |      | 9 <b>f</b> t                                                  |
| 318    |       | 550     | 7.04  | 17   | From background spring on opposite river bank from site at    |
|        |       |         |       |      | the W bend in river                                           |
| 319    |       | 650     | 7.54  | 19   | From NW end of drainage tunnel "300 ft SE of W Desloge River  |
|        |       |         |       |      | ACCess                                                        |
| 320F   |       |         |       |      | Trip Blank (total metals only)                                |
| 321F   |       |         |       |      | Field Blank                                                   |
| 322F   |       |         |       |      | Field Blank                                                   |
| 323F   |       |         |       |      | Rinsate of disposable Teflon bailers                          |
| 324    | un-   | 700     | 7.10  | 15   | From artesian well ~20 ft E of Owl Creek and 100 ft S of Owl  |
|        | known |         |       |      | Creek and Big River confluence                                |
| 324F   |       |         |       |      | Rinsate of Geoprobe pipe                                      |
| 325F   |       |         |       |      | Acid Blank (total metals only)                                |

MW = monitoring well;

TW = temporary well;

SWL = Static Water Level (measured from top of protective steel casing of MW).

Note: All samples are requested to be analyzed for total and dissolved metals except for samples 320F and 325F, which were submitted for total metals only. All samples were collected on site or from the river waterway, except for sample 308 which was taken from the Kennedy residence. Sample 313 was not used. Sample 305 was believed to be a small spring when sampled, but it was later discovered to be a small tributary. See Plates 2 and 3 for sample locations.

of the site.

While on site, it was discovered that a drainage tunnel exists beneath the site. The tunnel extends from an opening located approximately 300 feet southeast of the landfill office and trends southeast/northwest to an exit opening near the west Desloge River access. The tunnel is approximately 1,500 feet long. The E & E/FIT learned from AuBuchon that the tunnel was built by St. Joe Minerals and was used to divert surface water drainage from a tributary to Big River. The E & E/FIT sampled a leachate seep that drains into the southeast entrance of the tunnel and also collected a sample from where water exits at the northwest end of the tunnel before it enters Big River.

Ground water sample 305 initially appeared to be a spring when it was sampled; however, it was determined later to be a small tributary to Big River. The tributary drains part of the RESCO Products property. The water appeared very turbid and white in color and had a pH of 10.62. This tributary is apparently being influenced by operations at the RESCO Products property. It is known that a large quarry exists on the RESCO property.

Five ground water samples, including one duplicate, were collected from four of the six monitoring wells. Two of the monitoring wells were dry. The following table lists information regarding the monitoring well sampling.

Monitoring Well Information

| Well | Total | Depth to       | Water  | Volume | Sample    |  |  |  |
|------|-------|----------------|--------|--------|-----------|--|--|--|
| #    | Depth | Static Water   | Height | Purged | #         |  |  |  |
|      |       | Level (ft)     | (ft)   | (gal)  |           |  |  |  |
| UG-1 | 37.5  | 26             | 11.5   | 3.5    | 310       |  |  |  |
| DG-1 | Dry   | <del>-</del> - |        |        | ~-        |  |  |  |
| DG-2 | 30.5  | 25.5           | 5      | 1.5    | 312       |  |  |  |
| DG-3 | 47.75 | 44.5           | 1.25   | 0.3    | 311       |  |  |  |
| DG-4 | Dry   |                |        |        |           |  |  |  |
| DG-5 | 10.75 | 4.25           | 6.5    | 4.5    | 309, 309D |  |  |  |
|      |       |                |        |        |           |  |  |  |

The monitoring wells were purged using disposable polyethylene bailers. The wells were purged of three volumes or until dry. After purging, the wells were allowed to recharge for approximately 24 hours before sampling. The bailers were rinsed with deionized water before sampling.

Immediately after collection of ground water samples, specific conductivity, pH, and temperature were recorded (Table 6-4). The ground water samples were preserved to a pH <2 with 1:1 nitric acid, and then were placed in a cooler and iced to  $4^{\circ}$ C.

Six QA/QC samples were submitted: two field blanks, a trip blank, an acid blank, a rinsate sample of a bailer, and a rinsate sample of Geoprobe pipe.

#### 6.4 AIR SAMPLING

The E & E/FIT performed a general reconnaissance of the site and surrounding area on July 21, 1990, and determined placement of the Hi-vol air samplers. Six locations were chosen. On July 22, 1990, seven Hi-vol samplers were set up (Plate 1). One location had co-located Hi-vols in order to collect a replicate sample. Six of the Hi-vols were powered by 3,500 watt, gasoline-powered generators, and one Hi-vol, located just north of the landfill office, was plugged into an electrical outlet. Two Hi-vols were placed on site, and five were placed off site. One Hi-vol was set up on the north end of the site, and one was set up at the landfill office area where daily traffic can be heavy. Three Hi-vols, in two locations, were set up to the east in a downwind direction. The predominant wind direction transporting tailings in the area was determined to be from the west to the east with some southwest and northwest influence. One Hi-vol was set up to the west in between the Leadwood tailings pile and the site. One remote background Hi-vol was set up to the west of the site and to the northwest of the Leadwood tailings pile. The locations of the Hi-vols are as follows:

- o Hi-vol 1 and 2 Across Big River approximately 1,500 feet east of the site.
- o Hi-vol 3 On site in the northeast section of the river meander area.

- o Hi-vol 4 On site in southwest section approximately 150 feet north of landfill office.
- o Hi-vol 5 Approximately 1.25 miles east of the site, near Hwy. 67 and Big River intersection.
- o Hi-vol 6 Approximately 1 mile west-southwest of the site, between Leadwood pile and the site.
- o Hi-vol 7 Approximately 4 miles west of the site.

All Hi-vol locations are illustrated on Plates 1 and 3. The Hi-vol samplers were placed on stands, making them 6 feet above the ground surface in order to characterize the air quality in the breathing zone.

A Campbell Scientific Portable Meteorological Station was placed on site in the south section of the meander area (Plates 1 and 3). The station continuously collected wind speed, wind direction, temperature, relative humidity, and barometric pressure.

The Hi-vol samplers were operated for approximately 12 hours each day for six consecutive days. The samplers were run for the 12-hour period of noon to midnight to accommodate diurnal changes.

Forty-seven air samples, including a field blank for each day, were collected from six locations over a six-day sampling period (Table 6-5). Sampling began on July 23, 1990, and ended on July 28, 1990. A sample was not collected from Hi-vol 5 on July 23, 1990, because the Hi-vol was not functioning properly. Sample 406 was submitted for analysis; however, it cannot be used as comparable data because the sampler ran for 24 hours due to a timer malfunction. All air samples were submitted for total metals analyses.

#### Table 6-5

# Air Sample Summary

## Big River Mine Tailings

#### Desloge, Missouri

E & E/FIT; July 1990 Sample Series CSXCR

| Sample # | Location                  | Date Collected | Property Owner |
|----------|---------------------------|----------------|----------------|
| 400      | Hi-vol #1                 | 7-23-90        | Wood           |
| 402      | Hi-vol #2                 | 7-23-90        | Wood           |
| 403      | Hi-vol #3                 | 7-23-90        | County         |
| 404      | Hi-vol #4                 | 7-23-90        | County         |
| *405     | Hi-vol #5 (not submitted) | 7-23-90        |                |
| *406     | Hi-vol #6                 | 7-23-90        | Pratte         |
| 407      | Hi-vol #7                 | 7-23-90        | Glore          |
| 408      | Field Blank               | 7-23-90        |                |
| 409      | Hi-vol #1                 | 7-24-90        | Wood           |
| 410      | Hi-vol #2                 | 7-24-90        | Wood           |
| 411      | Hi-vol #3                 | 7-24-90        | County         |
| 412      | Hi-vol #4                 | 7-24-90        | County         |
| 413      | Hi-vol #5                 | 7-24-90        | Callahan       |
| 414      | Hi-vol #6                 | 7-24-90        | Pratte         |
| 415      | Hi-vol #7                 | 7-24-90        | Glore          |
| 416      | Field Blank               | 7-24-90        |                |
| 417      | Hi-vol #1                 | 7-25-90        | Wood           |
| 418      | Hi-vol #2                 | 7-25-90        | Wood           |
| 419      | Hi-vol #3                 | 7-25-90        | County         |
| 420      | Hi-vol #4                 | 7-25-90        | County         |
| 421      | Hi-vol #5                 | 7-25-90        | Callahan       |
| 422      | Hi-vol #6                 | 7-25-90        | Pratte         |
| 423      | Hi-vol #7                 | 7-25-90        | Glore          |
| 424      | Field Blank               | 7-25-90        |                |
| 425      | Hi-vol #1                 | 7-26-90        | Wood           |
| 426      | Hi-vol #2                 | 7-26-90        | Wood           |
| 427      | Hi-vol #3                 | 7-26-90        | County         |
| 428      | Hi-vol #4                 | 7-26-90        | County         |
| 429      | Hi-vol #5                 | 7-26-90        | Callahan       |
| 430      | Hi-vol #6                 | 7-26-90        | Pratte         |
| 431      | Hi-vol #7                 | 7-26-90        | Glore          |
| 432      | Field Blank               | 7-26-90        |                |
| 433      | Hi-vol #1                 | 7-27-90        | Wood           |
| 434      | Hi-vol #2                 | 7-27-90        | Wood           |
| 435      | Hi-vol #3                 | 7-27-90        | County         |
| 436      | Hi-vol #4                 | 7-27-90        | County         |
| 437      | Hi-vol #5                 | 7-27-90        | Callahan       |
| 438      | Hi-vol #6                 | 7-27-90        | Pratte         |
| 439      | Hi-vol #7                 | 7-27-90        | Glore          |
| 440      | Field Blank               | 7-27-90        |                |
| 441      | Hi-vol #1                 | 7-28-90        | Wood           |
| 442      | Hi-vol #2                 | 7-28-90        | Wood           |
| 443      | Hi-vol #3                 | 7-28-90        | County         |
| 444      | Hi-vol #4                 | 7-28-90        | County         |
| 445      | Hi-vol #5                 | 7-28-90        | Callahan       |
| 446      | Hi-vol #6                 | 7-28-90        | Pratte         |
| 448      | Hi-vol #7                 | 7-28-90        | Glore          |
| 449      | Field Blank               | 7-28-90        |                |

<sup>\*</sup> Because of Hi-vol malfunctions, these samples will not be used.

Note: All samples were requested to be analyzed for total metals. The high volume samplers were run for a 12-hour sample period from 1200 hours to 2400 hours for each sample. Sample numbers 401 and 447 were not used. See Plates 1 and 3 for sample locations.

### SECTION 7: ANALYTICAL RESULTS

In general, the analytical data results from the Big River Mine Tailings site were acceptable. However, some data were coded.

## Data Qualification Code

- U = The material was analyzed for but was less than the measurement detection limit. The associated number is the detection limit.
- J = The data are reported but are not valid by approved QC procedures.
  The numerical value is an estimated quantity.
- I = The sample data are invalid. No value is reported.

The complete explanation for coded data is included in Appendix D with the data transmittal.

#### 7.1 SOIL AND TAILINGS

The metals of primary concern in the soil and tailing samples are arsenic, cadmium, cobalt, lead, nickel, and zinc. The presence and concentrations of these metals will be discussed in this section; the analytical results are summarized in Table 7-1. The complete data transmittal is included in Appendixes D and E.

Because the site is located in the Old Lead Belt, it is difficult to establish background concentrations for natural soils. It is known that in this area, tailings have been used for agricultural lime on fields, mixed in asphalt for paving roads, spread on gravel roads, and used for fill material. These practices all are mechanisms for the dispersal of contaminants. Aeolian influences also spread contamination as metals-laden dust and tailings are deposited on downgradient soils via wind erosion. Howard Wood, property owner of the farm adjacent to the east side of the site, stated during the LSI that he has never had to lime his fields because of the tailings material that has been deposited on his property via wind erosion. Another reason that background concentrations may be difficult to establish is that the Bonneterre Formation underlying the site contains heavy metal

# Table 7-1 Selected Metals in Soil and Tailings Samples Big River Mine Tailings Site Desloge, Missouri

E & E/FIT; July 1990 Sample Series CSXCR

| Sample | Arsenic | Cadmium     | Cobalt      | Lead    | Nickel | Zinc  |
|--------|---------|-------------|-------------|---------|--------|-------|
| mg/kg) | ***     | <del></del> |             |         |        |       |
| 001    | 6.3     | 1.20        | 14          | 130 J   | 9.4U   | 65    |
| *002   | 14      | 21          | 13          | 1000 J  | 18 J   | 950   |
| *003   | 7.7     | 14          | 11          | 1100 J  | 15 J   | 570   |
| *004   | 8.1     | 20          | 11 <b>u</b> | 1400 J  | 8.5 U  | 840   |
| *005   | 8.6     | 8.4         | 14          | 930 J   | 15 J   | 370   |
| *006   | 9.6     | 19          | 27          | 1500 J  | 20 J   | 870   |
| *007   | 9.4     | 28          | 15          | 1700 J  | 12 J   | 1200  |
| *008   | 2.1U    | 30          | 13          | 1600 J  | 14 J   | 1300  |
| *009   | 9.7     | 13          | 12          | 1300 J  | 16 J   | 610   |
| *010   | 14      | 79          | 42          | 13000 J | 37 J   | 4300  |
| *011   | 6.5     | 24          | 10 U        | 970 J   | 9.0 J  | 1200  |
| b-012  | 9.3     | 1.3 U       | 16          | 65 J    | 10 U   | 35    |
| 013    | 6.9     | 1.2 U       | 15          | 450 J   | 9.6 U  | 42    |
| 014    | 6.2     | 1.3 U       | 16          | 85 J    | 17 Ј   | 57    |
| 015    | 8.2     | 3.2         | 16          | 370 J   | 11 J   | 180   |
| 016    | 13      | 6.0         | 13 U        | 940 J   | 10 U   | 490   |
| b-017  | 9.5     | 1.2 U       | 14          | 64 J    | 9.5 U  | 66    |
| b-018  | 7.2     | 4.8         | 16          | 1500 J  | 12 J   | 370   |
| b-019  | 6.8     | 5.3         | 18          | 1600 J  | 12 J   | 390   |
| b-020  | 6.2     | 1.2 U       | 12 U        | 76 J    | 9.4 U  | 67    |
| *021   | 2.3 U   | 16          | 19          | 1500    | 20     | 760   |
| 022    | 2.2 U   | 270         | 16          | 650     | 8.8 U  | 13000 |
| 023    | 2.1 U   | 2.1         | 12          | 190     | 15     | 140   |
| 024    | 2.3 U   | 1.2 U       | 12 U        | 99      | 9.2 U  | 98    |
| 025    | 3.1 U   | 1.6         | 18          | 130     | 12 U   | 53    |
| 026    | 2.3 U   | 25          | 13          | 1300    | 9.6    | 1100  |
| *027   | 2.4 U   | 11          | 38          | 2500    | 36     | 630   |
| *028   | 2.1 U   | 10          | 10 U        | 1600    | 9.5    | 510   |
| *029   | 7.0 J   | 11          | 11 U        | 910     | 9.1 U  | 510   |
| 030    | 7.6 J   | 7.9         | 23          | 2200    | 21     | 430   |

b = Background Sample

Note: See Table 1 and Plates 1 and 3 for sample locations and the data transmittal in Appendix D for complete analytical results.

<sup>\* =</sup> Tailings Sample

J = Data reported but not valid by approved QA/QC procedures

U = Less than measurement detection limit, the associated number is the detection limit.

mineralization (lead ore) outcrops. Some surface soils in the area were formed from weathered Bonneterre and may naturally contain elevated concentration of metals. These factors were all taken into account when off-site sampling was conducted. An attempt was made to sample only soil that visually appeared to be indigenous and not influenced by road construction, fill activities, or other artificial interferences.

Five background samples, including a duplicate, were collected from several miles west of the site in areas where influence from wind erosion and deposition from the site or the Leadwood tailings pile would be minimal. Three of these samples (012, 017, and 020) were collected from pastureland, and two samples (018 and 019), including the duplicate, were collected from a residence in the Terre Du Lac subdivision. The three samples collected from pastureland had mean concentrations of 8.3 mg/kg arsenic, 10 mg/kg cobalt, 68.3J mg/kg lead, and 56 mg/kg zinc. Nickel and cadmium were undetected. (Note: A J code will only be associated with the mean value if a significant amount {>25%} of the data used to calculate the mean are J-coded.) However, the samples collected at the Terre Du Lac residence (018 and 109) had elevated concentrations of most metals with means of 7.0 mg/kg arsenic. 5.05 mg/kg cadmium, 17 mg/kg cobalt, 1,550 J mg/kg lead, 12 J mg/kg nickel, and 380 mg/kg zinc. Because the location where samples 018 and 019 were collected is not undisturbed soil, they are not comparable to the pastureland samples; therefore, the samples will not be considered representative of background conditions.

Fourteen tailings samples, including a duplicate, were collected from ten locations on site to characterize the level of metals concentrations in the surface (0-6") of the pile. However, three subsurface tailings samples (027, 028, and 029) were collected at one location (surface sample 009 location) in order to characterize the subsurface. The ranges and mean concentrations of metals in the tailings samples on site are arsenic ranging from undetected to 14 mg/kg; 7.6 mg/kg mean; cadmium ranging 8.4 to 79 mg/kg, 21.7 mg/kg mean; cobalt ranging undetected to 42 mg/kg, 15.4 mg/kg mean; lead ranging 910 to 13,000 J mg/kg, 2,215 J mg/kg mean; nickel ranging undetected to 37 J mg/kg, 15.8 J mg/kg mean; zinc ranging 370 to 4,300 mg/kg, 1,044 J mg/kg mean. It should be noted that sample 010 collected from the east area

of the site, contained the highest concentrations of metals and significantly raised the mean concentrations. In a study performed by UMR, in which 74 surface tailings samples were collected over the entire tailings site, the mean lead concentration was 2,077 mg/kg, the mean cadmium concentration was 26 mg/kg, and the mean zinc concentration was 1,226 mg/kg (Wixon 1983). Therefore, the mean values established from the LSI sampling are similar to the UMR study. When comparing the background concentrations of cadmium, lead, nickel, and zinc in soil to the tailings, it is obvious that the tailings contain extremely elevated concentrations of these metals. The arsenic and cobalt concentrations do not appear to be significantly elevated in the tailings when compared to background concentrations. Arsenic and cobalt concentrations are discussed herein because ground water samples collected on site exhibited elevated levels of these metals.

The four subsurface tailings samples (009, 027, 028 and 029) were collected at 0 to 6 inches, 5 to 6 feet, 10 to 11 feet, and 15 to 16 feet, respectively. Concentrations of cobalt, lead, and nickel increased significantly from the 0 to 6 inches to the 5- to 6-foot interval. The following concentrations were reported:

| Sample # | Depth<br>(feet) | Cobalt<br>(mg/kg) | Lead<br>(mg/kg) | Nickel<br>(mg/kg) |
|----------|-----------------|-------------------|-----------------|-------------------|
| 009      | 05              | 12                | 1,300 J         | 16 J              |
| 027      | 5-6             | 38                | 2,500           | 36                |
| 028      | 10-11           | 10 U              | 1,600           | 9.5               |
| 029      | 15-16           | 11 U              | 910             | 9 U               |

At the 10- to 11- and 15- to 16-foot intervals, metal concentrations appear to return to values similar to or less than the concentrations reported in surface sample depths. This could indicate that these metals have migrated down from the upper five feet, resulting in even higher concentrations at this depth. However, much more sampling and characterization of the subsurface is needed to draw any definitive conclusions. Arsenic and zinc concentrations did not vary significantly with depth.

Soil or tailings samples were collected at each Hi-vol air sampler location in order to establish metals concentrations at those locations and to verify a zone of influence in which the deposition of tailings

via wind erosion occurs. Additional samples were also collected from each direction surrounding the site to aid in the determination of this zone of influence.

Hi-vol sampler location 3 (sample 006) and Hi-vol sampler 4 (sample 011), both located on the tailings have been considered in the tailings results discussion. Also, Hi-vol sampler location 7 (sample 012) has been discussed as a background.

Based on the limited sampling conducted, the most significant area of influence from the site appears to be toward the east and southeast. The nearest resident is approximately 100 feet south of the site on the southwest edge where sample 022 was collected. Results from sample 022 indicated 270 mg/kg cadmium, 16 mg/kg cobalt, 650 mg/kg lead, and 13,000 J mg/kg zinc. These are the highest cadmium and zinc concentrations of any soil or tailings sample collected. Arsenic and nickel were reported as undetected. Results from a sample (026) collected from a day care center playground located approximately 1,500 feet south of the site detected cadmium at 25 mg/kg, cobalt at 13 mg/kg, lead at 1,300 mg/kg, nickel at 9.6 mg/kg, and zinc at 1,100J mg/kg. Arsenic was undetected. Sample 030 was collected approximately 1,000 feet south of the site at a private residence and results indicate 7.6 J mg/kg arsenic, 7.9 mg/kg cadmium, 23 mg/kg cobalt, 2,200 mg/kg lead, 21 mg/kg nickel, and 430 J mg/kg zinc. The two residential samples and the day care center sample have very high concentrations of lead, cadmium, and zinc that are comparable to concentrations found in tailings samples. Therefore, it can be concluded that this area south of the site has been and is currently being influenced by the site.

Sample 015 was collected approximately 1,500 feet east of the site at the co-located Hi-vol sampler locations 1 and 2. Results from sample 015 found arsenic at 8.2 mg/kg, cadmium at 3.2 mg/kg, cobalt at 16 mg/kg, lead at 370 J mg/kg, nickel at 11 J mg/kg, and zinc at 180 mg/kg. The elevated levels of lead, cadmium, and zinc at this location also indicate that this area east of the site is being influenced by the site. Sample 014 was collected at Hi-vol sampler location 5, approximately 1.25 miles east of the site, and sample 023 was collected approximately two miles east of the site to determine if the soils in these areas have been influenced by the site. Lead concentrations in

samples 014 and 023 were 85 J mg/kg and 190 mg/kg, respectively. These lead concentrations are relatively low in comparison to the tailings samples. Other metals of concern were also found at relatively low concentrations. Results of samples 014 and 023 indicate that the soils are not significantly influenced at these locations.

Soil samples 001, 025, and 024 were collected approximately 750 feet southwest of the site, approximately 2,000 feet west of the site and approximately 0.75 miles north of the site, respectively. The concentrations of metals of concern in these three samples are not significantly above background. Therefore, it appears that the soils on the west and north sides have not been influenced at the sampling locations. Perhaps if more soil sampling was performed within a few hundred feet of the site, an area of influence could be established; however, much more sampling would be required to accurately define the entire zone of influence.

Two samples (016 and 013) were collected at locations between the Leadwood tailings pile and the site. These samples were reported to contain lead at 450 J mg/kg in 013, and at 940 J mg/kg in 016. Other metals of concern were also significantly elevated. This could be the result of natural conditions or tailings deposition via wind erosion from the Leadwood pile. However, it is most likely attributable to transport of tailings to that location for fill or construction purposes. Sample 016 was collected at a cemetery where tailings may have been used for fill. Sample 013 was taken in a pasture adjacent to a newly constructed residence where tailings were used as base for part of the drive.

A total of 30 soil or tailing samples were collected to establish background concentrations, determine concentrations present in the on-site tailings, and characterize an area or zone of influence where tailings have migrated off site via wind erosion and elevated the concentrations of metals in the soils. Establishing natural background concentrations in this area of regional mining activity and widespread varied usage of tailings is difficult. However, three samples from apparently undisturbed soil in pastures west of the mining area contained consistently low levels of lead and other heavy metals. The 14 tailing samples collected on site confirmed the presence of elevated

levels of lead (up to 13,000 J mg/kg). Samples of soil collected from around the site indicate that the soils to the south and east at distances of at least 1,500 feet from the site are being influenced most significantly. Off-site areas exhibiting elevated levels of metals include lawns of private residences and a playground of a day care center.

#### 7.2 SEDIMENT AND SURFACE VATER

It should be emphasized that the heavy metals contamination associated with the area near the site is a regional problem. Consequently, a limited regional sampling plan of surface water and sediment was implemented in order to assess the relative impact of the Big River Mine Tailings site on the Big River. The sampling plan was designed to establish attribution of heavy metals contamination from the major tributaries that drain tailing-contaminated basins into Big River. To achieve this objective, background sampling began approximately 16.5 miles upstream of the site location and continued to approximately 15 miles downstream of the site. The discussion of the sample results will begin at the furthest upstream location and consider the impact of the regional mining wastes as the Big River progresses downstream.

Sediment and surface water samples were collected concurrently at the same location; therefore, data results of both media will be discussed together. Metals of concern in the sediment include arsenic, cadmium, cobalt, lead, nickel, and zinc. Cadmium, lead, and zinc are the primary and most widespread contaminants in the sediment while arsenic, cobalt, and nickel were found generally at much lower concentrations but occur at elevated concentrations sporadically. These metals will only be discussed when elevated levels are found. Lead and zinc were the only metals of concern found at elevated levels in the surface water. Tables 7-2 and 7-3 list the selected heavy metal results found in the sediment and surface water, respectively. Sediment samples have 100-series numbers, and surface water samples are assigned the corresponding 200-series number. A total of 21 locations, including a duplicate, were sampled for sediment and surface water.

Two background sample locations (100, 200 and 101, 201) upgradient of any mining wastes were collected from Big River. Refer to Plates 2

Table 7-2
Selected Metals in Sediment Samples
Big River Mine Tailings Site
Desloge, Missouri
E & E/FIT; July 1990
Sample Series CSXCR

| ******* |                                                                                                                                                           |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                                                           |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Arsenic | Cadmium                                                                                                                                                   | Cobalt                                                                                                                                                                              | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.4 J   | 1.1 U                                                                                                                                                     | 11 U                                                                                                                                                                                | 1.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5.5 J   | 1.1 U                                                                                                                                                     | 11 U                                                                                                                                                                                | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.5 U   | 140                                                                                                                                                       | 12 U                                                                                                                                                                                | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.8 Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6,500 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 30 J    | 46                                                                                                                                                        | 13 U                                                                                                                                                                                | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,900 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.2 U   | 130                                                                                                                                                       | 11 U                                                                                                                                                                                | 5,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6,600 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6.2 J   | 21                                                                                                                                                        | 11 U                                                                                                                                                                                | 1,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 840 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8.3 J   | 42                                                                                                                                                        | 12 Ü                                                                                                                                                                                | 1,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.3 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,200 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9.0 J   | 88                                                                                                                                                        | 12 Ü                                                                                                                                                                                | 3,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4,500 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.2 U   | 59                                                                                                                                                        | 11 U                                                                                                                                                                                | 1,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,600 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6.4 J   | 24                                                                                                                                                        | 12 U                                                                                                                                                                                | 1,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,100 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5.5     | 32                                                                                                                                                        | 52                                                                                                                                                                                  | 540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6.7     | 6.3                                                                                                                                                       | 10 U                                                                                                                                                                                | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11      | 63                                                                                                                                                        | 13 U                                                                                                                                                                                | 3,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6.4     | 120                                                                                                                                                       | 12 U                                                                                                                                                                                | 3,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 18      | 16                                                                                                                                                        | 12 U                                                                                                                                                                                | 2,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.9     |                                                                                                                                                           | 12 U                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 21      | 18                                                                                                                                                        | 16                                                                                                                                                                                  | 3,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.1     | 14                                                                                                                                                        | 12                                                                                                                                                                                  | 1,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11      | 37                                                                                                                                                        | 44                                                                                                                                                                                  | 8,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.2 U   | 1.0 U                                                                                                                                                     | 10 U                                                                                                                                                                                | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.7u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5.5 J   | 6.1                                                                                                                                                       | 11 U                                                                                                                                                                                | 610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.5 U   | 3.7 U                                                                                                                                                     | 1.1 U                                                                                                                                                                               | 680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.6 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | 4.4 J<br>5.5 J<br>2.5 U<br>30 J<br>2.2 U<br>6.2 J<br>8.3 J<br>9.0 J<br>2.2 U<br>6.4 J<br>5.5<br>6.7<br>11<br>6.4<br>18<br>7.9<br>21<br>7.1<br>11<br>2.2 U | 4.4 J 1.1 U 5.5 J 1.1 U 2.5 U 140 30 J 46 2.2 U 130 6.2 J 21 8.3 J 42 9.0 J 88 2.2 U 59 6.4 J 24 5.5 32 6.7 6.3 11 63 6.4 120 18 16 7.9 28 21 18 7.1 14 11 37 2.2 U 1.0 U 5.5 J 6.1 | 4.4 J       1.1 U       11 U         5.5 J       1.1 U       11 U         2.5 U       140       12 U         30 J       46       13 U         2.2 U       130       11 U         6.2 J       21       11 U         8.3 J       42       12 U         9.0 J       88       12 U         2.2 U       59       11 U         6.4 J       24       12 U         5.5       32       52         6.7       6.3       10 U         11       63       13 U         6.4       120       12 U         18       16       12 U         7.9       28       12 U         21       18       16         7.1       14       12         11       37       44         2.2 U       1.0 U       10 U         5.5 J       6.1       11 U | 4.4 J       1.1 U       11 U       1.1 U         5.5 J       1.1 U       11 U       1.4         2.5 U       140       12 U       10,000         30 J       46       13 U       720         2.2 U       130       11 U       5,500         6.2 J       21       11 U       1,700         8.3 J       42       12 U       1,600         9.0 J       88       12 U       3,600         2.2 U       59       11 U       1,300         6.4 J       24       12 U       1,300         5.5       32       52       540         6.7       6.3       10 U       350         11       63       13 U       3,400         18       16       12 U       2,500         7.9       28       12 U       3,800         21       18       16       3,500         7.1       14       12       1,200         11       37       44       8,700         2.2 U       1.0 U       10 U       4.4         5.5 J       6.1       11 U       610 | 4.4 J       1.1 U       11 U       1.1 U       9.0 U         5.5 J       1.1 U       11 U       1.4 9.1 U         2.5 U       140       12 U       10,000       9.8 U         30 J       46       13 U       720       10 U         2.2 U       130       11 U       5,500       8.9 U         6.2 J       21       11 U       1,700       10         8.3 J       42       12 U       1,600       9.3 U         9.0 J       88       12 U       3,600       12         2.2 U       59       11 U       1,300       9.6         6.4 J       24       12 U       1,300       13         5.5       32       52       540       59         6.7 6.3       10 U       350       13         11       63       13 U       3,400       9.8 U         18       16       12 U       2,500       12         7.9       28       12 U       3,800       11         21       18       16       3,500       18         7.1       14       12       1,200       13         11       37       44       8,7 |

<sup>\*</sup> Background Sample

Note: See Plates 2 and 3 for sample locations and the data transmittal in Appendix D for complete analytical results. A corresponding 200-series surface water sample was collected at every sediment location (Table 7-3).

J - Data reported but not valid by approved QC procedures

U - Less than measurement detection limit, the associated number is the detection limit.

Table 7-3
Selected Metals in Surface Water Samples
Big River Mine Tailings Site
Desloge, Missouri
E & E/FIT; July 1990
Sample Series CSXCR

| Sample |        | Lead  |           | Zinc  |           |
|--------|--------|-------|-----------|-------|-----------|
| (      | (µg/l) | Total | Dissolved | Total | Dissolved |
| *      | 200    | 3.0 U | 3.0 U     | 20 U  | 20 U      |
| *      | 201    | 3.0 U | 3.0 U     | 74    | 20 U      |
|        | 202    | 61    | 23        | 1,300 | 1,200     |
|        | 203    | 15    | 3.0 U     | 44    | 20 L      |
|        | 204    | 37    | 3.3 U     | 81    | 44        |
|        | 205    | 29    | 3.0 U     | 74    | 41        |
|        | 206    | 32    | 3.0 U     | 84    | 56        |
|        | 207    | 34    | 3.9 U     | 100   | 68        |
|        | 208    | 33    | 4.0       | 98    | 68        |
|        | 209    | 31    | 4.5       | 98    | 86        |
|        | 210    | 6.0   | 3.0 U     | 42    | 20 t      |
|        | 211    | 26    | 3.0 U     | 62    | 34 t      |
|        | 212    | 29    | 4.4       | 120   | 100       |
|        | 212 D  | 28    | 4.8       | 130 U | 99        |
|        | 213    | 30    | 5.4       | 130   | 110       |
|        | 214    | 27    | 5.7       | 150   | 130       |
|        | 215    | 32    | 16        | 120   | 130       |
|        | 216    | 49    | 9.5       | 130   | 100       |
|        | 217    | 22    | 11        | 34 U  | 31 (      |
| *      | 218    | 3.0 U | 3.0 U     | 20 U  | 20 t      |
|        | 219    | 26 J  | 8.2 J     | 91    | 62        |
|        | 220    | 49 J  | 11 J      | 70    | 39        |

\* Background Samples

NOTE: See Plates 2 and 3 for sample locations and the data transmittal in Appendix D for complete analytical results. A corresponding 100-series sediment sample was collected at every surface water sample location (Table 7-2).

J - Data reported but not valid by approved QA/QC procedures

U - Less than measurement detection limit, the associated number is the detection limit.

and 3 for sample locations. Samples 100 and 200 were collected approximately 16.5 miles upstream of the site near Irondale, Missouri. Sediment sample 100 contained arsenic at 4.4 J mg/kg and zinc at 21 J mg/kg; cadmium, cobalt, lead, and nickel were undetected. No metals of concern were detected in surface water sample 200. Samples 101 and 201 were collected approximately 9.7 miles upstream of the site. Sample 101 contained arsenic at 5.5 J mg/kg, lead at 1.4 mg/kg and zinc at 53 J mg/kg with cadmium, cobalt, and nickel reported below detection limits. Only total zinc at 74 µg/l was found in surface water sample 201. These samples indicate the very low metals concentrations found in the Big River upgradient of the mining district.

The tributary that drains the Leadwood Tailings pile to Big River is the farthest major tributary upstream that contributes a significant amount of metals contamination to Big River (Plate 2). Samples 102 and 202 were collected from this tributary approximately 800 feet upgradient of its Big River confluence. Sediment sample 102 contained high concentrations of cadmium at 140 mg/kg, lead at 10,000 mg/kg, and zinc at 6,500 J mg/kg. Surface water sample 202 contained 61 µg/l total and 23  $\mu$ g/l dissolved lead, as well as 1,300  $\mu$ g/l total and 1,200  $\mu$ g/l dissolved zinc. The next downstream location sampled on Big River (103,203) was located approximately halfway between the Leadwood tributary confluence and the Owl Creek confluence with Big River. Sediment results of sample 103 detected 30 J mg/kg arsenic, 46 mg/kg cadmium, 720 mg/kg lead, and 1,900 J mg/kg zinc. Surface water sample 203 contained 15 µg/l total lead and 44 µg/l total zinc with no detects in the dissolved metals analysis. The elevated metals in the sediment and the elevated total lead in the surface water at this location on Big River is directly attributable to the Leadwood tributary.

Owl Creek is the next tributary along the river that contributes some heavy metal contamination. Its confluence with Big River is approximately 500 feet upgradient of the Big River tunnel discharge confluence (See Plate 3). Owl Creek does not directly drain a tailings pile; however, it does contain tailings in its sediment. The source of these tailings appears to be an abandoned railroad spur which crosses Owl Creek just southwest of the site (See Plate 3). The railroad bed is constructed primarily of tailings, some of which have apparently eroded

and entered Owl Creek. Two locations were sampled along Owl Creek. Samples 110 and 210 were collected just north (downgradient) of the abandoned railroad spur. Sediment sample 110 contained arsenic at 5.5 mg/kg, cadmium at 32 mg/kg, cobalt at 52 mg/kg, lead at 540 mg/kg, nickel at 59 mg/kg, and zinc at 1,900 mg/kg. Surface water sample 210 contained 6.0 µg/l total lead and 42 µg/l total zinc. Samples 111 and 211 were collected on Owl Creek approximately 30 feet upgradient of the Big River confluence. Concentrations of metals in sediment sample 111 were much less than sample 110 with arsenic at 6.7 mg/kg, cadmium at 6.3 mg/kg, cobalt undetected, lead at 350 mg/kg, nickel at 13 mg/kg, and zinc at 400 mg/kg. Surface water sample 211 detected total lead at 26 µg/l and total zinc at 62 µg/l. The metals concentrations in sediment sample 110 are probably higher because it was taken adjacent to the railroad spur where tailings directly enter Owl Creek. The metals concentrations in the Owl Creek water are probably higher near the confluence of Big River due to the significant amount of ground water entering Owl Creek directly from the numerous artesian wells along its east bank. Water from these wells contains elevated concentrations of metals. Results of the artesian well samples are discussed in Section 7.3 and are listed in Table 7-4. Although Owl Creek does contribute heavy metals to Big River, a comparison of its sediment and surface water metal content suggests it is only a minor contributor.

The previously discussed tunnel that runs under the site and discharges near the West Desloge River Access is the next contributor of tailings, surface water, ground water, and landfill leachate to the Big River. The water, leachate, and sediment (tailings) at the entrance and at the exit opening were sampled and found to contain elevated levels of metals. Sample 021 was collected from the entrance of the tunnel and is discussed in Section 6.1. No sediment was available at the tunnel exit; therefore, no sample was collected. Leachate samples 306 and 319 collected at the entrance and exit openings of the tunnel, respectively, are discussed in Section 7.3.

In an interview with landfill manager Bryant Aubuchon, the E & E/FIT learned that this tunnel transports a significant amount of tailing and surface water into Big River during major storm events. Also landfill leachate constantly flows into the tunnel. It is also

assumed that some ground water is discharged through the tunnel. A thorough reconnaissance of this tunnel is needed to determine if any other significant seeps are present or whether any other tunnels drain into it. This tunnel is potentially one of the major sources of contaminants entering the river.

Samples 104 and 204 were collected on Big River approximately 400 feet downstream of the tunnel discharge confluence. These samples were also collected upgradient of any areas around the site where tailings are directly in contact with the river or are entering it via water erosion. Results of sediment sample 104 detected a significant increase of metals with 130 mg/kg cadmium, 5,500 mg/kg lead, and 6,600 J mg/kg zinc. Surface water sample 204 contained 37 µg/l total lead, undetected dis-solved lead, 81 µg/l total zinc, and 44 µg/l dissolved zinc. This sig-nificant increase in heavy metals in the Big River sediment and surface water directly downgradient of the tunnel discharge strongly suggests the tunnel as the source. Additionally, the extremely high concentrations of dissolved zinc found in the leachate seep at the tunnel entrance and in the water at the tunnel exit may be attributable to the first elevated dissolved zinc concentrations in Big River in sample 204.

A total of eight samples, including a duplicate, were sampled at seven locations on the river and around the tailings pile. It should be noted that during the sampling of the Big River numerous areas where tailings are in contact with the river and are easily transported into the river via water erosion were observed. The major areas that were observed are illustrated on Plate 3. Also, numerous ground water seeps or springs originating from the tailings were observed draining directly into Big River. Four of these seeps were sampled and found to contain elevated metals. The seep sample results are discussed in Section 7.3. The range and mean values of the metals of concern in the eight sediment samples (104, 105, 106, 107, 108, 109, 112, and 112D) collected on the Big River adjacent to the site are: arsenic, undetected to 11 mg/kg, 5.9 J mg/kg mean; cadmium, 21 mg/kg to 130 mg/kg, 68.4 mg/kg mean; lead, 1,300 mg/kg to 5,500 mg/kg, 2,687 mg/kg mean; nickel, undetected to 13 mg/kg, 7.1 mg/kg mean; zinc, 840 J mg/kg to 6,700 mg/kg, 3,480 J mg/kg mean. After comparing upstream sediment samples with the extremely

elevated concentrations in these samples, it is obvious that the Big River Mine Tailings site is affecting the benthic zone of the river by significantly increasing the heavy metals content and physically altering it with the introduction of thousands of cubic yards of tailings. Surface water samples at these seven locations were also elevated. The following is the range and mean for the eight surface water samples: total lead  $28~\mu g/l$  to  $37~\mu g/l$ ,  $31.6~\mu g/l$  mean; total zinc  $74~\mu g/l$  to  $120~\mu g/l$ ,  $81.9~\mu g/l$  mean; and dissolved zinc  $41~\mu g/l$  to  $100~\mu g/l$ ,  $70.2~\mu g/l$  mean. Dissolved lead was undetected in these samples until sample 208. Samples 208, 209, 212, and 212D had dissolved lead ranging from 4.0 to  $4.8~\mu g/l$  and a mean concentration of  $4.4.~\mu g/l$ .

A clear pattern of increasing concentrations of lead and zinc in the surface water is evident at each of these locations in a downstream progression. The impact of the site on the surface water is particularly evident in the dissolved lead fraction, which increases from undetected to 4.8  $\mu$ g/l and in dissolved zinc which increases from 44  $\mu$ g/l to 100  $\mu$ g/l progressively downstream along the border of the site.

Samples were collected at approximately 0.75 miles (113, 213) and at approximately 1.5 miles (114, 214) downstream of the eastern edge of the site. The bottom of the river was observed to be lined with tailings along this section. Results of the metals in sediment samples 113 and 114 were very similar to the sediments around the site. Surface water samples 213 and 214 were found to contain increasing dissolved lead at  $5.4 \, \mu g/l$  and  $5.7 \, \mu g/l$ , respectively, as well as increases in dissolved zinc at 110  $\, \mu g/l$  in samples 213 and 130  $\, \mu g/l$  in sample 214.

The Flat River is the next major tributary downstream that drains tailings piles into Big River. The confluence of Flat River and Big River is approximately 2.75 miles downstream of the east edge of the site. Flat River drains the Federal tailings pile (the largest one in the Old Lead Belt) as well as the Elvins and National tailings piles (See Plate 2). Samples 115 and 215 were taken from Flat River approximately 300 feet upgradient of this confluence. Sediment sample 115 contained 21 mg/kg arsenic, 18 mg/kg cadmium, 16 mg/kg cobalt, 3,500 mg/kg lead, 18 mg/kg nickel, and 970 mg/kg zinc. Surface water sample 215 detected total lead at 32  $\mu$ g/l, dissolved lead at 16  $\mu$ g/l, total zinc at 120  $\mu$ g/l, and dissolved zinc at 130  $\mu$ g/l. These sample results

verify that Flat River is another major contributor of heavy metal contamination to Big River.

Samples 116 and 216 were collected on Big River approximately 5 miles downstream of the site and approximately 2.5 miles downstream of the Flat River confluence. Sediment sample 116 contained arsenic at 7.1 mg/kg, cadmium at 14 mg/kg, cobalt at 12 mg/kg, lead at 1,200 mg/kg, nickel at 13 mg/kg, and zinc at 1,000 mg/kg. Surface water sample 216 contained 49 µg/l total lead, 9.5 µg/l dissolved lead, 130 µg/l total zinc, and 100 µg/l dissolved zinc. It is evident that though the heavy metals in the sediment are still elevated at this location the concentrations have decreased substantially. This phenomenon is probably due to the river's ability to transport large quantity of tailings from the site. Most sediments are transported during high flow (high velocity) events. Therefore, as the flow and velocity decreases in the river, the majority of the sediments fall out of suspension and are deposited in the river bottom. Consequently, the highest concentrations of heavy metals (as well as the heaviest tailings deposition) are found within two to three miles downstream of the Big River Mine Tailings site. A statistical sampling is needed to verify this assumption. The surface water at the sample 216 location has apparently been elevated by the addition of the Flat River contaminants. Total lead increased from 27  $\mu g/l$  in 214 to 49  $\mu g/l$  in 216; dissolved lead increased from 5.7  $\mu g/l$  in 214 to 9.5  $\mu$ g/l in 216.

Samples 118 and 218 were collected from Terre Bleue Creek, approximately 750 feet upgradient of the Big River confluence. The confluence of Terre Bleue Creek and Big River is approximately 8.5 miles downstream of the site. A sample was collected at this location because Terre Blue is a major tributary to Big River, even though it has no tailings piles in its drainage basin. Therefore, it was considered a background location. Sediment sample 118 contained 4.4 mg/kg lead and 5.8 mg/kg nickel, while all other metals of concern were below detection limits. No metals of concern were detected in surface water sample 218. These results indicate that background conditions exist on Terre Bleue Creek.

Samples 119 and 219 were collected on Big River approximately 10 miles downstream of the site. Results of sediment sample 119 detected arsenic at 5.5 J mg/kg, cadmium at 6.1 mg/kg, lead at 610 mg/kg, nickel

at 13 mg/kg, and zinc at 370 mg/kg. Surface water sample 219 results indicated 26 J  $\mu$ g/l total lead, 8.2 J  $\mu$ g/l dissolved lead, 91  $\mu$ g/l total zinc, and 62  $\mu$ g/l dissolved zinc. These results indicate that heavy metal concentrations in sediment and surface water are decreasing downstream; however, they remain elevated.

Turkey Creek is the farthest downstream tributary to Big River that drains a tailings pile in the Old Lead Belt. It drains at least the west section of the Bonne Terre pile. An abandoned rail spur follows the creek north from the town of Bonne Terre. This spur is constructed of tailings that were observed to be in contact with Turkey Creek in several locations. It appears that tailings are easily eroded off of the spur and deposited into the creek. Samples 117 and 217 were collected from Turkey Creek approximately 1,500 upgradient of the Big River confluence. Sediment sample 117 contained 11 mg/kg arsenic, 37 mg/kg cadmium, 44 mg/kg cobalt, 8,700 mg/kg lead, 58 mg/kg nickel, and 1,500 mg/kg zinc. Surface water sample 217 detected total lead at 22  $\mu g/l$ , dissolved lead at 11  $\mu g/l$ , and zinc was undetected for total and dissolved; however, the detection limits are elevated to 34 U µg/l and 31 U µg/l, respectively. Therefore, it can be concluded Turkey Creek is also contributing significantly elevated sediment and surface water to Big River.

The farthest downstream samples (120 and 220) collected on Big River were taken approximately 15 miles downstream of the site and approximately 1.25 miles downstream of the Turkey Creek confluence. Results of sediment sample 120 indicate lead at 680 mg/kg and zinc at 290 mg/kg. All other metals of concern were undetected. Surface water sample 220 detected total lead at 49 J  $\mu$ g/l, dissolved lead at 11 J  $\mu$ g/l, total zinc at 70  $\mu$ g/l, and dissolved zinc at 39  $\mu$ g/l. It appears that the Big River sediment and surface water are influenced by Turkey Creek when a comparison is made of the data upgradient (119, 219) and downgradient (120, 220) of the Turkey Creek confluence.

An evaluation of the data collected along more than 30 miles of the Big River and its tributaries confirms the assumption that the heavy metal contamination is a regional problem. The data indicate that the major sources contributing to the contamination other than the site include the Leadwood pile tributary, Owl Creek, Flat River, and Turkey

Creek. However, the data also indicate that the Big River site is the major source of tailings that physically enter the river. This is substantiated by the extremely elevated levels of heavy metals found in the river sediments at the site and directly downstream. Other sources contribute heavy metal-laden tailings, but the data suggests that they do not contribute to nearly the same extent as the Big River Mine Tailings site.

The data also indicated that the tributaries draining other mining waste areas contain substantial amounts of lead and zinc in their surface water. Without an analysis of average annual streams flow for each tributary compared to Big River as well as a comparison of average contaminant levels in these tributaries and Big River, it is difficult to assess exactly what percentages each source releases to Big River. Although, for site assessment purposes, the data do establish relative elevated levels of heavy metals along Big River. Therefore, it is obvious that the Leadwood tributary, upgradient of the site, elevates the heavy metal content of the river water above background, but it is also apparent that the Big River Mine Tailings site elevates the heavy metal content in the river water even higher than the Leadwood tributary. For example, dissolved lead increases from undetected in sample 203, downstream of the Leadwood tributary and upstream of the site on Big River, to 4.8 µg/l in sample 212D on the east side of the site. Dissolved zinc similarly in-creases from undetected in sample 203 to 99 µg/l in sample 212D. Similar increases of contaminants occur downstream of the Flat River and Turkey Creek confluences.

The LSI has successfully determined the major sources of contamination entering Big River throughout the site area. Although a much more extensive study of the impact of the entire Old Lead Belt on the Big River drainage basin may be necessary to fully characterize the severity and extent of the regional contamination.

#### 7.3 GROUND WATER

The objectives of the ground water sampling were to characterize the shallow ground water in the tailings on site, as well as the drinking water well at the on-site landfill office and at a nearby residence. Characterization of the regional ground water would require the consideration of each mining waste source. The many miles of open mine shafts created during the mining activities are now filled with ground water. These conditions have certainly altered the natural movement and chemical characteristics of the region's ground water. The U.S. Geological Survey office in Rolla, Missouri is currently conducting a ground water study focusing on the site and regional conditions. Therefore, the focus of the E & E/FIT LSI was limited to the characterization of site-specific ground water conditions.

Because the tailings are a product of mainly carbonate rock and because the underlying Bonneterre Formation is dolomite, the pH of the local ground water is normally slightly alkaline. This condition generally restricts the mobility of metals. Theoretically, significant migration of metals in the ground water should be minimal. However, because landfill leachate characteristically produces organic chelating agents that can solubilize metals, the possibility of the on-site landfill producing leachate and mobilizing the metals in the tailings is a major concern (Novak and Hasselwander 1980). Consequently, sampling was conducted in an attempt to consider the influence of the landfill as well as the tailings to the on-site ground water.

Metals of concern detected in the ground water samples include arsenic, cadmium, cobalt, lead, nickel, and zinc. Concentrations of arsenic, cobalt, and nickel in the soil, tailings, and sediment samples have mainly been considered for comparison due to their elevated presence in some of the on-site ground water samples. Ground water sampling included five springs, four Geoprobe temporary wells, two artesian wells, two private drinking water wells, four monitoring wells, a tunnel, and a leachate seep. See Plates 2 and 3 and Table 6-4 for sample locations and Table 7-4 for sample results.

Four of the spring samples were collected from locations along the perimeter of the site bordering Big River. One background spring was sampled across Big River opposite the site. Shallow ground water is present in the large mound of tailings that lie directly on top of the Bonneterre Formation. Because the tailings are very porous and highly permeable, numerous springs or seeps are present along the edges of tailings bordering Big River. These springs drain directly into the river. The springs that were sampled were located and sampled during a

#### Table 7-4

#### Selected Metals in Ground Water Samples

#### Big River Mine Tailings Site

#### Desloge, Missouri

E & E/FIT; July 1990

Sample Series CSXCR

| Sample       | Ars          | Arsenic |      | Cadmium |             | Cobalt      | Lead   | Nickel | Zin  | inc   |             |       |
|--------------|--------------|---------|------|---------|-------------|-------------|--------|--------|------|-------|-------------|-------|
| (µg/l)       | Tot.         | Diss.   | Tot. | Diss.   | Tot.        | Diss.       | Tot.   | Diss.  | Tot. | Diss. | Tot.        | Dias. |
| 300          | 100          | 100     | 5.5  | 5.0U    | 50 <b>ʊ</b> | 50 <b>v</b> | 250Ј   | N/A I  | 40U  | 400   | 3400        | 1900  |
| 301          | 10U          | 10U     | 5.0U | 5.0U    | 50U         | 50 <b>ʊ</b> | 36J    | 33 J   | 53   | 60    | 180         | 190   |
| 302          | 100          | 100     | 5.00 | 5.0U    | 50U         | 50 <b>ʊ</b> | 86J    | N/A I  | 40U  | 40U   | 98          | 27    |
| 303          | 21           | 10U     | 190  | 5.0U    | 85          | 50U         | 14000J | N/A I  | 92   | 40U   | 9100        | 65    |
| 304          | 10U          | 10U     | 5.0U | 5.0U    | 50U         | 50U         | 63J    | 20 J   | 40U  | 40U   | 200         | 160   |
| 305          | 100          | 100     | 5.0ບ | 5.0v    | 50U         | 50U         | 5.1J   | N/A I  | 40U  | 40U   | <b>20</b> U | 200   |
| 306          | 100          | 10U     | 5.0U | 5.0U    | 400         | 400         | 330J   | 29 J   | 310  | 320   | 8900        | 6400  |
| 307          | 100          | 10U     | 5.0U | 5.0U    | 50 <b>U</b> | 50U         | 173    | 14 J   | 40U  | 43    | 140         | 140   |
| 308          | 10U          | 10U     | 5.0U | 5.0U    | 50U         | 50 <b>ʊ</b> | 3.00   | N/A I  | 40U  | 40U   | 26          | 31    |
| 309          | 59           | 37      | 6.9  | 5.0U    | 50U         | 50U         | 680J   | 4.1U   | 61   | 40U   | 850         | 520   |
| 309D         | 59           | 37      | 8.0  | 5.0U    | 50U         | 50U         | 650J   | 3.3U   | 49   | 40U   | 830         | 550   |
| 310          | 25           | 17      | 5.0U | 5.0U    | 50U         | 50 <b>U</b> | 23J    | 3.0U   | 40U  | 40U   | 94          | 290   |
| 311          | 64           | 34      | 11   | 5.0U    | 50U         | 50U         | 5000J  | 3.0U   | 64   | 40U   | 530         | 200   |
| 312          | 110          | 10U     | 37   | 27      | 350         | 360         | 9300J  | 60     | 680  | 620   | 26          | 23000 |
| 314          | 14           | 100     | 5.0V | 5.0U    | 8.5         | 55          | 1700J  | 74     | 83   | 43    | 470         | 170   |
| 315          | 14           | 100     | 8.6  | 5.0U    | 56          | 50U         | 3800J  | 9.3    | 70   | 40U   | 560         | 200   |
| 316          | 46           | 100     | 30   | 5.0U    | 170         | 50U         | 8200J  | 46     | 170  | 40U   | 2500        | 450   |
| 317          | 85           | 51      | 26   | 5.0U    | 53          | 50U         | 10000J | 3.0U   | 60   | 40U   | 1400        | 200   |
| 318          | 1 <b>0</b> U | 100     | 5.0U | 5.0U    | 50U         | 50U         | 63J    | 28     | 52   | 86    | 180         | 160   |
| 319          | 100          | 100     | 5.0U | 5.0U    | 50U         | 50U         | 43J    | 4.4U   | 40U  | 40U   | 170         | 450   |
| 320 <b>F</b> | 10U          |         | 5.0U |         | 50U         |             | N/A I  |        | 40U  |       | 200         |       |
| 321F         | 100          | 10U     | 5.00 | 5.0U    | 50U         | 50U         | N/A I  | 3.00   | 40U  | 40U   | 20U         | 201   |
| 322F         | 100          | 10U     | 5.0U | 5.0U    | 50U         | 50U         | 3.25   | 3.0U   | 40U  | 40U   | 200         | 201   |
| 323F         | 100          | 100     | 5.0U | 5.0U    | 50U         | 50U         | N/A I  | 3.0U   | 40U  | 40U   | 200         | 200   |
| 324          | 100          | 100     | 5.0U | 5.0U    | 50U         | 50U         | 373    | 28     | 51   | 8.8   | 160         | 170   |
| 324F         | 100          | 100     | 5.0U | 5.0U    | 50 <b>U</b> | 50U         | N/A I  | 3.00   | 40U  | 40U   | 27          | 200   |
| 325 <b>F</b> | 10U          |         | 5.0U |         | 50U         |             | N/A I  |        | 40U  |       | 200         |       |

Tot. = Total

Diss. = Dissolved

Note: See Plates 2 and 3 and Table 6-4 for sample locations and the data transmittal in Appendix D for complete analytical results. Samples 320F and 325F were submitted for total metals analyses only. Sample #313 was not used.

J - Data reported but not valid by approved QA procedures.

U - Less than measurement detection limit, the associated number is the detection limit.

I - Invalid sample data - value not reported/not available.

reconnaissance of the site perimeter conducted on the Big River in a johnboat. Samples 300, 302, 303, and 304 were collected from the on-site springs. Sample 300 was collected from a spring on the west side of the site near the landfill. Analyses of sample 300 found total lead at 250 J µg/l, dissolved lead was invalid (N/A I), total zinc at 3,400 µg/l, and dissolved zinc at 1,900 µg/l. Note that many of the ground water sample lead results have been invalidated due to the matrix spike recovery being out of control limits and that most other lead results are J coded due to the blank rule. The dissolved zinc concentration in sample 300 was 10 times greater than any of the other spring samples. All of the other springs were a significant distance from the landfill, which suggests that the landfill may be influencing the ground water at this location.

Sample 302, collected from a spring on the northeast edge of the site, contained 86 J μg/l total lead, invalid dissolved lead, 98 μg/l total zinc, and 27 µg/l dissolved zinc. Sample 303, taken near the major collapse area on the east side of the site, contained 21  $\mu$ g/l total arsenic, undetected dissolved arsenic, 190 µg/l total cadmium, undetected dissolved cadmium, 85  $\mu g/l$  total cobalt, undetected dissolved cobalt, 14,000 J µg/l total lead, invalid dissolved lead, 92 µg/l total nickel, undetected dissolved nickel, 9,100 µg/l total zinc, and 65 µg/l dissolved zinc. The presence of arsenic, cadmium, cobalt, and nickel only in the total analysis and not in the dissolved as well as the high total lead and zinc concentrations in sample 303 indicates this sample may have contained significant suspended sediment. Sample 304 was collected near the east edge of the site and contained 63  $\mu$ g/l total lead, 20 J  $\mu$ g/l dissolved lead, 200  $\mu$ g/l total zinc, and 160  $\mu$ g/l dissolved zinc. It can be concluded from these sample results that the numerous springs or seeps flowing from the site into Big River transport significant quantities of total and dissolved lead and zinc, further elevating metals levels in the Big River water.

Sample 318 was collected from a spring on Big River across from the west side of the site and was assumed to be a background location. However, analytical results reported total lead at 63 J  $\mu$ g/l, dissolved lead at 28  $\mu$ g/l, total nickel at 52  $\mu$ g/l, dissolved nickel at 86  $\mu$ g/l, total zinc at 180  $\mu$ g/l, and dissolved zinc at 160  $\mu$ g/l. These high

concentrations could represent natural ground water conditions or that the site or past mining activities, has influenced the shallow ground water across Big River. The constituents and concentrations in sample 318 are comparable to the results on ground water samples collected from the artesian wells (samples 301 and 324). Lead, nickel, and zinc were the only metals detected in these three samples, and the concentrations are similar. All three samples were also collected in the same general area. Therefore, it is possible that the source of the contamination at these three locations is the same.

The two artesian wells (samples 301 and 324) are approximately 1,000 feet west of the southwest edge of the site along the east bank of Owl Creek. As previously discussed, these wells are actually abandoned exploration borings that were drilled by the mining company in order to vertically characterize zones of mineralization in the Bonneterre Formation. Therefore, it can be assumed that the borings extend into the Bonneterre; however, total depths are unknown. Topographically, these wells are at least 60 feet below the southwest portion of the site (USGS 1982). Refer to the topographic map of site in Appendix H. Therefore, shallow ground water from the elevated tailings may be influencing this area as it migrates from the site. Sample 301 contained total lead at 36 J µg/l, dissolved lead at 33 J µg/l; total nickel at 53  $\mu$ g/l, dissolved nickel at 60  $\mu$ g/l; total zinc at 180  $\mu$ g/l and dissolved zinc at 190 µg/l. Results from sample 324 were very similar with total lead at 37 J µg/l, dissolved lead at 28 µg/l; total nickel at 51  $\mu$ g/l, dissolved nickel at 88  $\mu$ g/l; total zinc at 160  $\mu$ g/l and dissolved zinc at 170  $\mu g/l$ . Again, these concentrations are very similar to sample 318.

The four Geoprobe temporary wells (samples 314, 315, 316, and 317) were installed along the northwest, north, and northeast areas of the tailings. They were emplaced in the tailings in these areas in order to characterize the shallow ground water in an area that is probably not influenced by the landfill. The well locations are approximately 25 to 35 feet lower topographically than the thicker portions of the tailings pile immediately to the south. All of the metals of concern were detected in the total metals analysis; however, the results discussion will focus on the dissolved metals only. The concentrations of total metals

in the samples are extremely high and are more of a reflection of the inability of the Geoprobe well point (screen) to filter out a substantial amount of the suspended solids. Therefore, a significant amount of the finer grained tailings entered the screen and were collected in the total metals sample. Table 7-4 lists the total metals results: Dissolved metals detected in sample 314 include 55  $\mu$ g/l cobalt, 74  $\mu$ g/l lead, 43  $\mu$ g/l nickel, and 170  $\mu$ g/l zinc. Lead at 9.3  $\mu$ g/l was the only dissolved metal detected in sample 315. Dissolved metals in sample 316 included 46  $\mu$ g/l lead and 450  $\mu$ g/l zinc. Arsenic at 51  $\mu$ g/l was the only dissolved metal found in sample 317. The dissolved metals concentrations found in these samples, with the exception of the invalid dissolved lead samples, are similar to the concentrations found in the springs sampled (302, 303, and 304) on site, in areas not adjacent to the landfill.

A total of five samples, including a duplicate, were collected from four monitoring wells. There are six monitoring wells around the landfill; however, two were dry. The monitoring wells were installed in 1987, at MDNR request, in order to monitor the shallow ground water around the landfill. Samples 309, 309D, 310, 311, and 312 were sampled from monitoring wells on the north, east, and south edges of the landfill (See Plate 3). Total metals concentrations are extremely high and variable in the monitoring well samples, probably due to suspended solids, as with the Geoprobe temporary well samples. Therefore, only dissolved metals results will be discussed. Table 7-4 lists total metals results for comparison. Arsenic and zinc were the only dissolved metals detected in samples 309, 309D, 310, and 311. In these samples, dissolved arsenic ranged from 17  $\mu$ g/l to 37  $\mu$ g/l, with a mean of 31.2 µg/l, and dissolved zinc ranged from un-detected to 550 µg/l, with a mean of 340 µg/l. However, in sample 312, located on the east edge of the landfill, dissolved metals detected include 27 µg/l cadmium, 360 μg/l cobalt, 60 μg/l lead, 620 μg/l nickel, and 23,000 μg/l zinc. These extremely elevated dissolved metals concentrations are very similar to the concentrations found in the landfill leachate seep (sample 306). Consequently, it appears that the landfill is influencing the ground water at sample 312 (well DG-2). Because sample 311 (well DG-3) is within 100 feet of the landfill leachate seep sample 306, it would be

anticipated that the ground water in DG-3 would be similar to the leachate seep; however, results do not indicate this. This may be due to the fact that DG-3 was nearly dry, with only a 1.25 foot water column. Also, recharge to the well was very slow and did not exceed the 1.25 foot column. Hence, the water in DG-3 may not be representative of the ground water at that location.

The leachate seep sample 306 was collected at the entrance to the drainage tunnel into which it drains. The tunnel trends southwest/ northeast, is approximately 1,500 feet in length, and drains water from the south entrance to the north exit. Sample 319 was collected at the exit location. Water flow through the tunnel at the time of sampling was very slow but continuous. The leachate seep sample 306 contained 400 µg/l total cobalt, 400 µg/l dissolved cobalt, 330 J µg/l total lead, 29 J µg/l dissolved lead, 310 µg/l total nickel, 320 µg/l dissolved nickel, 8900 µg/l total zinc, and 6400 µg/l dissolved zinc. Cadmium was the only metal of concern that was not found at extremely elevated concentrations in sample 306, that was also found in sample 312 from monitoring well DG-2. The extremely high levels of dissolved cobalt, nickel, and zinc in samples 306 and 312 are indicative of landfill leachate mobilizing metals. Lead is also elevated in these samples, however, not as extremely. Results of sample 319, collected at the tunnel exit, indicate total lead at 43 J µg/l, undetected dissolved lead, total zinc at 170  $\mu$ g/l, and dissolved zinc at 450  $\mu$ g/l. Concentrations are much lower in sample 319, collected at the tunnel exit, probably due to dilution of the water as it is transported through the tunnel. Additional sampling of the leachate and the tunnel water is needed to fully characterize the tunnel water and determine the exact path of the leachate flow.

Two private drinking water wells were also sampled. Sample 307 was collected from the on-site landfill office well, and sample 308 was collected from the Kennedy residence, located approximately 750 feet south of the landfill office off site. Sample 307 contained 17 J  $\mu$ g/l total lead, 14 J  $\mu$ g/l dissolved lead, 43  $\mu$ g/l dissolved nickel, 140  $\mu$ g/l total zinc, and 140  $\mu$ g/l dissolved zinc. Sample 308 is considered background and contained only 26  $\mu$ g/l total zinc and 31  $\mu$ g/l dissolved zinc. No total lead was detected in 308 and dissolved lead was

invalidated. The landfill well is 216 feet deep, and the Kennedy well is between 200 and 300 feet deep; therefore, they are drawing from similar levels in the Bonneterre aquifer. The dissolved lead, nickel, and zinc found at elevated levels in the landfill well, but not in the Kennedy well, suggests that the site is influencing the deeper ground water on site. The proposed MCL for lead in drinking water is  $5 \, \mu g/l$ ; samples collected from the landfill well contained lead concentrations significantly above this level.

Sample 305 was taken from what was originally thought to be a spring but was later determined to be a tributary carring effluent from RESCO Products into Big River. RESCO operates a quarry at their facility. The only contaminant found in sample 305 was total lead at 5.1 J  $\mu$ g/l. However, the pH of the sample was 10.62. Further inquiry into RESCO operations is warranted. This sample was taken approximately 500 feet downstream of the North Desloge river access (Plate 3) and several miles downstream of the site. It was intended as a background location and, therefore, does not have any impact on the site study.

Six QA/QC samples were submitted. These included: two field blanks, a trip blank, an acid blank, a rinsate sample of a bailer, and a rinsate sample of Geoprobe pipe. All metals of concern were non-detected in these samples except for 3.2 J  $\mu$ g/l total lead in field blank sample 322F and 27  $\mu$ g/l total zinc in sample 324F from the rinsate of the Geoprobe pipe.

It is evident from the data results that the shallow ground water over the majority of the site contains elevated levels of dissolved lead and zinc. A significant amount of the shallow ground water flows out of springs or seeps along the perimeter of the site. Most of these springs transport the contaminated water directly into Big River. It is also apparent from the data that the landfill leachate is mobilizing metals of concern. This is particularly conclusive in leachate sample 306 taken on the south edge of the landfill and monitoring well sample 312 from the east edge of the landfill area. Both of these samples contained extremely high concentrations of cobalt, lead, nickel, and zinc. Sample 312 also contained elevated cadmium. None of the other ground water samples collected on site contained comparable dissolved metal concentrations. Although spring sample 300, collected on the west edge

of the landfill area, contained dissolved zinc at 1,900  $\mu$ g/l; dissolved lead was invalidated for the sample. This indicates that the landfill may also be influencing the shallow ground water on the southwest edge of the site.

Three ground water samples (301, 324, and 318) were collected from two artesian wells and a spring that are all located to the west of the landfill area just off site. All of these samples contained significant amounts of total and dissolved lead, nickel, and zinc. The proposed MCL of 5  $\mu$ g/l for lead is exceeded in all of these samples. The MCL for nickel is 100  $\mu$ g/l. Dissolved nickel was found at 60  $\mu$ g/l in 301, 86  $\mu$ g/l in 318, and 88  $\mu$ g/l in 324. Therefore, concentrations of nickel are very close to the MCL in samples 318 and 324. The landfill drinking water well (sample 307) contained dissolved lead at 14 J  $\mu$ g/l, dissolved nickel at 43  $\mu$ g/l, and dissolved zinc at 140  $\mu$ g/l. The proposed MCL for lead is exceeded in this well. It should be noted that the landfill well is located in the same general area, near the landfill, as the artesian wells and spring sample 318, and it contains the same contaminants as these samples.

#### 7.4 AIR

The objectives of the air sampling effort were to determine if tailings are released to the ambient air on site and if they are migrating off site. On-site air quality is a concern as there are seven on-site workers (four landfill workers and three full-time workers at the Morgan and White facility). Additionally, many people use the site for all terrain vehicle recreation. The town of Desloge is adjacent to the site on the southeast side and many people reside to the south and east of the site. During a January 1988 site reconnaissance, the E & E/FIT observed a tailings plume migrating from the site to the east. Because the tailings consist of dust, silt, and sand-sized particles and no vegetation is present on a majority of the site, the tailings migrate readily via wind erosion in the same manner as sand dunes. There is an obvious west to east migration of the tailings due to wind erosion. people potentially affected, the predominant wind direction, and the location of other tailings piles were the main factors considered in the placement of the Hi-vol samplers (Table 6-5).

Hi-vol samplers 1 and 2 were the co-located samplers and were set up approximately 800 feet east of the site. Refer to Plates 1 and 3 and Table 6-5 for Hi-vol locations. These samplers were set up directly downgradient of the major west to east movement of the tailings. Hi-vol 3 was set up on site in the northeast section. This sampler was set at this location to determine ambient air conditions on site and away from the heavy vehicle traffic area near the landfill. Hi-vol 4 was placed on site approximately 150 feet north of the landfill office. This location was chosen to determine on-site ambient air conditions in the vicinity of the landfill operations. Hi-vol 5 was located approximately 1.25 miles east of the site. This location was selected in order to monitor the ambient air in a downgradient direction at least one mile from the site. Hi-vol 6 was set up approximately one mile west-southwest of the site. This location was chosen to sample the ambient air between the Leadwood tailings pile and the site. Hi-vol 7 was placed approximately four miles west of the site. This location was chosen as a remote background location. All of the off-site Hi-vols were placed in relatively remote locations in pastures or grass-covered meadows in order to minimize the possibility of interference from adjacent areas.

A meteorological station was set up in an open area approximately in the middle of the site. Every 15 minutes, it recorded the wind direction, wind speed, temperature, barometric pressure, and relative humidity. The meteorological station collected data continuously from the start to the finish of the project.

The Hi-vol samplers were run from 1200 to 2400 hours each day for six consecutive days. It should be noted that wind speeds were very low for the majority of the sampling. Results would vary considerably in higher wind speed conditions.

The primary metals of concern detected were arsenic, cadmium, lead, and zinc. Table 7-5 summarizes the analytical results for the selected metals of concern. A complete list of metals detected is available in the data transmittal included as Appendix D. The analytical data results were reported in total micrograms ( $\mu$ g) per filter. Therefore, these values have been converted to micrograms per cubic meter ( $\mu$ g/m³) by division with the sample volume collected and were also adjusted to

Table 7-5
Selected Metals in Air Samples (µg/m³)
Big River Mine Tailings Site
E & E/FIT; July 1990
Sample Series CSXCR

| Date and | Hi-Vol      | Arsenic | Cadmium | Lead  | Zinc  |
|----------|-------------|---------|---------|-------|-------|
| Sample # | Sampler     | ·       |         |       |       |
| /23/90   |             | ····    | ·····   |       |       |
| 400      | #1          | 0.0010  | 0.0010  | 0.008 | 0.014 |
| 402      | #2          | 0.001U  | 0.001U  | 0.020 | 0.019 |
| 403      | #3          | 0.001U  | 0.001U  | 0.015 | 0.011 |
| 404      | #4          | 0.003   | 0.006   | 0.569 | 0.261 |
| 405      | #5          | NA      | NA      | NA    | NA    |
| 406      | #6          | NA      | NA      | NA    | NA    |
| *407     | #7          | 0.001U  | 0.001U  | 0.008 | 0.015 |
| 408      | Field Blank |         |         |       |       |
| /24/90   |             |         |         |       |       |
| 409      | #1          | 0.001U  | 0.001   | 0.030 | 0.024 |
| 410      | #2          | 0.001U  | 0.0000  | 0.046 | 0.028 |
| 411      | #3          | 0.001U  | 0.001   | 0.057 | 0.035 |
| 412      | #4          | 0.001U  | 0.008   | 0.802 | 0.380 |
| 413      | #5          | 0.001U  | 0.001   | 0.054 | 0.058 |
| 414      | #6          | 0.001U  | 0.001   | 0.027 | 0.020 |
| *415     | #7          | 0.001U  | 0.0000  | 0.020 | 0.022 |
| 416      | Field Blank |         |         |       |       |
| /25/90   |             |         |         |       |       |
| 417      | #1          | 0.001U  | 0.001   | 0.011 | 0.026 |
| 418      | #2          | 0.001U  | 0.001   | 0.023 | 0.025 |
| 419      | #3          | 0.001U  | 0.003   | 0.044 | 0.036 |
| 420      | #4          | NA      | NA      | NA    | NA    |
| 421      | #5          | 0.001U  | 0.0000  | 0.127 | 0.031 |
| 422      | #6          | 0.001U  | 0.000U  | 0.020 | 0.020 |
| *423     | #7          | 0.001U  | 0.0000  | 0.006 | 0.033 |
| 424      | Field Blank |         |         |       |       |
| /26/90   |             |         |         |       |       |
| 425      | #1          | 0.001U  | 0.001   | 0.053 | 0.050 |
| 426      | #2          | 0.001U  | 0.001   | 0.068 | 0.047 |
| 427      | #3          | 0.001U  | 0.001   | 0.082 | 0.053 |
| 428      | #4          | 0.0010  | 0.009   | 1.088 | 0.473 |
| 429      | #5          | 0.0010  | 0.0000  | 0.100 | 0.043 |
| 430      | #6          | 0.001U  | 0.001   | 0.036 | 0.024 |
| *431     | #7          | 0.001U  | 0.000U  | 0.013 | 0.027 |
| 432      | Field Blank |         |         |       |       |

Table 7-5 (Continued)
Selected Metals in Air Samples (µg/m³)
Big River Mine Tailings Site
E & E/FIT; July 1990
Sample Series CSXCR

| Date and     | Hi-Vol      | Arsenic | Cadmium | Lead  | Zinc  |
|--------------|-------------|---------|---------|-------|-------|
| Sample #     | Sampler     |         |         |       |       |
| 7/27/90      | ·           |         |         |       |       |
| 433          | #1          | 0.001U  | 0.001   | 0.027 | 0.040 |
| 434          | #2          | 0.001U  | 0.001U  | 0.024 | 0.037 |
| 435          | #3          | 0.002   | 0.004   | 0.294 | 0.171 |
| 436          | #4          | 0.001U  | 0.004   | 0.429 | 0.232 |
| 437          | #5          | 0.001U  | 0.000   | 0.050 | 0.482 |
| 438          | #6          | 0.001U  | 0.000U  | 0.022 | 0.024 |
| <b>*</b> 439 | #7          | 0.001U  | 0.000U  | 0.016 | 0.028 |
| 440          | Field Blank |         |         |       |       |
| 7/28/90      |             |         |         |       |       |
| 441          | #1          | 0.001U  | 0.0010  | 0.031 | 0.031 |
| 442          | #2          | 0.001U  | 0.001U  | 0.016 | 0.024 |
| 443          | #3          | 0.001U  | 0.001U  | 0.023 | 0.026 |
| 444          | #4          | 0.001   | 0.001U  | 0.190 | 0.054 |
| 445          | #5          | 0.001U  | 0.001   | 0.059 | 0.064 |
| *446         | #6          | 0.001U  | 0.001U  | 0.035 | 0.025 |
| 448          | #7          | 0.002   | 0.008   | 0.066 | 0.069 |
| 449          | Field Blank |         |         |       |       |

\* Background location for that day

N/A: No available data due to Hi-vol malfunction

Note: Locations 1 and 2 are duplicate samples. Concentrations of compounds detected in the field blanks were subtracted from the total sample weight prior to division of sample volume. Sample numbers 401 and 447 were not used. See Plates 1 and 3 and Table 6-5 for sample locations. See Appendix D for complete analytical results and Appendix J for calibration sheets, conversions of air data to µg/m and windroses for each day.

standard temperature and pressure. Appropriate Hi-vol calibration sheets, calculations of standard volumes of ambient air for each Hi-vol sample, original data ( $\mu g/\text{filter}$ ) for all metals, and concentrations in air  $\mu g/m^3$  for all metals is available in Appendix J. A blank sample was also prepared each sampling period. If a metal was found above detection limits in the blank, then that amount was subtracted from the sample. If the metal was not detected in the sample blank, then one-half of the detection limit for that metal was subtracted from the sample.

The predominant wind for each sampling period was determined using the wind speed and wind direction data collected by the meteorological station. WROSE software by Bowman Environmental Engineering was used to construct a windrose which illustrates wind direction and wind speed for each day. Therefore, a background and a downwind direction can be determined for each day. A windrose for each day is included in Appendix J. Table 7-5 specifies a background Hi-vol location based on this data for each day.

It should be noted that after the Hi-vol samplers were set up and sampling had commenced, construction work using heavy equipment began approximately 500 to 750 feet south of Hi-vol 5, located approximately 1.25 miles east of the site. Several inconsistent results in samples from Hi-vol 5 are apparent in the data. Due to the noted interference from the construction work and the data results, sample results from Hi-vol 5 will be listed in Table 7-5, but will not be considered attributable to the site.

On July 23, 1990, the predominant wind direction was from southwest to northeast. Wind speed was between 3.3 to 5.4 meters per second (m/s) from this direction. Sample 407, collected at Hi-vol location 7 was chosen as the background sample. Sample 407 contained undetected arsenic and cadmium, 0.008  $\mu$ g/m³ lead, and 0.015  $\mu$ g/m³ zinc. Hi-vol 4 (sample 404) collected on site near the landfill office, was the only sample that contained metals at concentrations significantly over background. Sample 404 contained 0.003  $\mu$ g/m³ arsenic, 0.006  $\mu$ g/m³ cadmium, 0.569  $\mu$ g/m³ lead, and 0.261  $\mu$ g/m³ zinc. Samples from Hi-vol location 4 consistently had significant elevated metals results and in most cases were much higher than samples from Hi-vol 3, the other

on-site Hi-vol. This is due to the routine landfill traffic and heavy equipment operation in the vicinity of the landfill. Dust from the everyday operations at the landfill obviously increases the suspended tailings particulates on the landfill portion of the site. No results are available for samples 405 and 406 from the Hi-vols 5 and 6, respectively, due to Hi-vol malfunction during the sampling period.

The predominant wind direction on July 24, 1990, was determined to be south/southeast based on the windrose evaluation. The wind speed was between 1.8 to 3.3 m/s the majority of the time from the predominant direction. Sample 415 collected at Hi-vol location 7 was chosen as the background sample. Sample 415 results indicated undetected arsenic and cadmium, lead at 0.020  $\mu g/m^3$ , and zinc at 0.022  $\mu g/m^3$ . Again the highest concentrations found were in sample 412 from Hi-vol 4. Sample 412 results detected cadmium at 0.008  $\mu g/m^3$ , lead at 0.802  $\mu g/m^3$ , and zinc at 0.380  $\mu g/m^3$ . Concentrations of cadmium are also elevated to 0.001  $\mu g/m^3$  in Hi-vol 3 (sample 411) and Hi-vol 1 (sample 409). This data indicates that while wind speeds were relatively low, a sufficient amount of cadmium-laden particulates migrated off site and elevated sample 409 at Hi-vol location 1 which was approximately 800 feet east of the site.

The predominant wind direction on July 25, 1990, was from southeast to northwest. Predominant wind speeds were between 1.8 and 3.3 m/s about half of the sampling period and between 3.3 to 5.4 m/s the other half. Sample 423 collected at Hi-vol location 7 was chosen at background. Concentrations in sample 423 were undetected for arsenic and cadmium, 0.006  $\mu g/m^3$  lead, and 0.033  $\mu g/m^3$  zinc. Samples 417, 418, and 419 from Hi-vols 1, 2, and 3, respectively, had cadmium and lead concentrations elevated above background. Cadmium was found at 0.001  $\mu g/m^3$  in 417, at 0.001  $\mu g/m^3$  in 418, and at 0.003  $\mu g/m^3$  in 419. Lead was detected at 0.011  $\mu g/m^3$  in 417, at 0.023  $\mu g/m^3$  in 418, and 0.044  $\mu g/m^3$  in 419. No sample results from Hi-vol 4 were calculated due to Hi-vol malfunction. Considering wind direction, cadmium and lead appear to be migrating from the southeast area of the site to Hi-vols 1, and 2 off site.

The predominant wind direction on July 26, 1990, was determined to be from the south/southwest to north/northeast. The highest wind speeds

were from the southwest between 3.3 to 5.4 m/s. Hi-vol location 7 (sample 431) was chosen as background. Results from sample 431 indicated undetected arsenic and cadmium, 0.013  $\mu g/m^3$  lead, and 0.027  $\mu g/m^3$  zinc. On-site Hi-vols 3 and 4 (samples 427 and 428) and downwind, off site, co-located Hi-vols 1 and 2 (samples 425 and 426) all contained elevated concentrations of cadmium, lead, and zinc during this sampling period. Sample 428 at Hi-vol 4 had the highest concentrations detected during the study with cadmium at 0.009  $\mu g/m^3$ , lead at 1.088  $\mu g/m^3$ , and zinc at 0.473  $\mu g/m^3$ . Sample 426 collected at Hi-vol 2 contained 0.001  $\mu g/m^3$  cadmium, 0.068  $\mu g/m^3$  lead, and 0.047  $\mu g/m^3$  zinc. Sample 426 at Hi-vol 1 contained similar concentrations. The on-site and downwind results collected during this sampling period are conclusive evidence that a significant amount of heavy metal-laden particulates from the tailings are being released to the ambient air on site and are being transported at least 800 feet off site.

The predominant wind direction on July 27, 1990, was from west/southwest to east/northeast. The majority of the wind from this direction was in the range 3.3 to 5.4 m/s. Sample 439 at Hi-vol location 7 was used as the background for this sampling period. Results from sample 439 indicated undetected arsenic and cadmium, 0.016 µg/m³ lead, and 0.028 µg/m³ zinc. Both on-site Hi-vols 3 and 4 had elevated cadmium, lead, and zinc in their samples. Sample 435 (Hi-vol 3) contained 0.002 µg/m³ arsenic, 0.004 µg/m³ cadmium, 0.294 µg/m³ lead and 0.171 µg/m³ zinc. Sample 436 (Hi-vol 4) contained 0.004 µg/m³ cadmium, 0.429 µg/m³ lead, and 0.232 µg/m³ zinc. Off-site, co-located Hi-vol locations 1 and 2 also had slightly elevated concentrations of cadmium, lead, and zinc. Hi-vol 1 (sample 433) contained 0.001 µg/m³ cadmium, 0.027 µg/m³ lead, and 0.040 µg/m³ zinc; Hi-vol 2 (sample 434) contained similar concentrations. This data also concludes that tailings are being released into the ambient air on and off site.

On July 28, 1990, the wind direction varied from east to south to west. Therefore, a definite predominant wind direction is very difficult to determine. Refer to windrose 7-28-90 in Appendix J. It can be concluded that the wind was primarily from a southeast, south or southwest direction. Wind speed was mostly 1.8 to 3.3 m/s from the southeast and 3.3 to 5.4 m/s from the south and southwest. Hi-vol

location 6 (sample 446) was chosen as background. However, because of the low wind speeds and the lack of a definite predominant wind direction, most of the samples this sampling period did not contain elevated levels of metals of concern. Sample 446 contained undetected arsenic and cadmium, 0.035  $\mu g/m_3$  lead, and 0.025  $\mu g/m^3$  zinc. Due to the wind direction, sample 448 at Hi-vol location 7 was apparently influenced by the Leadwood tailings pile during this period. Sample 448 contained 0.002  $\mu$ g/m<sup>3</sup> arsenic, 0.008  $\mu$ g/m<sup>3</sup> cadmium, 0.066  $\mu$ g/m<sup>3</sup> lead, and 0.069  $\mu g/m^3$  zinc. These results reinforce the fact that this is a regional problem and not site specific. It should be noted that Hi-vol 4 (sample 444) located on the landfill area contained its lowest concentrations on this day. This is partly due to low wind speeds although the main factor was probably that July 28, 1990, was a Saturday. The landfill closed at noon that Saturday which was when sampling began. Therefore, the effects of the landfill daily operations can be realized when previous results are compared to these results. Sample 444 contained 0.001 µg/m<sup>3</sup> arsenic, undetected cadmium, 0.190  $\mu g/m^3$  lead, and 0.054  $\mu g/m^3$  zinc.

The LSI air monitoring study was conducted for six consecutive days from July 23 to 28, 1990. Samples were collected for a 12-hour sampling period each day from 1200 to 2400 hours. Wind speeds were low during the entire study period. However, sample results have concluded that the ambient air on site and at least 800 feet off site is being influenced by the Big River Mine Tailings site. Results from July 25, 26, and 27, 1990, contained significantly elevated concentrations of cadmium, lead and zinc in on-site Hi-vols 3 and 4 and in off-site, co-located Hi-vols 1 and 2. The highest concentrations of lead detected was 1.088  $\mu g/m^3$  in Hi-vol 4 on July 26. This does not exceed the National Air Quality Standard of 1.5  $\mu$ g/m<sup>3</sup> in a calendar quarter; however, it is very significant when the low wind speeds during the sampling period are considered. It is highly probable that the 1.5 μg/m<sup>3</sup> standard is exceeded on site and off site during periods of higher wind velocities. Consequently, the greatest potential for exposure is to on-site workers and to residential areas bordering the site to the south and east.

Results from Hi-vol 4 which was placed in the landfill area, indicate that daily landfill operations further increase the amount of suspended particulates in the ambient air at the landfill.

Concentrations of heavy metals were consistently higher at this location than any other. The sample (444) collected on the one day the landfill was closed contained the lowest concentrations for this location during the sampling period.

It should be noted that on the last day of sampling the winds were from a southerly direction and the remote, background, Hi-vol 7 sample contained elevated concentrations of metals of concern. This can be attributed to the Leadwood tailings pile that was located south/southeast of the Hi-vol. This emphasizes the fact that the air quality of the area is a regional problem. However, the Big River Mine Tailings site has characteristics that are unique and compound the problem. The site is the largest tailings pile in the area that was not deposited in valleys of dammed drainages. The Leadwood and Federal piles were deposited in this manner, resulting in their present day configuration. The Big River pile was placed on an area that was topographically similar or higher than the surrounding area. Consequently, after deposition of the tailings was complete at Big River, the site was significantly higher topographically than the adjacent area. As a result, particulates from the tailings are easily airborne even in low wind speed conditions. Other tailing piles are elevated or have portions that are above adjacent topography, but are not as large in surface area as the Big River tailings pile.

#### SECTION 8: SUMMARY AND CONCLUSIONS

The Big River Mine Tailings site is a 600 acre tailings disposal area. It was created during the operation of a lead mine/mill facility that operated between 1929 and 1958 in Desloge, Missouri. The Desloge facility was one of many that once operated in the area known as the Old Lead Belt. The Old Lead Belt encompasses an area of approximately 110 square miles, all of which is within St. Francois County. Numerous tailings piles that contain elevated levels of heavy metals exist throughout the Old Lead Belt. It is obvious that the heavy metals contamination of the surface water, ground water and air of the region has multiple sources. However, the Big River Mine Tailings site has several unique features that make it a major contributor of heavy metal contamination. The results of the LSI indicate that the site is releasing significant levels of heavy metals to the surface water, ground water, and air.

The site is a mounded pile of tailings that is bounded by the Big River on three sides. Because of its unusual location, adjacent to and elevated above Big River, tailings are constantly transported via wind and water erosion into the Big River. There are numerous areas along the perimeter of the site where the river is continuously in contact with the tailings. As a result of this physical setting, a castrophic release of tailings into Big River occurred in 1977. After a heavy rain, a portion of the tailings adjacent to the river on the east side became super saturated and released an estimated 50,000 cubic yards to the river. This was the largest of numerous documented releases.

Smaller releases continue daily as the river undercuts and erodes the tailings. Analytical results of sediment and surface water samples collected from Big River and its tributaries verify that the site is a major contributor to heavy metal contamination of Big River.

Another unique feature of the site is the operation of 460 acre municipal landfill on the southwest portion. Monitoring wells, private wells, abandoned wells, geoprobe temporary wells, springs along the site perimeter as well as leachate seeps, were sampled in order to characterize the ground water near the site. Results of the sampling indicate that elevated levels of heavy metals exist in the shallow

ground water over the majority of the site. However, it is also apparent that the landfill leachate is mobilizing metals of concern. The leachate sample and sample 312 taken from a monitoring well adjacent to the landfill contained extremely high concentrations of metals of concern. The drinking water well located on site at the landfill office contained dissolved lead at 14J  $\mu$ g/l which exceeds the proposed MCL for lead.

Because the site is topographically elevated above the adjacent area and tailings are easily air borne via wind erosion, releases of tailings to the ambient air are frequent. A direct release was photo documented during the Preliminary Assessment reconnaissance in January, 1988. At that time, a large plume of tailings extending from the site and moving southeast approximately one mile was visible. Hi vol air samplers were utilized during the LSI to document the air releases. While wind conditions were not optimum, releases of tailings to the ambient air on site and at least 1,500 feet off site were documented. It appears that the daily routine landfill operations on site significantly increase the amount of suspended particulates released to the ambient air. Therefore, the landfill workers and residences adjacent to the site are at the highest risk of exposure from an air release.

The LSI of the Big River Mine Tailings site confirmed that heavy metals contamination in the Old Lead Belt is a regional multi-source problem and identified the Big River Mine Tailings site as a major contributor. The data as well as visual observations have documented heavy metal laden tailings releases to the ground water, surface water, and air from the site.

#### SECTION 9: BIBLIOGRAPHY

- AuBuchon, Bryant, Manager, St. Francois County Landfill, December 1, 1987, personal communication with Robert C. Overfelt, E & E/FIT.
- Buckley, E.R., 1908, Geology of the Disseminated Lead Deposits of St. Francois and Washington Countries: Missouri's Bureau of Geology and Mines, 2nd Ser., Vol 8, PA. 1.
- Burns and McDonnel Engineers, February 1, 1987, Desloge Tailings Pile Management Plan Study Phase I Report.
- Burris, James, Director, MDNR Poplar Bluff Office, February 1, 1988, personal communication with Robert C. Overfelt, E & E/FIT.
- Code of Federal Regulations, July 1, 1987, Protection of Environment, 40 Parts 1 to 51.
- Czarneski, James, Missouri Department of Conservation, 1984, Accumulation of Lead in Fish from Missouri Streams Impacted by Lead Mining.
- Degonia, Danny, Asst. Manager, Bonne Terre Water District, May 12, 1988, telephone conversation with Robert Overfelt, E & E/FIT.
- Dickniete, Dan, Environmental Administrator, Missouri Department of Conservation, July 30, 1990, letter to Curt Enos, E & E/FIT.
- Emergency Action Plan for Lead Mine Tailing (EAP), 1981, <u>Draft</u>, Desloge, Missouri.
- Gale, Nord, et al, 1982, Historical Trends for Lead in Fish, Clams, and Sediments in the Big River of Southeastern Missouri, University of Missouri-Rolla.
- Gale, Nord, et al, Lead Concentrations in Edible Fish Fillets Collected from Missouri's Old Lead Belt.
- Hedgeworth, Jamera, Leadwood City Hall, May 11, 1988, telephone conversation with Robert C. Overfelt, E & E/FIT.
- Hershlach, Robert, April 13, 1987, Resource Conservation, Soil Conservation Service, personal communication with James Burris, MDNR, Poplar Bluff, Missouri.
- Howland, John, Missouri Department of Natural Resources, March 1, 1988, telephone conversation with Robert C. Overfelt, E & E/FIT.
- Hudwalker, Marvin, Professional Engineer, Hudwalker and Associates, Inc., Farmington, Missouri, February 2, 1988, personal communication with Robert C. Overfelt, E & E/FIT.

- Johnson, Dennis, Assistant Manager, Flat River Water and Sewer District, Missouri, December 2, 1987a, telephone conversation with Robert C. Overfelt, E & E/FIT.
- Johnson, Dennis, Assistant Manager, Flat River Water and Sewer District, Missouri, December 2, 1987b, personal communication with Robert C. Overfelt, E & E/FIT.
- Mattson, C., Project Manager, St. Joe Minerals Corporation, Irvine, California, November 13, 1987, personal communication with Robert C. Overfelt, E & E/FIT.
- Missouri Department of Natural Resources (MDNR), 1981, 1982, 1983, Air Quality Data at Flat River, Missouri.
- Missouri Division of Geological Survey and Water Resources (MDGSWR), 1961, The Stratigraphic Succession in Missouri.
- Missouri Division of Geological Survey and Water Resources (MDGSWR), 1983, Ground Water Maps of Missouri.
- National Cooperative Soil Survey, August 1981, Soil Survey of St. Francois County, Missouri.
- Novak, John, and Hasselwander, Gerard, January 1980, Control of Mine Tailing Discharges to Big River, University of Missouri-Columbia, Columbia, Missouri.
- Price, Bill, Section Chief, Technical Services and Training Division,
  Public Drinking Water Program, July 1, 1991, telephone conversation
  with Kevin Snowden, E & E/FIT.
- St. Francois County Tax Assessor, August 1, 1983, Aerial Photographic Map #74-07-7.
- Schmitt, C. and Finger S., 1982, The Dynamics of Metals from Past and Present Mining Activities in the Big and Black River Watersheds, Southeastern Missouri, National Fisheries Research Laboratory, Columbia, Missouri.
- Soil Conservation Service (SCS), August 1981, Soil Survey of St. Francois County, Missouri.
- Tilley, Joyce, June 2, 1988, Terre DuLac Utilities Corp., letter to Steve Vaughn, E & E/FIT.
- U.S. Census Bureau, June 26, 1991, telephone conversation with Carolyn Schneider, E & E/FIT.
- U.S. Department of Commerce (USDC), 1979, Climatic Atlas for the United States, Washington, D.C.

- U.S. Environmental Protection Agency (EPA), July 1976, Quality Criteria for Water, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), March 1989, Graphical Exposure Modeling System, Washington, D.C.
- U.S. Environmental Protection Agency, Office of Water, April 1991, Drinking Water Regulations and Health Advisories, Washington, D.C.
- U.S. Geologic Survey, 1982, 7.5 Minute Topographic Series, Bonne Terre and Flat River Quadrangles, Missouri.
- U.S. Geological Survey, 1988, Assessment of Water Quality in Non-Coal Mining Areas of Missouri, Water Resources Investigation Report #87-4286.
- Warren, Ron, Superintendent, Flat River Water and Sewer District, November 12, 1988, telephone conversation with Robert C. Overfelt, E & E/FIT.
- Wixon, B.G., et al, University of Missouri-Rolla, December 1983, A Study of the Possible use of Chat and Tailings from the Old Lead Belt of Missouri for Agriculture Limestone.

APPENDIX A

PLATES 1,2, AND 3

# Unscanned Items

A map or maps that could not be scanned exist with this document or as a document

To view the maps, please contact the Superfund Records Center

# APPENDIX B TECHNICAL DIRECTIVE DOCUMENT

1A. Cost Center: 2. TDD Number: MAR 191991 FIT ZONE II CONTRAC F -07-9004-001 FT 1307 Contract Number 68-01-7-347 1B. Account Number: 2A. Amendment: TECHNICAL DIRECTIVE DOCUMEN FM00616XA □ Technical 3B. Key EPA Contact: 3A. Priority: X High 551-7695 Name: Greg Reesor Phone: ☐ Low 4A. Estimate of 5A. SSID Number: 4B. Subcontract: 4C. Estimate of 5B. CERID Number: Technical Hours: Subcontract Cost: \* 1,516 None N/A Unassigned MOD981126899 5C. EPA Site Name: 5D. City/County/State: Big River Mine Tailings Desloge/St. Francois/Missouri 6. Desired Report Format: 7A. Activity Start Date: 7B. Estimated Completion Date: Formal Report Standard Report Other (Specify): X Letter Report ☐ Formal Briefing 4/25/90 8/1/91 8A. Type of Activity: 8B. FIT/SCAP Goal: Will Deliverable Meet ☐ RCRA-PA ☐ HRS Support □ PA ☐ Enforcement Support ☐ Training a Unit of the Goal? General Technical ☐ RCRA-SI QA Support Program Management **Assistance** X Yes ☐ No (文) ESI ☐ Special Studies ☐ Equipment Maintenance 9. General Task Description: Conduct a listing site inspection at the Big River Mine Tailings site located in Desloge, Missouri, to eliminate datagaps from previous work. 10. Specific Elements: \_\_ 11. Interim Deadlines: 1) Prepare work plan (memo). 2) Conduct field work after approval of work plan by EPA. 3) Prepare trip report. 4) 4/15/91 4) Prepare final report and update EPA SI form 2070-13 (formal report for final report). Additional Scope Attached \* Additional 200 hours needed to complete final report. 13. Authorizing RPO 3/18/9/ **□DPO □PO** 16. Date: 15. Received by: Accepted Accepted with

(Contractor FITOM Signature)

Exceptions (Attached)

Rejected

# APPENDIX C SITE CONTACTS AND PROPERTY OWNERS

#### Site Contacts and Property Owners

Marvin Hudwalker Engineer Hudwalker and Associates, Inc. 505 Potosi St. PO Box 676 Farmington, MO 63640

Carol Kennedy Rt. 33, Box 27 Flat River, MO 63601

٠.

Lee Glore Rt. 33, Box 160 Flat River, MO 63601

J.E. Pratte PO Box 1526 Desloge, MO 63601

David Callahan PO Box 1614 Desloge, MO 63601

Howard Wood RR 2, Box 612 Bonne Terre, MO 63628

Marie Banks Rt. 33, Box 59 Flat River, MO 63601

Harold Stoffel Rt. 4, Box 146 Boone Terre, MO 63628

Leonard Whitehead 1685 St. Francois Road Terre Du Lac, MO 63628

Carl and Trina Valley Rt. 2, Box 628B Mineral Point, MO 63660

Robert Kyle Rt. 33, Box 31 Flat River, MO 63601

Mary Bullock Rt. 2, Box 167 Bonne Terre, MO 63628 Bryant AuBuchon Landfill Manager St. Francois County ENvironmental Corporation Desloge, MO (314) 431-4768

C.G. Mattson
Project Manager
St. Joe Minerals Corporation
Irvine, CA
(714) 975-5269

Jim Burris Director-Poplar Bluff Regional Office Missouri Department of Natural Resources Poplar Bluff, MO (314) 785-0832

Greg Reesor Superfund contact U.S. EPA-Region VII Kansas City, KS (913) 551-7695

Paul McDowell Rt. 2, Box 77 Bonne Terre, MO 63628

Edwar Weible 558 Capri Drive Bonne Terre, MO 63628

Rebecca Forrester Rt. 33, Box 19 Flat River, MO 63601

Mr. Goff 107 N. 8th Desloge, MO 63601 APPENDIX D
EPA DATA TRANSMITTAL



# UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 7 25 FUNSTON ROAD KANSAS CITY, KANSAS 66115

|       | OCT | 4 | 1990 |
|-------|-----|---|------|
| DATE: |     |   |      |

MEMORANDUM

SUBJECT: Data Transmittal for Activity #:

Site Description:

Site Description.

FROM: Andrea Jirka

Chief, Laboratory Branch, ENSV

TO:

Robert Morby

Chief, Superfund Branch, WSTM

ATTN:

Grea Reesot

Attachments

cc: Data Files

Ann Melia, E&E/FIT

NOTE: Please see Mary Gerken, SPFD-WSTM, if you want an electronic copy of the data.





<u>---</u> ...

## UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 7 25 FUNSTON ROAD KANSAS CITY KANSAS 66115

| Date: 10 4 90                                                                             |
|-------------------------------------------------------------------------------------------|
| MEMORANDUM                                                                                |
| SUBJECT: Data Transmittal for Activity #: CSXCR Site Description: Big River Mine Tailings |
| FROM: Andrea Jirka K<br>Chief, Laboratory Branch, ENSV                                    |
| TO: Grea Rossot<br>SPFB-WSTM                                                              |
| Attached is the data transmittal for the above referenced                                 |
| site. These data have met all quality assurance requirements                              |
| unless indicated otherwise in the data package. This is a Modi-                           |
| fied Data Transmittal; these data are modified and differ from                            |
| data previously transmitted. If you have any questions or com-                            |
| ments, please contact Dee Simmons at 236-3881.                                            |
| Attachment                                                                                |
| cc: Data File<br>Ann Molia 1 EBE FIT                                                      |
| MODIFIED DATA: Data were modified for the following reason(s):                            |
| incorrect data were generated in                                                          |
| LAST.                                                                                     |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |

#### U.S. ENVIRONMENTAL PROTECTION AGENCY

#### ENVIRONMENTAL SERVICES ASSISTANCE TEAM -- Zone II

ICF Technology Inc.

ESAT Region VII

NSI Technology Services

25 Funston Road

Kansas City, KS 66115

(913) 236-3881

The Bionetics Corp.

TO:

Debra Morev

NSI Technology Services Corp.

Data Review Task Monitor

THRU:

Harold Brown, Ph.D.

ESAT Deputy Project Officer, EPA

FROM:

Albert Iannacone

ESAT QA Coordinator

THRU:

Ronald Ross

ESAT Manager

رکه بور

DATE:

August 20, 1990

SUBJECT: Review of inorganic data for Big River Mine Tailings

TID# 07-9003-329 ASSIGNMENT# 572

ICF ACCT# 302-26-329-02

NSI S.O.# 4633-3292

ESAT DOC. # ESAT- VII- 329-08-1-90-01

These data were reviewed according to the "Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses," and the Region VII Inorganic Data Review Training Manual as guidance. The following comments and attached data sheets are a result of the ESAT review of the above mentioned data from the contract laboratory.

SAS CASE NO.: 5558G LABORATORY: SILVER SITE: BIG RIVER MINE TAILINGS METHOD NO.: CS0788A EPA ACTIVITY NO.: CSXCR REVIEWER: Al Iannacone

MATRIX: Soil

| SMO Sample No. El | PA Sample No. | SMO Sample No.                 | EPA Sample No. |
|-------------------|---------------|--------------------------------|----------------|
| 5558G1            | CSXCR001      | 5 <b>55 <del>MGG</del>8G11</b> | CSXCR011       |
| 5558G2            | CSXCR002      | 1 MGG8G12                      | CSXCR012       |
| 5558G3            | CSXCR003      | M <del>GG</del> 8G13           | CSXCR013       |
| 5558G4            | CSXCR004      | MGG8G14                        | CSXCR014       |
| 5558G5            | CSXCR005      | M <del>GG</del> 8G15           | CSXCR015       |
| 5558G6            | CSXCR006      | MGG8G16                        | CSXCR016       |
| 5558G7            | CSXCR007      | M <del>GG</del> 8G17           | CSXCR017       |
| 5558G8            | CSXCR008      | MGG8G18                        | CSXCR018       |
| 5558G9            | CSXCR009      | MGG8G19                        | CSXCR019       |
| 5558G10           | CSXCR010      | <b>₩9</b> 68G20                | CSXCR020       |

And associated QC samples CSXCR914C, -914A, and -914L.

#### GENERAL

This data review assignment covers <u>Twenty Soil</u> samples analyzed for total metals. No field blank nor field duplicate, and three QC samples were included in this assignment. Chain-of-custody paperwork is complete, although sample tags were absent.

#### 1. Holding Times and Preservation

A. Holding time requirements are not defined for soil samples, and preservatives are not added to them for metals analyses.

#### 2. Calibration

A. Calibration criteria were met for all samples, for both initial and continuing calibrations.

#### 3. Method Blanks / Field Blanks

| Matrix | Sample #            | Analytes<br>Detected           | Samples Qualified as non-detect                             |
|--------|---------------------|--------------------------------|-------------------------------------------------------------|
| Soil   | Cont. Cal.<br>Blank | Al,As,Ca,Fe,<br>Mg,Mn,Se,Ag,Zn | Se in CSXCR002<br>Ag in CSXCR002,-3,<br>-4, -6, -7, -8, -11 |
| Soil   | Prep.Blank          | Cr, Cu                         | Cr in CSXCR010                                              |

#### 4. Matrix Spike

A. Spike % recoveries were outside limits for Sb (low), Ba (high), and Pb (high). All detected values of these metals were "J" coded as a result. Affected samples were:

Antimony (Sb): CSXCR007 (others nondetect)

Barium (Ba): CSXCR001, -012 thru -020 (others nondetect)

Lead (Pb): All samples

A potential for a high bias in the lead data is likely given the high percent recovery noted (170% versus control limits of 75% to 125%).

5. <u>Interference Check Sample</u> Met applicable criteria.

6. <u>Laboratory Control Sample</u> Met applicable criteria.

#### 7. Duplicates

A. Duplicates met applicable criteria, indicating acceptable precision was obtained during these analyses, except for high RPDs noted for the following metals, leading to "J" coding of detected values; affected samples are noted:

Barium (Ba): Samples -01, -12 thru -20 (others nondetect)

Calcium (Ca): All samples but -12 (-12 was nondetect)

Chromium (Cr): Samples -01, -12 thru -20 (others nondetect)

Manganese (Mn): All samples

Nickel (Ni): Samples -02, -03, -05 thru -11, -14, -15,

-18, and -19 (others nondetect)

#### 8. ICP Serial Dilution

A. All applicable criteria were met.

#### 9. Furnace AA OC

A. Correlation coefficients for samples analyzed by method of standard additions were unacceptable for several samples for Se; "J" data qualification resulted for Se in these samples: CSXCR003, -04, -06, -13, -14, -15, -16, -20.

#### 10. Calculations Verification

- A. Soil data appear appropriately adjusted for % moisture.
- B. Per regional guidance, low level detected data below the Contract Required Detection Limit (CRDL) were reported as nondetect at the CRDL, including in blank samples.

#### Summary

This data package is acceptable in terms of requirements for overall accuracy, precision and completeness, although individual outliers resulted in qualification of data as nondetect or as "J" coded in some cases.

#### U.S. ENVIRONMENTAL PROTECTION AGENCY

#### ENVIRONMENTAL SERVICES ASSISTANCE TEAM -- Zone II

ICF Technology Inc.

ESAT Region VII

NSI Technology Services

NSI Technology Services Corp.

25 Funston Road Kansas City, KS 66115

(913) 236-3881

The Bionetics Corp.

TO:

Debra Morey

Data Review Task Monitor

THRU:

Harold Brown, Ph.D.

ESAT Deputy Project Officer, EPA

FROM:

Kevin Ludwikoski A fack L ESAT Data Reviewer

THRU:

Ronald A. Ross

ESAT Team Manager

DATE: August 27, 1990 SUBJECT: Review of inorganic data for Big River Mine Tailings.

TID# 07-9003-329 ASSIGNMENT# 563

ICF ACCT# 26-329-02 NSI S.O.# 4633-3292

These data were reviewed according to the "Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses," July 1988 revision and the Region VII Inorganic Data Review Training Manual as guidance.

The following comments and attached data sheets are a result of the ESAT review of the above mentioned data from the contract laboratory.

CASE NO.: <u>5558G</u> SITE: Big River Mine Tailings METHOD NO.: CS0788A REVIEWER: Kevin Ludwikoski

LABORATORY: SILVER EPA ACTIVITY NO.: CSXCR

MATRIX: Solid

| TOTAL          | METALS         | TOTAL METALS   |                |  |  |
|----------------|----------------|----------------|----------------|--|--|
| SMO Sample No. | EPA Sample No. | SMO Sample No. | EPA Sample No. |  |  |
| 5558G21        | CSXCR021       | 5558G31        | CSXCR100       |  |  |
| 5558G22        | CSXCR022       | 5558G32        | CSXCR101       |  |  |
| 5558G23        | CSXCR023       | 5558G33        | CSXCR102       |  |  |
| 5558G24        | CSXCR024       | 5558G34        | CSXCR103       |  |  |
| 5558G25        | CSXCR025       | 5558G35        | CSXCR104       |  |  |
| 5558G26        | CSXCR026       | 5558G36        | CSXCR105       |  |  |
| 5558G27        | CSXCR027       | 5558G37        | CSXCR106       |  |  |
| 5558G28        | CSXCR028       | 5558G38        | CSXCR107       |  |  |
| 5558G29        | CSXCR029       | 5558G39        | CSXCR108       |  |  |
| 5558G30        | CSXCR030       | 5558G40        | CSXCR109       |  |  |

#### GENERAL

This data review assignment covers twenty soil samples analyzed for TOTAL METALS for case number 5558G. All results are in mg/kg because of the method used for the analyses. There were no field blanks, field duplicates, or performance samples included with this assignment.

## Technical Holding Times / Preservation

Technical holding times were observed for all analytes.

#### Initial and Continuing Calibration

All percent recoveries were within control limits.

### 3. Blanks

Several analytes were detected in the blanks. Corresponding sample results were qualified according to the blank rule using five times the highest blank value. Sample results requiring modification are reported as non-detect on the attached data sheets.

TOTAL METALS

| TOTAL METALS   |                                     |                                                                                |  |  |
|----------------|-------------------------------------|--------------------------------------------------------------------------------|--|--|
| <u>Analyte</u> | 5 x Highest<br><u>Blank (mg/kg)</u> | Qualified Samples                                                              |  |  |
| Al             | 63.4                                | None qualified                                                                 |  |  |
| Sb             | 31.0                                | CSXCR021-CSXCR030, CSXCR100-<br>109, CSXCR027L                                 |  |  |
| Be             | 1.0                                 | CSXCR021,-022,-023,-024,-025,<br>-026,-028,-029,-030, and 100-109<br>inclusive |  |  |
| Ca             | 88.8                                | None qualified.                                                                |  |  |
| Cr             | 7.1                                 | CSXCR021,-027,-027L,-028,-029<br>-102,-104,-105,-106,-107,-108                 |  |  |
| Co             | 8.5                                 | CSXCR028,-029,-100, and 104-109 inclusive.                                     |  |  |
| Cu             | 8.8                                 | CSXCR025,-028,-029,-100,-101,-103<br>-104,-106,-107,-108                       |  |  |
| Fe             | 31.8                                | None qualified                                                                 |  |  |
| Mg             | 86.7                                | None qualified                                                                 |  |  |
| Tĺ             | 2.2                                 | All samples except CSXCR027S and CSXCR919C                                     |  |  |
| Zn             | 17.0                                | None qualified                                                                 |  |  |
|                |                                     |                                                                                |  |  |

#### 4. ICP Interference Check

Recoveries of solution AB analytes from the interference check samples were within 20% of the true values.

#### 5. Laboratory Control Standard (LCS)

LCS results for all analytes were within control limits.

## 6. <u>Duplicates</u>

A lab duplicate was performed and one analyte was outside the control limits. The associated results were "J" coded accordingly.

# TOTAL METALS (SOLIDS)

## Analyte Samples qualified

As CSXCR029,-030,-100,-101,-103,-105,-106,-107,-109 -027S and -919C

The As results were also coded because of matrix spike recoveries.

### 7. Matrix Spike Sample

As was out of range for matrix spike recovery. The samples that had data qualified are listed below.

# TOTAL METALS (SOLIDS)

| <u>Analyte</u> | Sample No.                                                          | <u>Code</u> |
|----------------|---------------------------------------------------------------------|-------------|
| As             | CSXCR029,-030,-100,-101,-103,-105,-106,-107<br>-109,-027L and -919C | J           |

The As results were also coded because of duplicate precision.

## 8. ICP Serial Dilutions

Results for Cu and Zn were outside control limits. The samples that were qualified are listed below.

| Analyte | Sample No.                                                                                     | <u>Code</u> |
|---------|------------------------------------------------------------------------------------------------|-------------|
| Cu      | CSXCR021,-022,-023,-024,-026,-027,-027S,-027L<br>-028,-030,-102,-104,-105,-106,-109 and -919C. | J           |
| Zn      | All samples                                                                                    | J           |

## 9. Furnace Atomic Absorbtion

The correlation coefficient for furnace AA standard additions analysis of Se in sample CSXCR022 was below 0.995. The analyte result was non-detect and no action was taken.

## 10. Summary

Some results were qualified by the blank rule. One analyte was qualified by matrix spike recoveries. One analyte was also qualified by duplicate precision. One analyte was qualified by the standard addition rule and three analytes were qualified by serial dilution rules.

#### ENVIRONMENTAL SERVICES ASSISTANCE TEAM -- Zone II

ICF Technology Inc.

ESAT Region VII

NSI Technology Services

25 Funston Road

Kansas City, KS 66115

(913) 236-3881

The Bionetics Corp.

TO:

Debra Morey

NSI Technology Services Corp.

Data Review Task Monitor

THRU:

Harold Brown, Ph.D.

ESAT Deputy Project Officer, EPA

FROM:

Kevin Ludwikoski 🕰

ESAT Data Reviewer

THRU:

Ronald A. Ross

ESAT Team Manager

DATE:

August 30, 1990

SUBJECT: Review of inorganic data for Big River Mine Tailings.

TID# 07-9003-329 ASSIGNMENT# 562 ICF ACCT# 26-329-02 NSI S.O.# 4633-3292

These data were reviewed according to the "Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses," July 1988 revision and the Region VII Inorganic Data Review Training Manual as guidance.

The following comments and attached data sheets are a result of the ESAT review of the above mentioned data from the contract laboratory.

CASE NO.: <u>5558G</u>

SITE: <u>Big River Mine Tailings</u>

REVIEWER: Kevin Ludwikoski

LABORATORY: SILVER

METHOD NO.: CS0788A EPA ACTIVITY NO.: CSXCR

MATRIX: Solid

| TOTAL          | METALS         | TOTAL METALS   |                |  |
|----------------|----------------|----------------|----------------|--|
| SMO Sample No. | EPA Sample No. | SMO Sample No. | EPA Sample No. |  |
| 5558G41        | CSXCR110       | 5558G49        | CSXCR117       |  |
| 5558G42        | CSXCR111       | 5558G50        | CSXCR118       |  |
| 5558G43        | CSXCR112       | 5558G51        | CSXCR119       |  |
| 5558G44        | CSXCR112D      | 5558G52        | CSXCR120       |  |
| 5558G45        | CSXCR113       |                |                |  |
| 5558G46        | CSXCR114       |                |                |  |
| 5558G47        | CSXCR115       |                |                |  |
| 5558G48        | CSXCR116       |                |                |  |

This data review assignment covers twelve soil samples analyzed for <u>TOTAL METALS</u> for case number <u>5558G</u>. All results are in mg/kg because of the method used for the analyses. There was one field duplicate included with this assignment. There were no field blank or performance samples included with this assignment.

## 1. Technical Holding Times / Preservation

Technical holding times were observed for all analytes.

#### 2. Initial and Continuing Calibration

All percent recoveries were within control limits.

#### 3. Blanks

Several analytes were detected in the blanks. Corresponding sample results were qualified according to the blank rule using <u>five times</u> the highest blank value. Sample results requiring modification are reported as non-detect on the attached data sheets.

TOTAL METALS

|                              | , 11.12 1.1211.12D                                        |
|------------------------------|-----------------------------------------------------------|
| 5 x Highest<br>Blank (mg/kg) | Qualified Samples                                         |
| 74.9                         | None qualified                                            |
| 5.2                          | CSXCR118,-118L,-120                                       |
| 1.3                          | CSXCR110,-111,-112,-112D,-113,                            |
|                              | -114,-116,-117,-118,-119,-120                             |
| 80.1                         | None qualified.                                           |
| 4.0                          | CSXCR118,-120                                             |
| 12.4                         | CSXCR110,-112,-112D,-113,-114                             |
|                              | -118,-119,-120                                            |
| 14.3                         | None qualified                                            |
| 91.2                         | None qualified                                            |
| 4.5                          | CSXCR111,-112,-113,-114,-116                              |
|                              | -118,-119,-120                                            |
| 5.4                          | None qualified                                            |
| 14.4                         | CSXCR118                                                  |
|                              | Blank (mg/kg)  74.9 5.2 1.3  80.1 4.0 12.4  14.3 91.2 4.5 |

#### 4. ICP Interference Check

Recoveries of solution AB analytes from the interference check samples were within \$20% of the true values.

## 5. Laboratory Control Standard (LCS)

LCS results for all analytes were within control limits.

#### 6. Duplicates

A lab duplicate was performed and two analytes were outside the control limits. The associated results were "J" coded accordingly.

# TOTAL METALS (SOLIDS)

## Analyte Samples qualified

Ba CSXCR110,-111,-115,-116,-117,-118

Mn All samples

The Ba results were also coded because of matrix spike recoveries.

#### 7. Matrix Spike Sample

Ba and Ag were out of range for matrix spike recovery. The samples that had data qualified are listed below.

# TOTAL METALS (SOLIDS)

| <u>Analyte</u> | Sample No.                                   | Code |
|----------------|----------------------------------------------|------|
| Ba             | CSXCR110,-111,-115,-118                      | J    |
| Ag             | CSXCR110,-112,-112D,-113,-114,-115,-116,-117 | J    |

The Ba results were also coded because of duplicate precision.

#### 8. ICP Serial Dilutions

All serial dilution results were within control limits.

#### 9. Furnace Atomic Absorbtion

The correlation coefficient for furnace AA standard additions analysis of As in sample CSXCR119 was below 0.995. The analyte result was therefore "J" coded.

### 10. Summary

Some results were qualified by the blank rule. Two analytes were qualified by matrix spike recoveries. Two analytes were also qualified by duplicate precision. One analyte was qualified by the standard addition rule.

#### ENVIRONMENTAL SERVICES ASSISTANCE TEAM -- Zone II

ICF Technology Inc.

ESAT Region VII

NSI Technology Services

NSI Technology Services Corp.

25 Funston Road Kansas City, KS 66115

(913) 236-3881

The Bionetics Corp.

TO:

Debra Morey

Data Review Task Monitor

THRU:

Harold Brown, Ph.D.

ESAT Deputy Project Officer, EPA

FROM:

Albert Iannacone ESAT OA Coordinator

THRU:

Ronald Ross

ESAT Manager

DATE:

August 23, 1990

SUBJECT: Review of inorganic data for Big River Mine Tailings

TID# 07-9003-329 ASSIGNMENT# 571

ICF ACCT# 302-26-329-02

NSI S.O.# 4633-3292

ESAT DOC. # ESAT- VII- 329-08-23-90-01

These data were reviewed according to the "Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses," and the Region VII Inorganic Data Review Training Manual as guidance. The following comments and attached data sheets are a result of the ESAT review of the above mentioned data from the contract laboratory.

LABORATORY: <u>SILVER</u> METHOD NO.: <u>CS0788A</u> SAS CASE NO.: 5558G SITE: BIG RIVER MINE TAILINGS REVIEWER: Al Iannacone EPA ACTIVITY NO.: CSXCR

MATRIX: Water

| SMO Sample No. | EPA Sample No. | SMO Sample No. | EPA Sample No. |
|----------------|----------------|----------------|----------------|
| 5558G133       | CSXCR208       | MGG8G141       | CSXCR216       |
| 5558G134       | CSXCR209       | MGG8G142       | CSXCR217       |
| 5558G135       | CSXCR210       | MGG8G143       | CSXCR218       |
| 5558G136       | CSXCR211       | MGG8G144       | CSXCR322F      |
| 5558G137       | CSXCR212       | MGG8G145       | CSXCR323F      |
| 5558G138       | CSXCR213       | MGG8G146       | CSXCR324       |
| 5558G139       | CSXCR214       | MGG8G147       | CSXCR324F      |
| 5558G140       | CSXCR215       | MGG8G199       | CSXCR212D      |

And six associated QC samples: CSXCR916A, C, M and -208L, S, R.

This data review assignment covers <u>Sixteen Water</u> samples analyzed for dissolved metals. Three field blanks and one field duplicate, and six associated QC samples were included in this assignment. Chain-of-custody paperwork is complete, although sample tags were absent.

## 1. Holding Times and Preservation

A. Holding time requirements and preservation requirements were met for these metals analyses.

#### 2. Calibration

A. Calibration criteria were met for all samples, for both initial and continuing calibrations.

#### 3. Method Blanks / Field Blanks

| Matrix | Sample #             | Analytes<br>Detected     | Samples Qualified as non-detect |
|--------|----------------------|--------------------------|---------------------------------|
| Water  | Laboratory<br>Blanks | Al, Cr, Cu,<br>Fe, Tl, V | Cr in CSXCR217                  |
| Water  | CSXCR322F            | Ca, Na                   | none                            |
| Water  | CSXCR323F            | Mg                       | none                            |
| Water  | CSXCR324F            | Zn                       | CSXCR211; -217                  |

#### 4. Matrix Spike

- A. Met applicable criteria except for low % recovery for Se; no data were affected due to this occurrence.
- 5. <u>Interference Check Sample</u> Met applicable criteria.
- 6. <u>Laboratory Control Sample</u> Met applicable criteria.

## 7. <u>Duplicates</u>

A. Lab and field duplicates met applicable criteria, indicating acceptable precision was obtained during these analyses.

#### 8. ICP Serial Dilution

A. All applicable criteria were met.

## 9. Furnace AA OC

A. Acceptance criteria were met; Pb was successfully analyzed by the method of standard additions for sample CSXCR324.

## 10. Calculations Verification

- A. Due to the requested level of review, no detailed examination of calculations was performed.
- B. Per regional guidance, low level detected data below the Contract Required Detection Limit (CRDL) were reported as nondetect at the CRDL, including in blank samples.

#### Summary

This data package is acceptable in terms of requirements for overall accuracy, precision and completeness.

#### ENVIRONMENTAL SERVICES ASSISTANCE TEAM -- Zone II

ICF Technology Inc.

NSI Technology Services Corp.

The Bionetics Corp.

ESAT Region VII

NSI Technology Services

25 Funston Road

Kansas City, KS 66115

(913) 236-3881

TO:

Debra Morey

Data Review Task Monitor

THRU:

Harold Brown, Ph.D.

ESAT Deputy Project Officer, EPA

FROM:

Albert Iannacone and ESAT OA Coordinator

THRU:

Ronald Ross ESAT Manager

DATE:

August 22, 1990

SUBJECT: Review of inorganic data for Big River Mine Tailings

TID# <u>07-9003-329</u> ASSIGNMENT# 570

ICF ACCT# 302-26-329-02

NSI S.O.# 4633-3292

ESAT Doc. # ESAT-V11-329-08-23-90-02

These data were reviewed according to the "Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses," and the Region VII Inorganic Data Review Training Manual as guidance. The following comments and attached data sheets are a result of the ESAT review of the above mentioned data from the contract laboratory.

SAS CASE NO.: 5558G LABORATORY: SILVER METHOD NO.: CS0788A SITE: BIG RIVER MINE TAILINGS EPA ACTIVITY NO.: CSXCR REVIEWER: Al Iannacone

MATRIX: Water

| SMO Sample No. | EPA Sample No. | SMO Sample No. | EPA Sample No. |
|----------------|----------------|----------------|----------------|
| 5558G73        | CSXCR219       | MGG8G83        | CSXCR308       |
| 5558G74        | CSXCR220       | MGG8G84        | CSXCR309       |
| 5558G75        | CSXCR300       | MGG8G85        | CSXCR309D      |
| 5558G76        | CSXCR301       | MGG8G86        | CSXCR310       |
| 5558G77        | CSXCR302       | MGG8G87        | CSXCR311       |
| 5558G78        | CSXCR303       | MGG8G88        | CSXCR312       |
| 5558G79        | CSXCR304       | MGG8G89        | CSXCR314       |
| 5558G80        | CSXCR305       | MGG8G90        | CSXCR315       |
| 5558G81        | CSXCR306       | MGG8G91        | CSXCR316       |
| 5558G82        | CSXCR307       | MGG8G92        | CSXCR317       |

And 13 associated QC samples: CSXCR915A,C,M, -219L,S,R, -220L,S,R, -301L,S,R, and -309D.

This data review assignment covers <u>Twenty Water</u> samples analyzed for total metals. No field blank and one field duplicate, and 13 associated QC samples were included in this assignment. Chain-of-custody paperwork is complete, although sample tags were absent.

## 1. Holding Times and Preservation

A. Holding time requirements and preservation requirements were met for these metals analyses.

#### 2. Calibration

A. Calibration criteria were met for all samples, for both initial and continuing calibrations.

#### 3. Method Blanks / Field Blanks

| Matrix | Sample #             | Analytes<br>Detected          | Samples Qualified as non-detect                      |
|--------|----------------------|-------------------------------|------------------------------------------------------|
| Water  | Laboratory<br>Blanks | Sb, As, Ca,<br>Cr, Cu, Fe, Tl | Sb in CSXCR316<br>Cu in CSXCR312,<br>-314, and -317. |

4. Matrix Spike

Met applicable criteria.

5. Interference Check Sample

Met applicable criteria.

6. Laboratory Control Sample

Met applicable criteria.

# 7. <u>Duplicates</u>

- A. Lab duplicates met applicable criteria, indicating acceptable precision was obtained during these analyses, except for high RPD noted for Lead in CSXCR220L, leading to "J" coding of detected values; the only affected sample is CSXCR308; others are all nondetect for Pb.
- B. Field duplicates CSXCR009 / -009D generally exhibited good agreement, except for Ni; however, the lack of agreement was not sufficient to result in "J" data coding of Ni data.

#### 8. ICP Serial Dilution

A. All applicable criteria were met.

#### 9. Furnace AA OC

A. Correlation coefficients for samples analyzed by method of standard additions were unacceptable for As and Pb in several samples; "J" data qualification resulted only for Pb in CSXCR305, however, as the other affected samples were nondetect. Post-digestion spike outliers did not result in any data coding as affected results were nondetect.

#### 10. Calculations Verification

- A. Due to the requested level of review, no detailed examination of calculations was performed.
- B. Per regional guidance, low level detected data below the Contract Required Detection Limit (CRDL) were reported as nondetect at the CRDL, including in blank samples.

#### Bummary

This data package is acceptable in terms of requirements for overall accuracy, precision and completeness, although individual outliers resulted in qualification of data as nondetect or as "J" coded in some cases.

#### ENVIRONMENTAL SERVICES ASSISTANCE TEAM -- Zone II

ICF Technology, Inc.

ESAT Region VII

NSI Technology Services

25 Funston Road NSI Technology Services Corp.

Kansas City, KS 66115

The Bionetics Corp. (913) 236-3881

TO:

Debra Morey

Data Review Task Monitor

THRU:

Harold Brown, Ph.D.

ESAT Deputy Project Officer, EPA

FROM:

D. Eric Woodland

ESAT Data Reviewer

THRU:

Ronald A. Ross

ESAT Team Manager

DATE:

August 21, 1990

SUBJECT: Review of inorganic data for Big River Mine Tailings.

TID# 07-9003-329 ASSIGNMENT# 567 ICF ACCT# 26-329-02 NSI S.O.# 4633-3292

ESAT Document # ESAT-VII-329-08-23-90-08

These data were reviewed primarily according to the "Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses," July 1988 revision with changes given in the Region VII Inorganic Data Review Training Manual and EPA memorandums.

The following comments and attached data sheets are a result of the ESAT review, according to EPA policies, of the following data from the contract laboratory.

CASE NO.: 5558G SITE: Big River Mine Tailings METHOD NO.: CS0788A REVIEWER: D. Eric Woodland

LABORATORY: SILVER

EPA ACTIVITY NO.: CSXCR

MATRIX: WATER

| TOTAL          | METALS         | TOTAL METALS   |                |  |
|----------------|----------------|----------------|----------------|--|
| SMO Sample No. | EPA Sample No. | SMO Sample No. | EPA Sample No. |  |
| 5558G53        | CSXCR200       | 5558G63        | CSXCR210       |  |
| 5558G54        | CSXCR201       | 5558G64        | CSXCR211       |  |
| 5558G55        | CSXCR202       | 5558G65        | CSXCR212       |  |
| 5558G56        | CSXCR203       | 5558G66        | CSXCR213       |  |
| 5558G57        | CSXCR204       | 5558G67        | CSXCR214       |  |
| 5558G58        | CSXCR205       | 5558G68        | CSXCR215       |  |
| 5558G59        | CSXCR206       | 5558G69        | CSXCR216       |  |
| 5558G60        | CSXCR207       | 5558G70        | CSXCR217       |  |
| 5558G61        | CSXCR208       | 5558G71        | CSXCR218       |  |
| 5558G62        | CSXCR209       | 5558G72        | CSXCR219       |  |

This data review assignment covers  $\underline{\text{TWENTY}}$   $\underline{\text{WATER}}$  samples analyzed for  $\underline{\text{TOTAL METALS}}$  for case number  $\underline{5558G}$ . There were no field blanks, duplicates or performance samples included with this assignment.

## 1. Technical Holding Times / Preservation

Technical holding times were within established control limits.

#### 2. Initial and Continuing Calibration

All percent recoveries were within control limits.

#### 3. Blanks

Several analytes were detected in the blanks. Corresponding sample results were qualified according to the blank rule using five times the highest blank value. Sample results requiring modification are reported as non-detect on the attached data sheets.

| то | TA: | L M | ET | AΤ | ٠S |
|----|-----|-----|----|----|----|
|    |     |     |    |    |    |

| 5 x Highest  |                                                                |
|--------------|----------------------------------------------------------------|
| Blank (ug/l) | Qualified Samples                                              |
| 440          | CSXCR201,-203 to -206,-208 to -210, -214,-217 and -219         |
| 160          | None qualified                                                 |
| 7.0          | None qualified                                                 |
| 22           | CSXCR202                                                       |
| 29           | CSXCR218                                                       |
| 44           | None qualified                                                 |
| 120          | None qualified                                                 |
| 140          | None qualified                                                 |
| 38           | CSXCR218                                                       |
| 10           | None qualified                                                 |
| 340          | None qualified                                                 |
| 320          | None qualified                                                 |
|              | Blank (ug/1)  440  160  7.0  22  29  44  120  140  38  10  340 |

#### 4. ICP Interference Check

Recoveries of solution AB analytes were within control limits.

#### 5. Laboratory Control Standard (LCS)

LCS results were within established control limits.

#### 6. Duplicates

The RPDs for all analytes were within control limits.

# 7. Matrix Spike Sample

Matrix spike recoveries were within established control limits.

# 8. ICP Serial Dilution

All results were within established control limits.

## 9. Summary

Several results were qualified by the blank rule. No other qualifications were made.

#### ENVIRONMENTAL SERVICES ASSISTANCE TEAM -- Zone II

ICF Technology, Inc.

ESAT Region VII

NSI Technology Services

NSI Technology Services Corp.

25 Funston Road

Kansas City, KS 66115

(913) 236-3881

The Bionetics Corp.

Debra Morey TO:

Data Review Task Monitor

THRU:

Harold Brown, Ph.D.

ESAT Deputy Project Officer, EPA

FROM:

D. Eric Woodland 50

ESAT Data Reviewer

THRU:

Ronald A. Ross ESAT Team Manager

DATE:

August 21, 1990

SUBJECT: Review of inorganic data for Big River Mine Tailings.

TID# <u>07-9003-329</u> ASSIGNMENT# 569 ICF ACCT# 26-329-02

NSI S.O.# 4633-3292

ESAT Document # 634T-VII- \$329-08-23-90-09

These data were reviewed primarily according to the "Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses," July 1988 revision with changes given in the Region VII Inorganic Data Review Training Manual and EPA memorandums.

The following comments and attached data sheets are a result of the ESAT review, according to EPA policies, of the following data from the contract laboratory.

CASE NO.: <u>5558G</u>

LABORATORY: SILVER

SITE: Big River Mine Tailings METHOD NO.: CS0788A REVIEWER: D. Eric Woodland

EPA ACTIVITY NO.: CSXCR

MATRIX: WATER

| DISSOLVED      | METALS         | TOTAL            | METALS         |
|----------------|----------------|------------------|----------------|
| SMO Sample No. | EPA Sample No. | SMO Sample No.   | EPA Sample No. |
| 5558G102       | CSXCR219       | 5558G93          | CSXCR318       |
| 5558G103       | CSXCR220       | 5558G94          | CSXCR319       |
| 5558G104       | CSXCR300       | 5558 <b>G</b> 95 | CSXCR320F      |
| 5558G105       | CSXCR301       | 5558G96          | CSXCR321F      |
| 5558G106       | CSXCR302       | 5558G97          | CSXCR322F      |
| 5558G107       | CSXCR303       | 5558G98          | CSXCR323F      |
| 5558G108       | CSXCR304       | 5558G99          | CSXCR324       |
| 5558G109       | CSXCR305       | 5558G100         | CSXCR324F      |
| 5558G110       | CSXCR306       | 5558G101         | CSXCR325F      |
| 5558G111       | CSXCR307       |                  |                |
| 5558G112       | CSXCR308       |                  |                |

This data review assignment covers <u>ELEVEN WATER</u> samples analyzed for <u>DISSOLVED METALS</u> and <u>NINE WATER</u> samples analyzed for <u>TOTAL METALS</u> for case number <u>5558G</u>. There were six field blanks for TOTAL METALS and no field duplicates or performance samples included with this assignment.

#### 1. Technical Holding Times / Preservation

Technical holding times were within established control limits.

## 2. Initial and Continuing Calibration

All percent recoveries were within control limits.

## 3. Blanks

Several analytes were detected in the blanks. Corresponding sample results were qualified according to the blank rule using five times the highest blank value. Sample results requiring modification are reported as non-detect on the attached data sheets.

## DISSOLVED METALS

| <u>Analyte</u> | 5 x Highest<br>Blank (ug/l) | Qualified Samples      |
|----------------|-----------------------------|------------------------|
| Cu             | 41                          | None qualified         |
| Fe             | 110                         | None qualified         |
| Pb             | 8.0                         | CSXCR300,-302 and -303 |
| Zn             | 24                          | None qualified         |
| Al             | 200                         | None qualified         |
| Co             | 44                          | None qualified         |

#### TOTAL METALS

| <u>Analyte</u> | 5 x Highest<br>Blank (ug/l) | Qualified Samples |
|----------------|-----------------------------|-------------------|
| Cu             | 41                          | None qualified    |
| Fe             | 400                         | CSXCR318 and -319 |
| Pb             | 16                          | None qualified    |
| Al             | 200                         | None qualified    |
| Co             | 44                          | None qualified    |
| Ca             | 3300                        | None qualified    |
| Mg             | 1000                        | None qualified    |
| Na             | 3400                        | None qualified    |
| Tl             | 11                          | None qualified    |
| zn             | 130                         | None qualified    |
| Mn             | 16                          | None qualified    |

#### 4. ICP Interference Check

Recoveries of solution AB analytes were within control limits.

#### 5. Laboratory Control Standard (LCS)

LCS results were within established control limits.

#### 6. <u>Duplicates</u>

The RPDs for all analytes were within control limits.

#### 7. Matrix Spike Sample

The matrix spike results were applied to the total and dissolved sample results. Pb, Se and Tl were out of control limits for matrix spike recovery. All Se and Tl results were non-detect, so no coding was performed for these analytes. CSXCR318,-319,-322F and 324 were coded J for TOTAL PB and CSXCR219,-220,-301,-304,-306 and -307 were J coded for DISSOLVED PB. All other TOTAL and DISSOLVED PB results were invalidated.

## 8. ICP Serial Dilution

All results were within established control limits.

#### 9. Furnace Criteria

CSXCR318 was J coded for a MSA correlation coefficient outlier. This results was also coded by matrix spike recovery.

#### 10. Summary

All Pb results were either J coded or invalidated by the matrix spike recovery. Two results for TOTAL Fe were qualified by the blank rule. Several DISSOLVED Pb results were qualified by the blank rule and later invalidated by matrix spike recovery. CSXCR318 was also coded by MSA correlation coefficient.

#### ENVIRONMENTAL SERVICES ASSISTANCE TEAM -- Zone II

ICF Technology, Inc.

ESAT Region VII

NSI Technology Services

25 Funston Road NSI Technology Services Corp.

Kansas City, KS 66115

(913) 236-3881

The Bionetics Corp.

TO:

Debra Morey

Data Review Task Monitor

THRU:

Harold Brown, Ph.D.

ESAT Deputy Project Officer, EPA

FROM:

D. Eric Woodland

ESAT Data Reviewer

THRU:

Ronald A. Ross

ESAT Team Manager

DATE:

August 21, 1990

SUBJECT: Review of inorganic data for Big River Mine Tailings.

TID# <u>07-9003-329</u> ASSIGNMENT# 568 ICF ACCT# 26-329-02 NSI S.O.# 4633-3292

ESAT Document # 6547 - v11 - 329 - 08-25.30 - 10

These data were reviewed primarily according to the "Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses," July 1988 revision with changes given in the Region VII Inorganic Data Review Training Manual and EPA memorandums.

The following comments and attached data sheets are a result of the ESAT review, according to EPA policies, of the following data from the contract laboratory.

CASE NO.: 5558G SITE: Big River Mine Tailings METHOD NO.: CS0788A REVIEWER: D. Eric Woodland

LABORATORY: SILVER EPA ACTIVITY NO.: CSXCR

MATRIX: WATER

| DISSOLVED      | METALS         | DISSOLVE          | DISSOLVED METALS  SMO Sample No. EPA Sample No.  5558G123 CSXCR319  5558G124 CSXCR321F  5558G125 CSXCR200  5558G126 CSXCR201  5558G127 CSXCR202  5558G128 CSXCR203 |  |  |  |
|----------------|----------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SMO Sample No. | EPA Sample No. | SMO Sample No.    | EPA Sample No.                                                                                                                                                     |  |  |  |
| 5558G113       | CSXCR309       | 5558G123          | CSXCR319                                                                                                                                                           |  |  |  |
| 5558G114       | CSXCR309D      | 5558G124          | CSXCR321F                                                                                                                                                          |  |  |  |
| 5558G115       | CSXCR310       | 5 <b>558G</b> 125 | CSXCR200                                                                                                                                                           |  |  |  |
| 5558G116       | CSXCR311       | 5558G126          | CSXCR201                                                                                                                                                           |  |  |  |
| 5558G117       | CSXCR312       | 5558G127          | CSXCR202                                                                                                                                                           |  |  |  |
| 5558G118       | CSXCR314       | 5558G128          | CSXCR203                                                                                                                                                           |  |  |  |
| 5558G119       | CSXCR315       | 5558G129          | CSXCR204                                                                                                                                                           |  |  |  |
| 5558G120       | CSXCR316       | 5558G130          | CSXCR205                                                                                                                                                           |  |  |  |
| 5558G121       | CSXCR317       | 5558G131          | CSXCR206                                                                                                                                                           |  |  |  |
| 5558G122       | CSXCR318       | 5558G132          | CSXCR207                                                                                                                                                           |  |  |  |

This data review assignment covers <u>TWENTY WATER</u> samples analyzed for <u>DISSOLVED METALS</u> for case number <u>5558G</u>. There was one field duplicate and no field blanks or performance samples included with this assignment.

#### 1. Technical Holding Times / Preservation

Technical holding times were within established control limits.

## 2. Initial and Continuing Calibration

All percent recoveries were within control limits.

#### 3. Blanks

Several analytes were detected in the blanks. Corresponding sample results were qualified according to the blank rule using five times the highest blank value. Sample results requiring modification are reported as non-detect on the attached data sheets.

#### DISSOLVED METALS

|                | 5 x Highest  | . <del>-</del>                   |
|----------------|--------------|----------------------------------|
| <u>Analyte</u> | Blank (ug/l) | <b>Qualified Samples</b>         |
| Ca             | 2600         | None qualified                   |
| Cr             | 22           | None qualified                   |
| Cu             | 41           | None qualified                   |
| Tl             | 12           | None qualified                   |
| Ag             | 10           | None qualified                   |
| РĎ             | 7.0          | CSXCR207,-204,-309,-309D and 319 |
| Mg             | 700          | None qualified                   |
| Na             | 2100         | None qualified                   |

## 4. ICP Interference Check

Recoveries of solution AB analytes were within control limits.

#### 5. Laboratory Control Standard (LCS)

LCS results were within established control limits.

#### 6. Duplicates

The RPDs for all analytes were within control limits.

#### 7. Matrix Spike Sample

Se was out of control limits for matrix spike recovery. All results for Se were non-detect, so no coding was performed.

# 8. ICP Serial Dilution

All results were within established control limits.

## 9. Summary

Several Pb results were qualified by the blank rule. No other qualifications were made.

#### ENVIRONMENTAL SERVICES ASSISTANCE TEAM -- Zone II

ICF Technology, Inc.

ESAT Region VII

NSI Technology Services

NSI Technology Services Corp.

25 Funston Road

Kansas City, KS 66115

The Bionetics Corp.

(913) 236-3881

TO:

Debra Morey

Data Review Task Monitor

THRU:

Harold Brown, Ph.D.

ESAT Deputy Project Officer, EPA

FROM:

D. Eric Woodland

ESAT Data Reviewer

THRU:

Ronald A. Ross ESAT Team Manager

DATE: August 21, 1990 SUBJECT: Review of inorganic data for Big River Mine Tailings.

TID# 07-9003-329 ASSIGNMENT# 566 ICF ACCT# 26-329-02 NSI S.O.# 4633-3292

ESAT Document # 65AT-VII-329-08-23-90-04

These data were reviewed primarily according to "Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses," July 1988 revision with changes given in the Region VII Inorganic Data Review Training Manual and EPA memorandums.

The following comments and attached data sheets are a result of the ESAT review, according to EPA policies, of the following data from the contract laboratory.

CASE NO.: <u>5558G</u> SITE: Big River Mine Tailings METHOD NO.: CS0788A

LABORATORY: SILVER

REVIEWER: D. Eric Woodland

EPA ACTIVITY NO.: CSXCR MATRIX: AIR

#### TOTAL METALS

| SMO Sample No. | EPA Sample No. |
|----------------|----------------|
| -              |                |
| 5558G192       | CSXCR400       |
| 5558G193       | CSXCR402       |
| 5558G194       | CSXCR403       |
| 5558G195       | CSXCR404       |
| 5558G196       | CSXCR406       |
| 5558G197       | CSXCR407       |
| 5558G198       | CSXCR408       |

This data review assignment covers <u>SEVEN AIR</u> samples analyzed for <u>TOTAL METALS</u> for case number <u>5558G</u>. There were no field blanks, duplicates or performance samples included with this assignment.

## 1. Technical Holding Times / Preservation

Technical holding times have not been established for this matrix.

## 2. Initial and Continuing Calibration

All percent recoveries were within control limits.

#### 3. Blanks

Several analytes were detected in the blanks. Corresponding sample results were qualified according to the blank rule using five times the highest blank value. Sample results requiring modification are reported as non-detect on the attached data sheets.

#### TOTAL METALS

|                | 5 x Highest       | · <del>-</del>           |
|----------------|-------------------|--------------------------|
| <u>Analyte</u> | Blank (ug/sample) | <b>Qualified Samples</b> |
| Al             | 74                | CSXCR407                 |
| As             | 4.2               | None qualified           |
| Ca             | 80                | None qualified           |
| Cr             | 5.2               | CSXCR406,-404 and -403   |
| Cu             | 13                | None qualified           |
| Fe             | 18                | None qualified           |
| Mg             | 97                | None qualified           |
| Tl             | 3.0               | None qualified           |
| Pb             | 1.0               | CSXCR408                 |

## 4. ICP Interference Check

Recoveries of solution AB analytes were within control limits.

#### 5. Laboratory Control Standard (LCS)

LCS results were within established control limits.

#### 6. Duplicates

The RPDs for all analytes were within control limits.

## 7. Matrix Spike Sample

Because of the matrix, matrix spikes of the samples are not possible. A spike was performed on a blank. These results were within regular CLP control limits.

## 8. ICP Serial Dilution

Copper was outside control limits. All results were J coded except for CSXCR408, which was non-detect.

## 9. Furnace Atomic Absorption

CSXCR406 for Se was outside control limits for MSA correlation coefficient. This result was J coded.

## 10. Summary

One result was coded for MSA correlation coefficient outlier. Most of the Cu results were J coded for a serial dilution outlier.

#### ENVIRONMENTAL SERVICES ASSISTANCE TEAM -- Zone II

ICF Technology, Inc.

ESAT Region VII

NSI Technology Services

NSI Technology Services Corp. 25 Funston Road

Kansas City, KS 66115

(913) 236-3881

The Bionetics Corp.

TO: Debra Morey

Data Review Task Monitor

Harold Brown, Ph.D. THRU:

ESAT Deputy Project Officer, EPA

D. Eric Woodland FROM:

ESAT Data Reviewer

Ronald A. Ross THRU:

ESAT Team Manager

DATE:

August 27, 1990
Review of inorganic data for Big River Mine Tailings. SUBJECT:

TID# 07-9003-329 ASSIGNMENT# 564 ICF ACCT# 26-329-02 NSI S.O.# 4633-3292

ESAT Document # <u>ESAT-VII-329-08-23-90-06</u>

These data were reviewed primarily according to the "Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses," July 1988 revision with changes given in the Region VII Inorganic Data Review Training Manual and EPA memorandums.

The following comments and attached data sheets are a result of the ESAT review, according to EPA policies, of the following data from the contract laboratory.

CASE NO.: <u>5558G</u> LABORATORY: SILVER SITE: Big River Mine Tailings METHOD NO.: CS0788A EPA ACTIVITY NO.: CSXCR REVIEWER: D. Eric Woodland

MATRIX: AIR

| TOTAL          | METALS         | TOTAL          | METALS         |
|----------------|----------------|----------------|----------------|
| SMO Sample No. | EPA Sample No. | SMO Sample No. | EPA Sample No. |
| 5558G148       | CSXCR433       | 5558G158       | CSXCR443       |
| 5558G149       | CSXCR434       | 5558G159       | CSXCR444       |
| 5558G150       | CSXCR435       | 5558G160       | CSXCR445       |
| 5558G151       | CSXCR436       | 5558G161       | CSXCR446       |
| 5558G152       | CSXCR437       | 5558G162       | CSXCR448       |
| 5558G153       | CSXCR438       | 5558G163       | CSXCR449       |
| 5558G154       | CSXCR439       | 5558G168       | CSXCR417       |
| 5558G155       | CSXCR440       | 5558G169       | CSXCR418       |
| 5558G156       | CSXCR441       | 5558G170       | CSXCR419       |
| 5558G157       | CSXCR442       | 5558G171       | CSXCR420       |

This data review assignment covers  $\underline{\text{TWENTY AIR}}$  samples analyzed for  $\underline{\text{TOTAL METALS}}$  for case number  $\underline{55586}$ . There were no field blanks, duplicates or performance samples included with this assignment.

#### 1. Technical Holding Times / Preservation

Technical holding times have not been established for this matrix.

#### 2. Initial and Continuing Calibration

All percent recoveries were within control limits.

## 3. Blanks

Several analytes were detected in the blanks. Corresponding sample results were qualified according to the blank rule using five times the highest blank value. Sample results requiring modification are reported as non-detect on the attached data sheets.

#### TOTAL METALS

| <u>Analyte</u> | 5 x Highest<br>Blank (ug/sample) | Qualified Samples |
|----------------|----------------------------------|-------------------|
| Al             | 48                               | None qualified    |
| Sb             | 28                               | None qualified    |
| Be             | 1.6                              | None qualified    |
| Ca             | 70                               | None qualified    |
| Cu             | 7.3                              | None qualified    |
| Fe             | 21                               | None qualified    |
| Mg             | 65                               | None qualified    |
| ΤĪ             | 4.3                              | None qualified    |
| V              | 5.5                              | None qualified    |

#### 4. ICP Interference Check

Recoveries of solution AB analytes were within control limits.

#### 5. Laboratory Control Standard (LCS)

LCS results were within established control limits.

## 6. Duplicates

The RPDs for all analytes were within control limits.

## 7. Matrix Spike Sample

Because of the matrix, matrix spikes of the samples are not possible. A spike was performed on a blank. These results were within regular CLP control limits.

## 8. ICP Serial Dilution

All results were within limits.

## 9. Furnace Atomic Absorption

CSXCR420 for As and CSXCR434,-435 and -436 for Se were outside control limits for MSA correlation coefficient. These results were J coded.

#### 10. Summary

Some results were coded for MSA correlation coefficient outliers. No other QC outliers were found.

## ENVIRONMENTAL SERVICES ASSISTANCE TEAM -- Zone II

ICF Technology, Inc.

ESAT Region VII

NSI Technology Services

NSI Technology Services Corp.

25 Funston Road Kansas City, KS 66115

(913) 236-3881

The Bionetics Corp.

Debra Morey

Data Review Task Monitor

THRU:

TO:

Harold Brown, Ph.D.

ESAT Deputy Project Officer, EPA

FROM:

D. Eric Woodland ESAT Data Reviewer

Ronald A. Ross

THRU:

ESAT Team Manager

DATE: August 27, 1990 SUBJECT: Review of inorganic data for Big River Mine Tailings.

TID# <u>07-9003-329</u> ASSIGNMENT# 565 ICF ACCT# 26-329-02 NSI S.O.# 4633-3292

ESAT Document # ESAT-VII-329-08-23-90-05

These data were reviewed primarily according to the "Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses," July 1988 revision with changes given in the Region VII Inorganic Data Review Training Manual and EPA memorandums.

The following comments and attached data sheets are a result of the ESAT review, according to EPA policies, of the following data from the contract laboratory.

CASE NO.: 5558G

LABORATORY: SILVER SITE: Big River Mine Tailings METHOD NO.: CS0788A

REVIEWER: D. Eric Woodland

EPA ACTIVITY NO.: CSXCR

MATRIX: AIR

| TOTAL METALS   |                | TOTAL          | METALS         |
|----------------|----------------|----------------|----------------|
| SMO Sample No. | EPA Sample No. | SMO Sample No. | EPA Sample No. |
| 5558G172       | CSXCR421       | 5558G182       | CSXCR431       |
| 5558G173       | CSXCR422       | 5558G183       | CSXCR432       |
| 5558G174       | CSXCR423       | 5558G184       | CSXCR409       |
| 5558G175       | CSXCR424       | 5558G185       | CSXCR410       |
| 5558G176       | CSXCR425       | 5558G186       | CSXCR411       |
| 5558G177       | CSXCR426       | 5558G187       | CSXCR412       |
| 5558G178       | CSXCR427       | 5558G188       | CSXCR413       |
| 5558G179       | CSXCR428       | 5558G189       | CSXCR414       |
| 5558G180       | CSXCR429       | 5558G190       | CSXCR415       |
| 5558G181       | CSXCR430       | 5558G191       | CSXCR416       |

This data review assignment covers <u>TWENTY AIR</u> samples analyzed for <u>TOTAL METALS</u> for case number <u>5558G</u>. There were no field blanks, duplicates or performance samples included with this assignment.

#### 1. Technical Holding Times / Preservation

Technical holding times have not been established for this matrix.

## 2. Initial and Continuing Calibration

All percent recoveries were within control limits.

#### 3. Blanks

Several analytes were detected in the blanks. Corresponding sample results were qualified according to the blank rule using five times the highest blank value. Sample results requiring modification are reported as non-detect on the attached data sheets.

#### TOTAL METALS

| Analyte | 5 x Highest<br>Blank (ug/sample) | Qualified Samples |      |
|---------|----------------------------------|-------------------|------|
| Al      | 63                               | None qualified    |      |
| Ca      | 57                               | None qualified    |      |
| Cr      | 5.8                              | CSXCR428,-409 and | -412 |
| Cu      | 14                               | None qualified    |      |
| Fe      | 29                               | CSXCR432          |      |
| Zn      | 4.1                              | None qualified    |      |

#### 4. ICP Interference Check

Recoveries of solution AB analytes were within control limits.

### 5. Laboratory Control Standard (LCS)

LCS results were within established control limits.

#### 6. <u>Duplicates</u>

The RPDs for all analytes were within control limits.

#### 7. Matrix Spike Sample

Because of the matrix, matrix spikes of the samples are not possible. A spike was performed on a blank. These results were within regular CLP control limits.

# P Serial Dilution

Copper was outside control limits. All results were J coded xcept for CSXCR424,-432 and -416, which were non-detect.

## 9. Furnace Atomic Absorption

CSXCR425 for Se was outside control limits for MSA correlation coefficient. This result was J coded.

## 10. Summary

One result was coded for MSA correlation coefficient outliers. Most of the Cu results were J coded for a serial dilution outlier.

#### TABLE OF CODES

```
SAMP. NO.
                SAMPLE IDENTIFICATION NUMBER
QCC = QUALITY CONTROL SAMPLE/AUDIT CODE

M = MEDIA OF SAMPLE (A=AIR, T=TISSUE, H=HAZARDOUS

MATERIAL, S=SEDIMENT/SOIL, W=WATER)

STORET/SAROAD LOC. NO. = A SAMPLING SITE LOCATION

IDENTIFICATION NUMBER
BEG. DATE = THE DATE SAMPLING WAS STARTED BEG. TIME = THE TIME SAMPLING WAS STARTED END. DATE = THE DATE SAMPLING WAS ENDED END. TIME = THE TIME SAMPLING WAS STOPPED
     = RESERVED
    = RESERVED
PES = PESTICIDES BY CONTRACT
      = DIOXINS/FURANS BY EPA
     = EXPLOSIVES BY CONTRACT
FLD = FIELD MEASUREMENTS BY EPA
G = MINERALS & DISSOLVED MATERIALS BY EPA
HER = HERBICIDES BY EPA
I = ION CHROMATOGRAPHY ANALYSES BY EPA
MC = METALS BY CONTRACT
BNC = BASE NEUTRALS BY CONTRACT
L = FISH PHYSICAL DATA BY EPA
MET = METALS BY EPA
     = FISH TISSUE PARAMETERS BY EPA
     = VOLATILES BY CONTRACT
= PESTICIDES BY EPA
     = FLASH POINT ANALYSES BY EPA
      # RESERVED
BN = SEMIVOLATILE BY EPA
      = CYANIDE PHENOL BY EPA
     = RESERVED
VOA = VOLATILE ORGANICS BY EPA
HC = HERBICIDES BY CONTRACT
     = RESERVED
     = RESERVED
TRK = ACTIVITY TRACKING PARAMETERS BY EPA
STORET DETECTION IDENTIFIERS
BLANK = NO REMARKS
J = DATA REPORTED BUT NOT VALID BY APPROVED QC PROCEDURES
I = INVALID SAMPLE/DATA - VALUE NOT REPORTED
U = LESS THAN (MEASUREMENT DETECTION LIMIT)
M = DETECTED BUT BELOW THE LEVEL FOR ACCURATE QUANTIFICATION
O = PARAMETER NOT ANALYZED
CONTRACTOR/ IN HOUSE / FIELD MEDIA GROUPS
FIELD = * * * = AF.HF.SF.TF.WF.ZZ
CONTRACTOR = * * = HA.HC.HJ.HK.HO.SC.SJ.SK.SO.SW.TC.TJ.
TK.TO.TW.WA.WC.WE.WJ.WK.WO.WW
IN HOUSE = * = ALL OTHERS
```

```
QUALITY CONTROL AUDIT CODES
                            A = TRUE VALUE FOR CALIBRATION STANDARD
                            B = CONCENTRATION RESULTING FROM DUPLICATE LAB SPIKE
                          C = MEASURED VALUE FOR CALIBRATION STANDARD
D = MEASURED VALUE FOR FIELD DUPLICATE
F = MEASURED VALUE FOR FIELD BLANK
G = MEASURED VALUE FOR METHOD STANDARD
H = TRUE VALUE FOR METHOD STANDARD
K = CONCENTRATION RESULTING FROM DUPLICATE FIELD SPIKE
L = MEASURED VALUE FOR METHOD STANDARD
CONSERVED VALUE FOR LAB DUPLICATE FOR LAB DUPLICATE FOR LAB DUPLICATE

M = MEASURED VALUE FOR LAB BLANK

N = MEASURED VALUE FOR DUPLICATE FIELD SPIKE
P = MEASURED VALUE FOR PERFORMANCE STANDARD
R = CONCENTRATION RESULTING FROM LAB SPIKE
S = MEASURED VALUE FOR LAB SPIKE
T = TRUE VALUE OF PERFORMANCE STANDARD
W = MEASURED VALUE FOR DUPLICATE LAB SPIKE
Y = MEASURED VALUE FOR FIELD SPIKE
T = CONCENTRATION RESULTING FROM FIELD SPIKE
                           Z = CONCENTRATION RESULTING FROM FIELD SPIKE
                            MEDIA CODES
                            A = AIR
                           T = BIOLOGICAL (PLANT & ANIMAL) TISSUE
H = HAZARDOUS MATERIALS/MAN MADE PRODUCTS
S = SEDIMENT. SLUDGE & SOIL
                            W = WATER
                            UNITS
                           NA = NOT APPLICABLE
PG = PICOGRAMS (1 X 10-12 GRAMS)
NG = NANOGRAMS (1 X 10-9 GRAMS)
UG = MICROGRAMS (1 X 10-6 GRAMS)
MG = MILLIGRAMS (1 X 10-3 GRAMS)
                           M3 - METER CUBED
MPH = MILES PER HOUR
                            SCM = STANDARD (1 ATM, 25 C) CUBIC METER
                                      = KILUGRAM
                            K.L
                                           LITER
                                       = CENTIGRADE DEGREES
                             SU = STANDARD (PH) UNITS
                                       = NUMBER
                                      = POUNDS
                            LB
                                      = INCHES
                             IN
                           M/F = MALE/FEMALE

M/F = MALE/FEMALE

M/Z = SQUARE METER

I.D. = SPECIES IDENTIFICATION

GPM = GALLONS PER MINUTE

CFS = CUBIC FEET PER SECOND

MGD = MILLION GALLONS PER DAY

1000C = FLOW 1000 CALLONS PER DER
                             1000G= FLOW. 1000 GALLONS PER COMPOSITE
                            UMHOS= CONDUCTIVITY UNITS (1/OHMS)
                            NTU = TURBIDITY UNITS
                            PC/L = PICO (1 \times 10-12) CURRIES PER LITER
                            MV = MILLIVOLT
                            SO FT = SQUARE FEET
P/CM2= PICOGRAMS PER SQ. CENTIMETER
                             U/CM2= MICROGRAMS PER SQ. CENTIMETER
```

|                        | ANALYSIS REQUEST SUPPLEM |         | PLEMENT REPORT | ACTIVITY | : O-CSXCR       | DA.       | ΓΕ. 09/26/90  |       |
|------------------------|--------------------------|---------|----------------|----------|-----------------|-----------|---------------|-------|
| CO                     | MPOUND                   | UNITS   | 216            | 217      | 218             | 219       | 219L          | 219R  |
| WFO1 WATER TEMP        |                          | : 'C    | 27             | . 22     |                 | 25        | ·             |       |
| WF05 PH, FIELD         |                          | : SU    | 7.20           | 7.50     | <del>7.04</del> | 7.46      | ·<br>         |       |
| WF10 CONDUCTIVITY (FIE | LD)                      | . UMHOS | <u></u>        | -9       | <u> </u>        | Z-215     | ·<br>•<br>· · | ;     |
| WMO1 SILVER BY         | ICAP                     | :UG/L   | . 1 <b>p</b>   | 10       | 10              | J 10 U    | NA            | N A   |
| WMO2 ALUMINUM BY       | ICAP                     | UG/L    | . 220          | 200      | 350             | J 200 U   | NA            | N.A   |
| WMO3 ARSENIC BY        | ICAP                     | UG/L    | : 10           | : 10     | . 10            | υ 10 υ    | . 1           | 49    |
| WMO4 BARIUM BY         | ICAP                     | UG/L    | 200            | 200      | 200             | J : 200 U | N.A           | N.A   |
| WMO5 BERYLLIUM BY      | ICAP                     | .UG/L   | 5 0            | 5 0      | :5.0            | J 5.0 U   | N A           | N A   |
| WMO6 CADMIUM BY        | ICAP                     | UG/L    | 5 0            | 5 0      | 5.0             | J 5.0 U   | N'A           | N A   |
| WMO7 COBALT BY         | ICAP                     | .UG/L   | 50             | 50       | . 50)           | U 50 U    | NA            | : N.A |
| NMOS CHROMIUM BY       | ICAP                     | UG/L    | . 10           | . 12     | 1               | ! 10 U    | NA            | N 4   |
| NMO9 COPPER BY         | ICAP                     | : UG/L  | 25             | 25       | <u>  :2</u> \$  | J 25 U    | NYA           | N A   |
| WM10 IRON BY           | ICAP                     | UG/L    | : 290          | : 770    | . 450           | : 160     | N/A           | N A   |
| WM11 MANGANESE - RY    | ICAP                     | 0671    | <i>e</i> , >   | 117      | <u> </u>        | 61        | N A           | N A   |
| WM12 MOLYBDENUM B.     | ICAF                     | Uu/L    | N A            | A*41     | N A             | 0 N/A 0   | IN A          | N A   |
| WM13 NICKEL BY         | Trap                     | 0671    | 40             | 40       | 45              | i 40 li   | N/A           | NA    |
| WM14 LEAD BY           | ICAP                     | UG/L    | 49             | 22       | .30             | J 26 J    | 24            | 20    |
| WM15 ANTIMONY BY       | ICAP                     | UG/L    | . 60           | :60      | . ε.υ           | J 60 U    | N/A           | N/A   |
| WM16 SELENIUM BY       | ICAP                     | UG/L    | 5 0            | 5 0      | 50              | .5.0 U    | 5 0           | 1 . 1 |
| WM17 TITANIUM BY       | ICAP                     | UG/L    | N/A            | N/A      | N A             | N/A O     | N/A           | N/A   |
| WM18 THALLIUM BY       | ICAP                     | UG/L    | 10             | 10       | 1               | 10 U      | 1             | 5     |
| WM19 VANADIUM BY       | ICAP                     | UG/L    | 5              | 1 9      | <b>∮</b> ∷5≱    | .50 U     | :N/A          | N/A   |
| WM20 ZINC BY           | ICAP                     | UG/E    | . 1 80         | ] 34     | 2               | .91       | .N/A          | . N/A |
| WM21 CALCIUM. TOTAL BY | ICAP                     | MG/L    | 50             | 1 7      | - 3             | 51        | N/A           | , N/A |
| WM22 MAGNESIUM TOTAL I | BY ICAP                  | MG/L    | 2              | 14       |                 | : 28      | N/A           | N A   |
| WM23 SODIUM, TOTAL BY  | ICAP                     | MG/L    | 5 3            | 1 7      | 5 0             | 5 8       | NVA           | :N/A  |

|                           | ANALYSIS REQU | EST SUP           | PLEMENT REPORT | DAT   | DATE: 09/26/90 |                 |         |                                       |
|---------------------------|---------------|-------------------|----------------|-------|----------------|-----------------|---------|---------------------------------------|
| COMPO                     | UND           | UNITS             | 216            | 217   | 218            | 219             | 219L    | 219R                                  |
| WM24 POTASSIUM. TOTAL BY  | ICAP          |                   | 0              |       | 5 0            | 5.0             | U : N/A | O N/A                                 |
| WM35 SILVER.DISSOLVED     | BY ICAP       | : UG/L : 1        | ļ              | 1     | 110            | 1 10            |         | :                                     |
| WM36 ALUMINUM.DISSOLVED   | BY ICAP       | :UG/L :2          | 0              | 200   | : 200          | u :200          | •       | :                                     |
| WM37 ARSENIC DISSOLVED    | BY ICAP       | .UG/L :1          | ļ              | 1     | 10             | 10              |         |                                       |
| WM38 BARIUM DISSOLVED     | BY ICAP       | UG/L 2            | 0              | 200   | 200            | i 200           |         | :                                     |
| WM39 BERYLLIUM, DISSOLVED | BY ICAP       | UG/L 5            | 0              | 5 0   | 5 0            | u : <b>5</b> .0 |         |                                       |
| WM40 CADMIUM.DISSOLVED    | BY ICAP       | UG/L :5           | 0              | :50   | :50            | U :5 0          | 1:      | ;                                     |
| WM41 COBALT.DISSOLVED     | BY ICAP       | UG/L :5           | ļ              | :50   | 50             | T : \$5         | T :     |                                       |
| WM42 CHROMIUM.DISSOLVED   | BY ICAP       | UG/L 1            | ļ              | 1     | 1              | 1 1             |         | :                                     |
| WM43 COPPER.DISSOLVED     | BY ICAP       | UG/L 2            | •              | 25    | 25             | <b>1 2</b>      | 1 :     | ·:                                    |
| WM44 IRON.DISSOLVED       | BY ICAP       | .UG/L 1           | 0              | . 100 | 100            | 100             | -       |                                       |
| WM45 MANGANESE DISSOLVED  | BY ICAP       | UG/L 4            | }              | 15    | :35            | <b>3</b>        |         | : : : : : : : : : : : : : : : : : : : |
| WM46 MOLYBDENUM.DISSOLVED | BY ICAP       | .UG/L :N          | Α              | N/A   | 0 NA           | IVA             | ,       |                                       |
| WM47 NICHEL DISSOLVED     | BY TCAP       | HG/L 40           | <b></b>        | 40    | 4              | <b>本</b>        |         |                                       |
| VM48 LEAD DISSOLVED       | BY ICAP       | Uu/L 9            | 5              | 1     | -30            | 8 2             |         |                                       |
| WM49 ANTIMONY DISSOLVED   | BY TCAP       | UG/I 6            | <b></b>        | .60   | -60            | - eb            | ) :     |                                       |
| VM50 SELENIUM.DISSOLVED   | BY ICAP       | :UG/L :5          | 0              | :50   | 5 0            | :5.0            | :       |                                       |
| WM51 TITANIUM DISSOLVED   | BY ICAP       | UG/L N            | Α              | N/A   | N A            | N/A             | ) :     |                                       |
| VM52 THALLIUM.DISSOLVED   | BY ICAP       | : UG/L . 1        |                | 10    | . 1            | ф               |         |                                       |
| VM53 VANADIUM.DISSOLVED   | BY ICAP       | UG/L :5           |                | 50    | 5              | 50              |         |                                       |
| VM54 ZINC.DISSOLVED       | BY ICAP       | UG/L 1            | 0              | :3    | : 2            | - e2            |         |                                       |
| WM55 CALCIUM.DISSOLVED    | BY ICAP       | . <b>M</b> G/L :5 |                | 7     | 3              | [ : <b>9</b> 3  |         | :                                     |
| NM56 MAGNESIUM.DISSOLVED  | BY ICAP       | . <b>M</b> G/L .3 | )              | . 48  | . 1            | <b>1 a</b>      | :       | '                                     |
| WM57 SODIUM DISSOLVED     | BY ICAP       | MG/L 5            | 9              | 78    | .50            | 1               |         | + <del></del>                         |
| M58 POTASSIUM DISSOLVED   | BY ICAP       | MG/L 5            | 0              | 16    | 5.0            | 5 0             | J       |                                       |
| 2201 SAMPLE NUMBER        |               | : NA : 2          | 6              | 2 7   | 2 8            | 219             | 2 9     | 2 9                                   |

#### ANALYSIS REQUEST REPORT

FOR ACTIVITY: CSXCR

SPFD

10/04/90 15:39:22

\* LABO APPROVED

FY: 90 ACTIVITY: CSXCR

DESCRIPTION: BIG RIVER MINE TAILINGS

LOCATION: DESLOGE

MISSOURI

STATUS: ACTIVE

TYPE: SAMPLING - IN HOUSE ANALYSIS

PROJECT: A33

LABO DUE DATE IS 8/13/90. REPORT DUE DATE IS 9/19/90.

INSPECTION DATE: 7/30/90 ALL DATA APPROVED BY LABO DATE: 10/04/90 FINAL REPORT TRANSMITTED DATE: 00/00/00

EXPECTED LABO TURNAROUND TIME IS 14 DAYS

EXPECTED REPORT TURNAROUND TIME IS 51 DAYS

ACTUAL LABO TURNAROUND TIME IS 66 DAYS

ACTUAL REPORT TURNAROUND TIME IS O DAYS

| SAMP.<br>NO.                                                                                                                               | QCC   | м | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLE STATUS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CITY |                                                                                                                                                                                                                                                                                                                                                              | STORET/<br>SAROAD<br>LOC NO | BEG.<br>DATE                                                                                                                                                                                                                      | BEG.<br>TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | END.<br>DATE | END.<br>TIME |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| 001<br>001<br>0001<br>0002<br>0004<br>0006<br>0007<br>0008<br>0010<br>0011<br>0016<br>0017<br>0018<br>0019<br>0020<br>0021<br>0023<br>0024 | L R S |   | BIG RIVER MINE TAILINGS SITE(SOIL)  BIG RIVER MINE TAILINGS (SOIL)  BIG RIVER MINE TAILINGS (SOIL) | 1000          | DESLOGIO DES |      | MISSOURI ALL ALL ALL ALL MISSOURI |                             | 07/23/90<br>/ /<br>//<br>07/24/90<br>07/24/90<br>07/24/90<br>07/24/90<br>07/24/90<br>07/24/90<br>07/24/90<br>07/25/90<br>07/25/90<br>07/25/90<br>07/25/90<br>07/26/90<br>07/26/90<br>07/26/90<br>07/26/90<br>07/27/90<br>07/27/90 | 17:45 10:30:00:15:50:00:16:25:50:16:20:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:00:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50:15:50: |              |              |

| SAMP.                                                                | QCC         | M                                      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAMPLE<br>STATUS                                                   | #<br>CONT.                                                                                                                      | CITY STATE                                                                 | STORET/<br>SAROAD<br>LOC NO                  | BEG.<br>DATE                                                                                                                     | BEG.<br>TIME                                                                                    | END.<br>DATE  | END.<br>TIME                            |
|----------------------------------------------------------------------|-------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|
| 025<br>026<br>027<br>027<br>027<br>027<br>028<br>029                 | L<br>R<br>S | 555555                                 | BIG RIVER MINE TAILINGS(SOIL) BIG RIVER MINE TAILINGS(SOIL) BIG RIVER MINE TAILINGS(SOIL)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>1<br>1<br>0<br>0                                              | O DESLOG<br>1 DESLOG<br>1 DESLOG<br>0<br>0                                                                                      | E MÍSSOUI                                                                  | I                                            | 07/28/90<br>07/27/90<br>07/27/90<br>/ /                                                                                          | 09:30<br>09:55<br>09:00                                                                         | / //<br>// // | :                                       |
| 030<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108   | 5           | ภภภภภภภภภภภภภภภภ                       | BIG RIVER MINE TAILINGS(SOIL) BIG RIVER MINE TAILINGS(SOIL) BIG RIVER MINE TAILINGS(SOIL) BIG RIVER MINE TAILINGS SITE(SEDIM | ENT) 1<br>ENT) 1<br>ENT) 1<br>ENT) 1<br>ENT) 1                     | O DESLOG | MISSOU                                                                     | RI<br>II<br>II<br>II<br>II<br>II<br>RI<br>RI | 07/27/90<br>07/27/90<br>07/27/90<br>07/23/90<br>07/23/90<br>07/23/90<br>07/23/90<br>07/24/90<br>07/24/90<br>07/24/90<br>07/24/90 | 09:30<br>10:30<br>18:00<br>10:00<br>13:15<br>15:45<br>16:20<br>09:00<br>10:30<br>13:15<br>14:00 |               |                                         |
| 109<br>110<br>1112<br>112<br>113<br>1145<br>116<br>117<br>118<br>118 | D !RS       | ภดกดดดดดดดด <sub>ด</sub> ดเ            | BIG RIVER MINE TAILINGS SITE(SEDIM BIG RIVER MINE TAILINGS (SEDIMENT) BIG RIVER MINE TAILINGS(SEDIMENT) BIG RIVER MINE TAILINGS(SEDIMENT) BIG RIVER MINE TAILINGS(SEDIMENT)                                                                                              | ENT) 1<br>ENT) 1<br>ENT) 1<br>ENT) 1<br>ENT) 1<br>ENT) 1<br>ENT) 1 | 1 DESLOG 0 DESLOG                              | MISSOU                                                                     | RI<br>RI<br>RI<br>RI<br>RI<br>RI<br>RI       | 07/24/90<br>07/24/90<br>07/24/90<br>07/24/90<br>07/24/90<br>07/25/90<br>07/25/90<br>07/25/90<br>07/25/90<br>07/25/90             | 14:45<br>13:15<br>14:15<br>15:30<br>15:30<br>16:30<br>09:15<br>10:00<br>11:30<br>14:30          |               |                                         |
| 119<br>120<br>200<br>201<br>202<br>203<br>204<br>205<br>206<br>207   | LRS         | CARRERERE ALIVE                        | BIG RIVER MINE TAILINGS (SEDIMENT) BIG RIVER MINE TAILINGS (SEDIMENT) BIG RIVER MINE TAILINGS (SURFACE WA                                             | TER) 1<br>TER) 1<br>TER) 1<br>TER) 1<br>TER) 1<br>TER) 1<br>TER) 1 | DESLOG<br>DESLOG<br>DESLOG<br>DESLOG<br>DESLOG<br>DESLOG<br>DESLOG<br>DESLOG<br>DESLOG<br>DESLOG                                |                                                                            | T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T    | 07/25/90<br>07/25/90<br>07/23/90<br>07/23/90<br>07/23/90<br>07/23/90<br>07/24/90<br>07/24/90<br>07/24/90<br>07/24/90             | 15 30<br>18 15<br>10 00<br>13 15<br>15 45<br>16 20<br>09 00<br>10 30<br>13 15<br>14 00          |               |                                         |
| 208<br>208<br>208<br>209<br>210<br>211<br>212<br>213<br>214<br>215   | D           | ************************************** | BIG RIVER MINE TAILINGS(SURFACE WA<br>BIG RIVER MINE TAILINGS(SURFACE WA                                                                                                                                                                            | TER) 1<br>TER) 1<br>TER) 1<br>TER) 1<br>TER) 1<br>TER) 1           | O DESLOG<br>5 DESLOG<br>5 DESLOG<br>5 DESLOG<br>2 DESLOG<br>5 DESLOG<br>5 DESLOG<br>5 DESLOG                                    | SE MĪŠŠÕŪ<br>SE MISSOU<br>SE MISSOU<br>SE MISSOU<br>SE MISSOU<br>SE MISSOU | RI<br>RI<br>RI<br>RI<br>RI                   | 07/24/90<br>07/24/90<br>07/24/90<br>07/24/90<br>07/24/90<br>07/24/90<br>07/25/90<br>07/25/90                                     | 14:45<br>13:15<br>14:15<br>15:30<br>15:30<br>16:30<br>09:15<br>10:00                            |               | : : : : : : : : : : : : : : : : : : : : |

برأ

| SAMP.<br>NO.                                                                     | QCC              | M                                      | DESCRIPTION ST                                                                                                                                                                                                                                                                                                                                                                              | MPLE #<br>ATUS CON                        | IT. CITY                                                                                | STATE                                                                                                                       | STORET/<br>SAROAD<br>LOC NO      | BEG.<br>DATE                                                                                               | BEG.<br>TIME                                                                           | END.<br>DATE                                | END.<br>TIME |
|----------------------------------------------------------------------------------|------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------|--------------|
| 215<br>215<br>215<br>216<br>217<br>218<br>219                                    | L<br>R<br>S      | ERERERE                                | BIG RIVER MINE TAILINGS(SURFACE WATER<br>BIG RIVER MINE TAILINGS(SURFACE WATER<br>BIG RIVER MINE TAILINGS(SURFACE WATER<br>BIG RIVER MINE TAILINGS(SURFACE WATER                                                                                                                                                                                                                            | ) 1 5 D                                   | DESLOGE<br>DESLOGE<br>DESLOGE<br>DESLOGE                                                | ALL<br>ALL<br>ALL<br>MISSOURI<br>MISSOURI<br>MISSOURI<br>MISSOURI                                                           | 07<br>07                         | / /<br>/ /<br>//25/90<br>//25/90<br>//25/90                                                                | 11:30<br>14:30<br>14:30<br>15:30                                                       |                                             | :            |
| 219<br>219<br>219<br>219<br>220<br>220<br>220                                    | RS LR            | W W W W                                | BIG RIVER MINE TAILINGS (SURFACE WATER                                                                                                                                                                                                                                                                                                                                                      | 0 0                                       | DESLOGE                                                                                 | ALL<br>ALL<br>ALL<br>MISSOURI<br>ALL<br>ALL                                                                                 | 07                               | / /<br>//25/90<br>// /                                                                                     | 18 15                                                                                  |                                             | :            |
| 220<br>220<br>220<br>220<br>300<br>301<br>301<br>301<br>301<br>303<br>302<br>303 | S<br>L<br>R      | EEEEE                                  | BIG RIVER MINE TAILINGS(GROUND WATER)<br>BIG RIVER MINE TAILINGS(GROUND WATER)                                                                                                                                                                                                                                                                                                              | 0 0                                       | DESLOGE<br>DESLOGE                                                                      | ALL<br>MISSOURI<br>MISSOURI<br>ALL<br>ALL                                                                                   | 07<br>07                         | //24/90<br>7/24/90<br>7/24/90                                                                              | 09 00<br>12 50                                                                         |                                             | :            |
| 301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>309<br>309        | S<br>D<br>L<br>R | ************************************** | BIG RIVER MINE TAILINGS(GROUND WATER) | 0 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5   | DESLOGE | ALL<br>MISSOURI<br>MISSOURI<br>MISSOURI<br>MISSOURI<br>MISSOURI<br>MISSOURI<br>MISSOURI<br>MISSOURI<br>MISSOURI<br>MISSOURI | 07<br>07<br>07<br>07<br>07<br>07 | // /90<br>7/24/90<br>7/24/90<br>7/25/90<br>7/25/90<br>7/26/90<br>7/26/90<br>7/27/90<br>7/27/90             | 14: 15<br>15: 15<br>16: 00<br>08: 45<br>14: 15<br>16: 00<br>16: 40<br>08: 15<br>08: 15 |                                             |              |
| 309<br>309<br>311<br>3112<br>315<br>316<br>317<br>318<br>318                     | S<br>L<br>R      | KKKKKKKKKKKK                           | BIG RIVER MINE TAILINGS(GROUND WATER)                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     | DESLOGE<br>DESLOGE<br>DESLOGE<br>DESLOGE<br>DESLOGE<br>DESLOGE<br>DESLOGE<br>DESLOGE    | ALL ALL MISSOURI MISSOURI MISSOURI MISSOURI MISSOURI MISSOURI MISSOURI MISSOURI MISSOURI ALL ALL                            | 07<br>07<br>07<br>07<br>07<br>07 | 7/27/90<br>7/27/90<br>7/27/90<br>7/27/90<br>7/26/90<br>7/27/90<br>7/27/90<br>7/27/90<br>7/27/90<br>7/27/90 | 08 45<br>09 35<br>09 00<br>16 30<br>11 50<br>15 00<br>16 45<br>15 20                   |                                             |              |
| 318<br>319<br>319<br>319                                                         | S<br>L<br>R      | <b>XXX</b> 3                           | BIG RIVER MINE TAILINGS(GROUND WATER)                                                                                                                                                                                                                                                                                                                                                       | 0 0                                       | DESLOGE                                                                                 | ALL<br>MISSOURI<br>ALL<br>ALL                                                                                               | 07<br>07<br>07                   | 7/27/90<br>7/27/90<br>7/27/90<br>7/27/90                                                                   | 15:45                                                                                  |                                             |              |
| 319<br>320<br>321<br>322<br>323<br>324<br>324<br>325<br>400                      | )<br>            | V                                      | BIG RIVER MINE TAILINGS - TRIP BLANK<br>BIG RIVER MINE TAILINGS - FIELD BLANK<br>BIG RIVER MINE TAILINGS - FIELD BLANK<br>BIG RIVER MINE TAILINGS - RINSATE<br>BIG RIVER MINE TAILINGS (GROUND WATER)<br>BIG RIVER MINE TAILINGS - RINSATE<br>BIG RIVER MINE TAILINGS - ACID BLANK<br>BIG RIVER MINE TAILINGS                                                                               | 1 2 D<br>1 2 D<br>1 4 D<br>1 2 D<br>0 0 D | DESLOGE DESLOGE DESLOGE DESLOGE DESLOGE DESLOGE DESLOGE DESLOGE DESLOGE                 | ALL MISSOURI MISSOURI MISSOURI MISSOURI MISSOURI MISSOURI MISSOURI MISSOURI MISSOURI                                        | 07<br>07<br>07<br>07<br>07<br>07 | 7/27/90<br>7/27/90<br>7/27/90<br>7/27/90<br>7/27/90<br>7/27/90<br>7/27/90<br>7/23/90                       | 14:00<br>14:05<br>14:10<br>14:15<br>07:30<br>14:30<br>15:30<br>12:47                   | / /<br>/ /<br>/ /<br>/ /<br>/ /<br>07/24/90 | 01:00        |

| SAMP.<br>NO.                                                               | QCC    | M           | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAMPLE A<br>Status (                    | y<br>CONT.                                                                                                                      | CITY STATE                                                                                                                                               | STORET/<br>SAROAD<br>LOC NO | BEG.<br>DATE                                                                                                                                 | BEG.<br>TIME                                                                                             | END.<br>DATE                                                                                                                                 | END.<br>TIME                                                                                                      |
|----------------------------------------------------------------------------|--------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 402<br>403<br>403                                                          | L      | A           | BIG RIVER MINE TAILINGS<br>BIG RIVER MINE TAILINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                                     | DESLOGE                                                                                                                         | MISSOURI<br>MISSOURI                                                                                                                                     |                             | 07/23/90<br>07/23/90                                                                                                                         | 12:47<br>12:00                                                                                           | 07/24/90<br>07/23/90                                                                                                                         | 01:00<br>23:40                                                                                                    |
| 404<br>406<br>407<br>408<br>408                                            | L      | A A A A     | BIG RIVER MINE TAILINGS<br>BIG RIVER MINE TAILINGS<br>BIG RIVER MINE TAILINGS<br>BIG RIVER MINE TAILINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0<br>1 1<br>1 1<br>1 1                | DESLOGE<br>DESLOGE<br>DESLOGE<br>DESLOGE                                                                                        | MISSOURI<br>MISSOURI<br>MISSOURI<br>MISSOURI<br>AII                                                                                                      |                             | 07/23/90<br>07/23/90<br>07/23/90<br>07/23/90                                                                                                 | 12:00<br>11:50<br>12:00<br>12:00                                                                         | 07/23/90<br>07/24/90<br>07/23/90<br>07/23/90                                                                                                 | 24 00<br>11 50<br>24 00<br>24 00                                                                                  |
| 409<br>410<br>4112<br>413<br>414<br>415<br>417<br>418<br>419<br>421<br>422 |        | ~~~~~~~~~~~ | BIG RIVER MINE TAILINGS | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | DESLOGE | MISSOURI |                             | 07/24/90<br>07/24/90<br>07/24/90<br>07/24/90<br>07/24/90<br>07/24/90<br>07/24/90<br>07/25/90<br>07/25/90<br>07/25/90<br>07/25/90<br>07/25/90 | 12:00<br>12:00<br>12:00<br>12:00<br>12:00<br>11:45<br>12:05<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00 | 07/24/90<br>07/24/90<br>07/25/90<br>07/25/90<br>07/25/90<br>07/24/90<br>07/24/90<br>07/25/90<br>07/25/90<br>07/25/90<br>07/25/90<br>07/25/90 | 24 00<br>23 50<br>23 30<br>00 15<br>00 30<br>23 45<br>23 50<br>24 00<br>24 00<br>24 00<br>23 30<br>09 00<br>24 00 |
| 422<br>423<br>424                                                          | L      | A<br>A      | BIG RIVER MINE TAILINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 0                                     | O<br>1 DESLOGE<br>0                                                                                                             | ALL<br>MISSOURI                                                                                                                                          |                             | 07/25/90                                                                                                                                     | 12 00                                                                                                    | 07/26/90                                                                                                                                     | 00 15                                                                                                             |
| 424<br>425<br>426<br>427<br>428<br>429<br>430<br>431<br>432                | F      | 444444      | BIG RIVER MINE TAILINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | DESLOGE DESLOGE DESLOGE DESLOGE DESLOGE DESLOGE DESLOGE DESLOGE DESLOGE                                                         | MISSOURI<br>MISSOURI<br>MISSOURI<br>MISSOURI<br>MISSOURI<br>MISSOURI<br>MISSOURI<br>MISSOURI                                                             |                             | 07/25/90<br>07/26/90<br>07/26/90<br>07/26/90<br>07/26/90<br>07/26/90<br>07/26/90<br>07/26/90                                                 | 12:00<br>11:30<br>11:30<br>12:00<br>12:00<br>12:00<br>12:00<br>12:00                                     | 07/25/90<br>07/27/90<br>07/27/90<br>07/26/90<br>07/26/90<br>07/26/90<br>07/26/90                                                             | 24:00<br>00:50<br>00:06<br>23:21<br>24:00<br>23:15<br>00:26<br>23:55                                              |
| 432<br>433<br>433                                                          | F<br>L | A           | BIG RIVER MINE TAILINGS<br>BIG RIVER MINE TAILINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                                     | DESLOGE<br>DESLOGE                                                                                                              | MISSOURI<br>MISSOURI                                                                                                                                     |                             | 07/26/90<br>07/27/90                                                                                                                         | 12:00<br>12:00                                                                                           | 07/26/90<br>07/27/90                                                                                                                         | 24 00<br>23 59                                                                                                    |
| 434<br>435<br>436<br>437<br>438<br>439<br>440                              | -      | [444444     | BIG RIVER MINE TAILINGS<br>BIG RIVER MINE TAILINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 1<br>1 1<br>1 1<br>1 1                | DESLOGE DESLOGE DESLOGE DESLOGE DESLOGE DESLOGE                                                                                 | MISSOURI<br>MISSOURI<br>MISSOURI<br>MISSOURI<br>MISSOURI<br>MISSOURI                                                                                     |                             | 07/27/90<br>07/27/90<br>07/27/90<br>07/27/90<br>07/27/90<br>07/27/90                                                                         | 12:00<br>12:00<br>12:00<br>11:45<br>12:00<br>12:00                                                       | 07/27/90<br>07/27/90<br>07/28/90<br>07/28/90<br>07/28/90<br>07/28/90                                                                         | 23:41<br>23:42<br>00:11<br>01:00<br>00:24<br>00:27                                                                |
| 440<br>441<br>442<br>443<br>444<br>445<br>446<br>448<br>449<br>900         | F<br>M |             | BIG RIVER MINE TAILINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | DESLOGE DESLOGE DESLOGE DESLOGE DESLOGE DESLOGE DESLOGE DESLOGE DESLOGE                                                         | MISSOURI ALL                                                   |                             | 07/27/90<br>07/28/90<br>07/28/90<br>07/28/90<br>07/28/90<br>07/28/90<br>07/28/90<br>07/28/90<br>07/28/90<br>07/28/90                         | 12:00<br>12:00<br>12:00<br>13:55<br>12:00<br>11:39<br>11:45<br>12:00                                     | 07/27/90<br>07/28/90<br>07/28/90<br>07/29/90<br>07/29/90<br>07/28/90<br>07/28/90<br>07/28/90<br>07/28/90                                     | 24:00<br>23:56<br>23:39<br>03:00<br>23:47<br>00:30<br>21:15<br>23:30<br>24:00                                     |

| SAMP.<br>NO.                                                                                                        | QCC                              | М                                                | DESCRIPTION STATUS                      | #<br>C                                  | ONT. | CITY | STATE                                  | STORET/<br>SAROAD<br>LOC NO | BEG.<br>DATE | BE( | S.<br>ME | END.<br>DATE | END.<br>TIME |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------|-----------------------------------------|-----------------------------------------|------|------|----------------------------------------|-----------------------------|--------------|-----|----------|--------------|--------------|
| 901<br>901<br>902<br>903<br>904<br>905<br>907<br>908<br>909<br>909<br>909<br>909<br>909<br>909<br>909<br>909<br>909 | RSACMRSACMACMACMACMACMACMMALIAUM | WW: NININI E E E E E E WWW E E E E E E E E E E E | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |      |      | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |                             |              |     |          |              |              |

|                    | COMPOUND | UNITS   | 001     |   | 001L  |   | 001R  |   | 0015  |          | 002    |                 | 003    |     |
|--------------------|----------|---------|---------|---|-------|---|-------|---|-------|----------|--------|-----------------|--------|-----|
| SMO1 SILVER        | BY ICAP  | MG/KG   | 2.3     | U | 2.3   | บ | : 12  |   | 14    |          | 3.0    | - <del></del> - | 2.6    | U : |
| SMO2 ALUMINUM      | BY ICAP  | MG/KG   | 11000   |   | 10000 |   | N/A   | 0 | N/A   | 0        | :630   |                 | :600   | :   |
| SMO3 ARSENIC       | BY ICAP  | MG/KG   | 6.3     |   | 5.6   |   | 9.3   |   | 15    |          | : 14   |                 | 7.7    | :   |
| SMO4 BARIUM        | BY ICAP  | :MG/KG  | 150     | J | 260   |   | 470   |   | 930   |          | 42     | U               | :41    | U   |
| SMO5 BERYLLIUM     | BY ICAP  | MG/KG   | 1.2     | U | 1.2   | U | 12    |   | 12    |          | 1.1    | U               | 1.0    | U : |
| SMO6 CADMIUM       | BY ICAP  | :MG/KG: | 1.2     | U | 1.2   | U | 12    |   | 13    |          | 21     |                 | :14    | :   |
| SMO7 COBALT        | BY ICAP  | :MG/KG  | 14      |   | 23    |   | 120   |   | 140   | <u>-</u> | :13    |                 | 11     |     |
| SMO8 CHROMIUM      | BY ICAP  | :MG/KG  | 13      | J | 18    |   | 47    |   | :57   | <u>-</u> | 2.1    | U               | 2.0    | U   |
| SMO9 COPPER        | BY ICAP  | :MG/KG  | 14      |   | 11    |   | 58    |   | 67    |          | 71     |                 | :60    | :   |
| SM10 IRON          | BY ICAP  | :MG/KG  | 13000   |   | 15000 |   | N/A   | 0 | N/A   | 0        | 30000  |                 | 32000  | .=  |
| SM11 MANGANESE     | BY ICAP  | :MG/KG  | 2000    | J | 3500  |   | 120   |   | 5400  | <u>-</u> | 4200   | J               | 4400   | J   |
| SM12 MOLYBDENUM    | BY ICAP  | :MG/KG  | N/A     | 0 | N/A   | 0 | N/A   | 0 | :N/A  | 0        | N/A    | 0               | N/A    | 0   |
| SM13 NICKEL        | BY ICAP  | :MG/KG  | 9.4     | U | 9.4   |   | 120   |   | :130  |          | 18     | J               | : 15   | J   |
| SM14 LEAD          | BY ICAP  | :MG/KG  | 130     | J | 130   |   | 120   |   | 320   |          | 1000   | J               | 1100   | J   |
| SM15 ANTIMONY      | BY ICAP  | MG/KG   | 14      | U | 14    | U | 120   |   | 66    |          | 13     | U               | 12     | U   |
| SM16 SELENTUM      | BY ICAP  | MG/KG   | . 1 . 2 | Ü | 1.2   | U | 2.3   |   | :2.3  |          | 2.0    | U               | 4.8    | J : |
| SM17 TITANIUM      | BY ICAP  | :MG/KG  | N/A     | 0 | N/A   | 0 | N/A   | 0 | : N/A | 0        | :N/A   | 0               | N/A    | 0   |
| SM18 THALLIUM      | BY ICAP  | :MG/KG  | 2.3     | U | 2.3   | U | 9.4   |   | 9.6   |          | 2.1    | U               | 2.0    | U   |
| SM19 VANADIUM      | BY ICAP  | MG/KG   | 27      |   | 31    |   | 120   |   | 140   |          | 11     | U               | 10     | U   |
| SM20 ZINC          | BY ICAP  | MG/KG   | 65      |   | 66    |   | 120   |   | 190   |          | 950    |                 | 570    |     |
| SM21 CALCIUM       | BY ICAP  | MG/KG   | 3300    |   | 3900  |   | N/A   | 0 | :N/A  | 0        | 180000 |                 | 180000 |     |
| SM22 MAGNESIUM     | BY ICAP  | MG/KG   | 2200    |   | 2200  |   | N/A   | 0 | N/A   | 0        | 97000  |                 | 100000 |     |
| SM23 SODIUM        | BY ICAP  | MG/KG   | 1200    | U | 1200  | U | N/A   | 0 | N/A   | 0        | 1100   | U               | 1000   | U   |
| SM24 POTASSIUM     | BY ICAP  | MG/KG   | 1300    |   | 1200  | U | N/A   | 0 | : N/A | 0        | 1100   | U               | 1000   | U   |
| ZZO1 SAMPLE NUMBER | ₹        | NA NA   | 001     |   | 001   |   | 001   |   | :001  |          | 002    |                 | 003    |     |
| ZZO2 ACTIVITY CODE |          | NA NA   | CSXCR   |   | CSXCR |   | CSXCR |   | CSXCR |          | CSXCR  |                 | CSXCR  |     |

|                   | COMPOUND | UNITS            | 004    |       | 005    |    | 006     |          | 007    |   | 800    |   | 009    |          |
|-------------------|----------|------------------|--------|-------|--------|----|---------|----------|--------|---|--------|---|--------|----------|
| SMO1 SILVER       | BY ICAP  | : <b>M</b> G/KG: | 2.9    | <br>U | 2.2    | บ  | 2.6     | <u>-</u> | 3.2    | บ | 3.2    |   | 2.2    | <u>-</u> |
| SMO2 ALUMINUM     | BY ICAP  | : MG/KG:         | 700    |       | 640    |    | 1000    |          | 670    |   | 640    |   | 580    |          |
| SMO3 ARSENIC      | BY ICAP  | : <b>M</b> G/KG: | 8.1    |       | 8.6    |    | 9.6     |          | 9.4    |   | 2.1    | U | 9.7    |          |
| SMO4 BARIUM       | BY ICAP  | MG/KG            | 42     | U     | 43     | U  | 47      | U        | 42     | U | 42     | U | 44     | U        |
| SMOS BERYLLIUM    | BY ICAP  | :MG/KG           | 1.2    |       | 1.1    | U  | 1 2     | U        | :1.0   | Ų | 1.1    | U | 1.1    | U        |
| SMO6 CADMIUM      | BY ICAP  | MG/KG            | 20     |       | 8.4    |    | 19      |          | . 28   |   | 30     |   | 13     |          |
| SMO7 COBALT       | BY ICAP  | MG/KG            | 11     | U     | 14     |    | . 27    |          | :15    |   | 13     |   | 12     |          |
| SMO8 CHROMIUM     | BY ICAP  | : MG/KG          | 2.1    | U     | 2.2    | U  | 2.4     | U        | 2.1    | U | 2.1    | U | 2.2    | U        |
| SMO9 COPPER       | BY ICAP  | :MG/KG           | 67     |       | 65     |    | 60      |          | 120    |   | :88    |   | 58     |          |
| SM10 IRON         | BY ICAP  | : MG/KG          | 31000  |       | 29000  |    | 32000   |          | 31000  |   | 31000  |   | 31000  |          |
| SM11 MANGANESE    | BY ICAP  | :MG/KG           | 4300   | J     | 4100   | J  | 4400    | J        | 4300   |   | 4200   | J | 4200   | J        |
| SM12 MOLYBDENUM   | BY ICAP  | :MG/KG           | N/A    | 0     | :N/A   | 0  | N/A     | 0        | N/A    | 0 | N/A    | 0 | N/A    | 0        |
| SM13 NICKEL       | BY ICAP  | MG/KG            | 8.5    | U     | 15     | ال | :20     | J        | 12     | J | :14    | J | :16    | J        |
| SM14 LEAD         | BY ICAP  | :MG/KG:          | 1400   | J     | 930    | J  | 1500    | J        | 1700   | J | 1600   | J | 1300   | J        |
| SM15 ANTIMONY     | BY ICAP  | MG/KG            | 13     | IJ    | 13     | U  | :14     | υ        | 15     | J | 13     | U | : 13   | U        |
| SM16 SELENIUM     | BY ICAD  | , MG/ KG         | 3.9    | j     | : i ı  | υ  | :4.9    | J        | 1.0    | U | 1 1    | U | :1.4   |          |
| SM17 TITANIUM     | BY ICAP  | MG/KG            | N/A    | o     | N/A    | 0  | :N/A    | 0        | : N/A  | 0 | :N/A   | 0 | N/A    | 0        |
| SM18 THALLIUM     | BY ICAP  | .MG/KG           | 2.1    | U     | 2.2    | U  | . 2 . 4 | U        | 2 1    | U | 2 1    | U | 2.2    | U        |
| SM19 VANADIUM     | BY ICAP  | :MG/KG           | 11     | U     | 11     | U  | 12      | U        | 10     | υ | 11     | U | 11     | U        |
| SM20 ZINC         | BY ICAP  | MG/KG            | 840    |       | 370    |    | 870     |          | : 1200 |   | 1300   |   | 610    |          |
| SM21 CALCIUM      | BY ICAP  | : MG/K.G         | 170000 |       | 170000 |    | 180000  |          | 180000 |   | 180000 |   | 180000 |          |
| SM22 MAGNESIUM    | BY ICAP  | .MG/KG           | 94000  |       | 93000  |    | 98000   |          | 99000  |   | 97000  |   | 99000  |          |
| SM23 SODIUM       | BY ICAP  | .MG/KG           | 1100   | U     | 1100   | Ü  | 1200    | U        | 1000   | U | 1100   | U | 1100   | U        |
| SM24 POTASSIUM    | BY ICAP  | MG/KG            | 1100   | U     | :1100  | U  | 1200    | U        | : 1000 | U | 1100   | U | 1100   | U        |
| ZZO1 SAMPLE NUMBE | R        | : NA             | 004    |       | :005   |    | :006    |          | :007   |   | :008   |   | :009   |          |
| ZZO2 ACTIVITY COD | Ē        | : NA             | CSXCR  |       | CSXCR  |    | CSXCR   |          | CSXCR  |   | CSXCR  |   | CSXCR  |          |

|                    | COMPOUND | UNITS      | 010    |   | 011     |            | 012     |    | 013   |   | 014   |   | 015   |     |
|--------------------|----------|------------|--------|---|---------|------------|---------|----|-------|---|-------|---|-------|-----|
| SMO1 SILVER        | BY ICAP  | : MG/KG: 7 | · . 7  |   | 2.6     | <u>-</u> - | : 2 . 6 | U  | 2.4   | U | 2.6   |   | 2.4   | U : |
| SMO2 ALUMINUM      | BY ICAP  | MG/KG: 2   | 2900   |   | : 550   |            | 7300    |    | 9100  |   | 8800  |   | 11000 | :   |
| SMO3 ARSENIC       | BY ICAP  | MG/KG: 1   | 4      |   | 6.5     |            | 9.3     |    | 6.9   |   | 6.2   |   | 8.2   | :   |
| SMO4 BARIUM        | BY ICAP  | MG/KG:4    | 18     | U | 41      | U          | 290     | J  | 120   | J | 300   |   | : 150 | J : |
| SMO5 BERYLLIUM     | BY ICAP  | MG/KG 2    | 2.7    |   | 1.0     | U          | 1 3     | U  | :1.2  | U | 1.3   | U | :1.2  | U . |
| SMO6 CADMIUM       | BY ICAP  | MG/KG:7    | 79     |   | : 24    |            | 1.3     | U  | :1.2  | U | 1.3   | U | 3 2   |     |
| SMO7 COBALT        | BY ICAP  | MG/KG:4    | 12     |   | : 10    | U          | 16      |    | 15    |   | : 16  |   | : 16  |     |
| SMO8 CHROMIUM      | BY ICAP  | MG/KG:4    | 1.0    | U | 2.1     | U          | 13      | J  | 14    | J | 12    | J | 13    | J   |
| SMO9 COPPER        | BY ICAP  | MG/KG:     | 15     |   | 60      |            | 6.5     | U  | 8.8   |   | :11   |   | : 15  |     |
| SM10 IRON          | BY ICAP  | MG/KG:2    | 24000  |   | 30000   |            | 18000   |    | 16000 |   | 17000 |   | 20000 |     |
| SM11 MANGANESE     | BY ICAP  | MG/KG 2    | 2900   | J | 4300    | J          | 2700    | .J | :1600 | J | 3500  | J | 2300  | J   |
| SM12 MOLYBDENUM    | BY ICAP  | :MG/KG:N   | N/A    | 0 | N/A     | 0          | :N/A    | 0  | N/A   | 0 | N/A   | 0 | N/A   | 0   |
| SM13 NICKEL        | BY ICAP  | MG/KG:3    | 37     | J | 9 0     | J          | :10     | U  | 9.6   | U | 17    | J | 11    | J   |
| SM14 LEAD          | BY ICAP  | :MG/KG:1   | 3000   | J | 970     | J          | :65     | J  | 450   | J | :85   | J | 370   | J   |
| SM15 ANTIMONY      | BY ICAP  | MG/KG      | 14     | U | : 12    | U          | 16      | U  | :14   | U | 15    | U | : 15  | U   |
| SM16 SELENIUM      | By ICAP  | .MG/KG.    | i . 2  | Ü | : i . Ú | U          | 1 3     | U  | :1.8  | J | 2 6   | J | : 2.5 | J   |
| SM17 TITANIUM      | By ICAP  | MG/KG.N    | J/A    | 0 | .N/A    | 0          | N/A     | 0  | :N/A  | 0 | :N/A  | 0 | :N/A  | O   |
| SM18 THALLIUM      | BY ICAP  | MG/KG:     | 2.4    | υ | 2.1     | υ          | :2.6    | υ  | 2.4   | υ | 2.6   | υ | 2.4   | U   |
| SM19 VANADIUM      | BY ICAP  | MG/KG      | 12     | U | :10     | U          | :34     |    | 26    |   | : 26  |   | 34    |     |
| SM20 ZINC          | BY ICAP  | MG/KG.4    | 4300   |   | 1200    |            | 35      |    | 42    |   | :57   |   | 180   |     |
| SM21 CALCIUM       | BY ICAP  | MG/KG      | 140000 |   | 180000  |            | 1300    | U  | 2000  |   | :2100 |   | 22000 |     |
| SM22 MAGNESIUM     | BY ICAP  | MG/KG      | 76000  |   | 100000  |            | 1300    | U  | :1500 |   | :1300 | U | 12000 |     |
| SM23 SODIUM        | BY ICAP  | MG/KG.     | 1200   | υ | : 1000  | U          | 1300    | U  | 1200  | U | 1300  | U | 1200  | U   |
| SM24 POTASSIUM     | BY ICAP  | MG/KG:     | 2300   |   | 1000    | U          | 1300    | U  | 1200  | U | 1300  | U | 1200  | U   |
| ZZO1 SAMPLE NUMBER | 3        | NA (       | 010    |   | 011     |            | :012    |    | :013  |   | 014   |   | :015  |     |
| ZZO2 ACTIVITY CODE |          | : NA : (   | CSXCR  |   | : CSXCR |            | CSXCR   |    | CSXCR |   | CSXCR |   | CSXCR |     |

|                   | COMPOUND | UNITS   | 016     |   | 017   |   | 018   |     | 019   |   | 020   |   | 021    |   |
|-------------------|----------|---------|---------|---|-------|---|-------|-----|-------|---|-------|---|--------|---|
| SMO1 SILVER       | BY ICAP  | MG/KG   | 2.6     | U | 2.4   | U | 2.3   | U   | 2.3   | U | 2.4   | U | 2.3    | U |
| SMO2 ALUMINUM     | BY ICAP  | MG/KG   | 8200    |   | 8200  |   | 8900  |     | 9000  |   | 9400  |   | 960    |   |
| SMO3 ARSENIC      | BY ICAP  | :MG/KG  | 13      |   | 9.5   |   | 7.2   |     | 6.8   |   | 6.2   |   | 2.3    | U |
| SMO4 BARIUM       | BY ICAP  | MG/KG   | 240     | J | 530   | J | 140   | J   | 140   | J | 180   | J | : 46   | U |
| SMOS BERYLLIUM    | BY ICAP  | :MG/KG  | 1.3     | U | 1.2   | U | 1 2   | Ų   | 1.1   | U | 1.2   | U | 1.2    | U |
| SMO6 CADMIUM      | BY ICAP  | :MG/KG  | 6.0     |   | 1.2   | U | 4.8   |     | 5.3   |   | 1.2   | U | : 16   |   |
| SMO7 COBALT       | BY ICAP  | MG/KG   | 13      | U | 14    |   | 16    |     | : 18  |   | 12    | U | 19     |   |
| SMO8 CHROMIUM     | BY ICAP  | MG/KG   | 23      | J | : 15  | J | 13    | J   | 13    | J | 14    | J | 4.1    | U |
| SMO9 COPPER       | BY ICAP  | MG/KG   | 29      |   | 8.7   |   | 30    |     | 31    |   | :8.8  |   | : 95   | J |
| SM10 IRON         | BY ICAP  | MG/KG   | 22000   |   | 16000 |   | 16000 |     | 17000 |   | 15000 |   | 32000  |   |
| SM11 MANGANESE    | BY ICAP  | MG/KG   | 590     | J | 970   | J | 1200  | J   | 1200  | J | 970   | J | 4400   |   |
| SM12 MOLYBDENUM   | BY ICAP  | MG/KG   | N/A     | 0 | N/A   | 0 | N/A   | 0   | :N/A  | 0 | N/A   | 0 | N/A    | 0 |
| SM13 NICKEL       | BY ICAP  | MG/KG   | 10      | U | :9.5  | U | 12    | J   | 12    | J | 9.4   | บ | 20     |   |
| SM14 LEAD         | BY ICAP  | MG/KG   | 940     | J | 64    | J | 1500  | J   | 1600  | J | 76    | J | 1500   |   |
| SM15 ANTIMONY     | BY ICAP  | MG/KG   | 16      | U | 14    | U | 14    | υ   | : 14  | U | 14    | U | 17     | U |
| SM16 SELENIUM     | BY ICAP  | . MG/KG | . 2 . 0 | j | 1.2   | U | :1.2  | U   | 1.1   | U | 2.1   | J | :1.2   | U |
| SM17 TITANIUM     | By ICAP  | :MG/KG  | :N/A    | 0 | N/A   | 0 | :N/A  | o ̈ | :N/A  | 0 | :N/A  | 0 | :N/A   | 0 |
| SM18 THALLIUM     | BY ICAP  | MG/KG   | 2.6     | U | 2.4   | U | 2.3   | U   | 2.3   | U | 2.4   | U | 2.3    | U |
| SM19 VANADIUM     | BY ICAP  | MG/KG   | 22      |   | 31    |   | 25    |     | 25    |   | 26    |   | 12     | U |
| SM20 ZINC         | BY ICAP  | MG/KG   | 490     |   | :66   |   | :370  |     | 390   |   | 67    |   | 760    | J |
| SM21 CALCIUM      | BY ICAP  | MG/KG   | 13000   |   | 3300  |   | 14000 |     | 14000 |   | 2800  |   | 180000 |   |
| SM22 MAGNESIUM    | BY ICAP  | :MG/KG  | 3900    |   | 2300  |   | 7400  |     | 7500  |   | 1700  |   | 95000  |   |
| SM23 SODIUM       | BY ICAP  | MG/KG   | 1300    | U | 1200  | U | 1200  | U   | 1100  | U | 1200  | U | 1200   | U |
| SM24 POTASSIUM    | BY ICAP  | MG/KG   | 1300    | U | 1200  | U | 1200  | U   | 1100  | U | 1200  | U | 1200   | U |
| ZZO1 SAMPLE NUMBE | R        | : NA    | 016     |   | 017   |   | 018   |     | :019  |   | 020   |   | 021    |   |
| ZZO2 ACTIVITY COD | E        | : NA    | CSXCR   |   | CSXCR |   | CSXCR |     | CSXCR |   | CSXCR |   | CSXCR  |   |

|                   | COMPOUND         | UNITS            | 022   |   | 023     |       | 024    |          | 025   |   | 026   |          | 027                      |         |
|-------------------|------------------|------------------|-------|---|---------|-------|--------|----------|-------|---|-------|----------|--------------------------|---------|
| SMO1 SILVER       | BY ICAP          | :MG/KG:          | 19    |   | 2.1     | <br>U | 2.3    | <br>υ    | 3.1   | U | 3.2   |          | : <del></del><br>: 3 . 3 | :       |
| SMO2 ALUMINUM     | BY ICAP          | :MG/KG           | 9200  |   | 9100    |       | :5500  |          | 7100  |   | 6000  |          | : 860                    | :<br>:  |
| SMO3 ARSENIC      | BY ICAP          | : MG/KG          | 2.2   | U | 2.1     | U     | 2.3    | U        | 3.1   | υ | 2.3   | U        | 2.4                      | U       |
| SMO4 BARIUM       | BY ICAP          | : MG/KG          | 94    |   | : 170   |       | 140    |          | 180   |   | : 99  |          | :48                      | υ       |
| SMO5 BERYLLIUM    | BY ICAP          | MG/KG            | 1.1   | U | : 1 . 1 | U     | 1.2    | U        | 1.5   | U | 1.1   | U        | .1.2                     | U       |
| SMO6 CADMIUM      | BY ICAP          | : MG/KG          | 270   |   | 2.1     |       | 1.2    | U        | 1.6   |   | 25    |          | 11                       | :       |
| SMO7 COBALT       | BY ICAP          | :MG/KG           | 16    |   | 12      |       | 12     | U        | 18    |   | 13    |          | 38                       | :       |
| SMO8 CHROMIUM     | BY ICAP          | MG/KG:           | 15    |   | 13      |       | 9.6    | <b>-</b> | 16    |   | :8.7  |          | 3.2                      | :<br>U: |
| SM09 COPPER       | BY ICAP          | :MG/KG           | 21    | J | : 17    | J     | 8.9    | J        | 7.7   | U | 12    | J        | 550                      | J :     |
| SM10 IRON         | BY ICAP          | :MG/KG:          | 19000 |   | : 16000 |       | 11000  |          | 14000 |   | 14000 |          | 45000                    | :       |
| SM11 MANGANESE    | BY ICAP          | : <b>M</b> G/K.G | 1400  |   | : 1800  |       | 290    |          | .2100 |   | :1700 |          | 5400                     | ,       |
| SM12 MOLYBDENUM   | BY ICAP          | : <b>M</b> G/KG  | N/A   | 0 | N/A     | 0     | N/A    | 0        | N/A   | 0 | N/A   | 0        | :N/A                     | 0 :     |
| SM13 NICKEL       | BY ICAP          | MG/KG            | 8.8   | U | : 15    |       | 9.2    | U        | 12    | U | 9.6   |          | : 36                     | :       |
| SM14 LEAD         | BY ICAP          | MG/KG            | 650   |   | 190     |       | 99     |          | 130   |   | 1300  |          | 2500                     | :       |
| SM15 ANTIMONY     | BY ICAP          | MG/KG:           | 13    | U | : 13    | U     | 14     | U        | 18    | υ | 14    | U        | 15                       | U       |
| SM16 SELENTUM     | BY ICAP          | . MG/F.G         | i.i   | Ü | : 1 . 1 | U     | 1.2    | U        | :1.5  | U | 1.1   | U        | :1.2                     | U :     |
| SM17 TITANIUM     | By ICAP          | :MG/KG:          | N/A   | o | .N/A    | 0     | . N/A  | O        | :N/A  | 0 | :N/A  | 0        | :N/A                     | 0 :     |
| SM18 THALLIUM     | BY ICAP          | MG/KG            | 2.2   | U | 2 1     | U     | 2.3    | U        | 3.1   | U | 2.3   | U        | 2.4                      | U :     |
| SM19 VANADIUM     | BY ICAP          | :MG/KG           | 26    |   | 25      |       | 18     |          | 30    |   | 20    |          | 12                       | U :     |
| SM20 ZINC         | BY ICAP          | MG/KG            | 13000 | J | 140     | J     | 98     | J        | 53    | J | 1100  | <u>.</u> | 630                      | J       |
| SM21 CALCIUM      | BY ICAP          | MG/KG            | 29000 |   | 5600    |       | 4100   |          | 5300  |   | 34000 |          | 210000                   |         |
| SM22 MAGNESIUM    | BY ICAP          | :MG/KG           | 15000 |   | 3000    |       | 2200   |          | 3200  |   | 18000 |          | 110000                   | :       |
| SM23 SODIUM       | BY ICAP          | .MG/KG           | 1100  | U | 1100    | U     | 1200   | U        | 1500  | U | :1100 | υ        | 1200                     | U :     |
| SM24 POTASSIUM    | BY ICAP          | MG/KG            | 1100  | U | 1100    |       | 1200   | U        | 1500  | U | 1100  | U        | 1200                     | U       |
| ZZO1 SAMPLE NUMBE | R                | : NA             | 022   |   | :023    |       | 024    |          | 025   |   | 026   |          | 027                      | :       |
| ZZO2 ACTIVITY COD | <del></del><br>E | - NA             | CSXCR |   | CSXCR   |       | :CSXCR |          | CSXCR |   | CSXCR |          | CSXCR                    | :       |

|                    | COMPOUND | UNITS    | 027L   |   | 027R  |   | 0275  |   | 028    |       | 029      |       | 030          |            |
|--------------------|----------|----------|--------|---|-------|---|-------|---|--------|-------|----------|-------|--------------|------------|
| SMO1 SILVER        | BY ICAP  | MG/KG:   | 2 . 4  | U | : 12  |   | 16    |   | 2.1    |       | 2.3      | <br>U | :<br>: 2 . 3 | U :        |
| SMO2 ALUMINUM      | BY ICAP  | :MG/KG:  | 910    |   | N/A   | 0 | : N/A | 0 | 590    |       | 750      |       | 9600         | :          |
| SMO3 ARSENIC       | BY ICAP  | MG/KG    | 11     | J | 9.7   |   | :22   | J | 2.1    | U     | 7.0      | J     | 7.6          | J :        |
| SMO4 BARIUM        | BY ICAP  | :MG/KG:4 | 48     | U | 480   |   | 460   |   | 42     | U     | : 46     |       | 240          | :          |
| SMO5 BERYLLIUM     | BY ICAP  | MG/KG:   | 1.2    | U | 12    |   | 11    |   | 1.0    | <br>U | 1.1      | U     | : 1 . 1      | U :        |
| SMO6 CADMIUM       | BY ICAP  | MG/KG    | 9.9    |   | : 12  |   | 23    |   | : 10   |       | 11       |       | :7.9         |            |
| SMO7 COBALT        | BY ICAP  | MG/KG:   | 37     |   | 120   |   | 140   |   | 10     | U     | 11       | U     | 23           |            |
| SMO8 CHROMIUM      | BY ICAP  | MG/KG:   | 2 . 4  | υ | : 49  |   | 44    |   | 2.7    | บ     | 3.5      | บ     | :14          |            |
| SMO9 COPPER        | BY ICAP  | MG/KG:   | 530    | J | :61   |   | 420   | J | 8 1    | J     | 5.7      | U     | 28           | J :        |
| SM10 IRON          | BY ICAP  | MG/KG:   | 44000  |   | : N/A | 0 | N/A   | 0 | 25000  |       | 26000    |       | 19000        | :          |
| SM11 MANGANESE     | BY ICAP  | MG/KG:   | 5300   |   | 120   |   | :5400 |   | :3700  |       | 3700     |       | 3100         |            |
| SM12 MOLYBDENUM    | BY ICAP  | MG/KG:   | N/A    | 0 | N/A   | 0 | N/A   | 0 | N/A    | 0     | :N/A     | 0     | . N/A        | 0          |
| SM13 NICKEL        | BY ICAP  | MG/KG:   | 39     |   | 120   |   | 140   |   | 9.5    |       | 9.1      | Ų     | :21          |            |
| SM14 LEAD          | BY ICAP  | :MG/KG:  | 2300   |   | 120   |   | 2300  |   | 1600   |       | :910     |       | . 2200       | :          |
| SM15 ANTIMONY      | BY ICAP  | MG/KG    | 21     | U | 120   |   | 110   |   | 12     | U     | . 14     | U     | . 14         | <u>-</u> - |
| SM16 SELENIUM      | BY ICAD  | .MG/KG.  | 7.3    | Ü | 2 4   |   | :2./  |   | 1.0    | U     | :1 1     | U     | .1.1         | <u>-</u> - |
| SM17 TITANIUM      | By ICAP  | .MG/KG.1 | N/A    | 0 | N/A   | 0 | . N/A | 0 | :N/A   | 0     | :N/A     | 0     | :N/A         | 0          |
| SM18 THALLIUM      | BY ICAP  | MG/KG:   | 2 . 4  | U | 12    |   | 12    |   | 2 1    | U     | 2.3      | U     | 2.3          | U          |
| SM19 VANADIUM      | BY ICAP  | MG/KG    | 12     | U | 120   |   | 120   |   | 10     | U     | 11       | U     | 30           |            |
| SM20 ZINC          | BY ICAP  | :MG/KG:  | 520    | J | 120   |   | 670   | J | .510   | J     | 510      | J     | 430          | J          |
| SM21 CALCIUM       | BY ICAP  | :MG/KG:  | 200000 |   | N/A   | 0 | N/A   | 0 | 150000 |       | : 170000 |       | 8600         |            |
| SM22 MAGNESIUM     | BY ICAP  | MG/KG    | 170000 |   | N/A   | 0 | N/A   | 0 | 81000  |       | 90000    |       | 4500         |            |
| SM23 SODIUM        | BY ICAP  | MG/KG.   | 1200   | U | N/A   | 0 | N/A   | 0 | : 1000 | U     | 1100     | U     | 1100         | υ :        |
| SM24 POTASSIUM     | BY ICAP  | MG/KG    | 1200   | U | N/A   | 0 | N/A   | 0 | 1000   | U     | 1100     | U     | 1200         |            |
| ZZO1 SAMPLE NUMBER | ?        | ; NA     | 027    |   | 027   |   | 027   |   | .028   |       | 029      |       | 030          |            |
| ZZO2 ACTIVITY CODE |          | NA :     | CSXCR  |   | CSXCR |   | CSXCR |   | CSXCR  |       | CSXCR    |       | CSXCR        |            |

ACTIVITY: O-CSXCR

| COMPOL                     | ND |      | UNITS | 120           | 200   |                | 201   |   | 202    |       | 203   |   | 204   |          |
|----------------------------|----|------|-------|---------------|-------|----------------|-------|---|--------|-------|-------|---|-------|----------|
| WM36 ALUMINUM, DISSOLVED   | BY | ICAP | UG/L  |               | 200   | U              | 200   | U | 200    | <br>U | 200   |   | 200   |          |
| WM37 ARSENIC, DISSOLVED    | BY | ICAP | UG/L  |               | 10    | U              | 10    | U | 10     | U     | 10    | U | : 10  | U        |
| WM38 BARIUM, DISSOLVED     | ВУ | ICAP | UG/L  |               | 200   | U              | 200   | U | 200    | U     | 200   | U | 200   | U        |
| WM39 BERYLLIUM.DISSOLVED   | ВҮ | ICAP | .UG/L |               | 5.0   | U              | 5.0   | U | 5.0    | U     | 5.0   | U | 5.0   | U        |
| WM40 CADMIUM.DISSOLVED     | ВУ | ICAP | UG/L  |               | 5.0   | U              | 5.0   | U | 5.0    | U     | 5.0   | U | 5.0   | U        |
| WM41 COBALT.DISSOLVED      | BY | ICAP | UG/L  |               | 50    | U              | 50    | U | 50     | U     | 50    | U | 50    | U        |
| WM42 CHROMIUM, DISSOLVED   | BY | ICAP | UG/L  |               | 10    | U              | 10    | U | 10     | U     | 10    | U | 10    | U        |
| WM43 COPPER, DISSOLVED     | ВҮ | ICAP | :UG/L |               | 25    | U              | 25    | υ | 25     | υ     | 25    | υ | 25    | υ        |
| WM44 IRON.DISSOLVED        | BY | ICAP | UG/L  |               | 100   | U              | 100   | U | 100    | U     | : 100 | U | 100   | U        |
| WM45 MANGANESE . DISSOLVED | BY | ICAP | UG/L  |               | : 15  | U              | 20    |   | :210   |       | 21    |   | : 35  |          |
| WM46 MOLYBDENUM, DISSOLVED | BY | ICAP | UG/L  |               | N/A   | 0              | N/A   | 0 | :N/A   | 0     | N/A   | 0 | N/A   | 0        |
| WM47 NICKEL . DISSOLVED    | BY | ICAP | UG/L  | : <del></del> | 40    | U              | 40    | U | :40    | U     | 40    | U | 40    | <u>-</u> |
| WM48 LEAD, DISSOLVED       | ВУ | ICAP | UG/L  |               | 3.0   | U              | 3.0   | U | : 23   |       | 3.0   | U | 3.3   | U        |
| WM49 ANTIMONY, DISSOLVED   | ΒY | ICAP | :UG/L |               | 60    | U              | :60   | U | :60    | U     | 60    | U | 60    | U        |
| WM50 SELENIUM, DISSOLVED   | В٧ | ICAP | UG/L  |               | 5.0   | U              | 5.0   | U | 5.0    | U     | 5.0   | U | 5.0   | U        |
| WM51 TITANIUM DISSOLVED    | BY | ICAP | UG/L  |               | N/A   | Ŭ              | :N/A  | υ | :N/A   | 0     | : N/A | 0 | :N/A  | 0        |
| WM52 THALLIUM, DISSOLVED   | Ву | ILAP | UG/L  |               | . 10  | U              | : 10  | U | : 10   | U     | 10    | U | :10   | U        |
| WM53 VANADIUM, DISSOLVED   | ВУ | ICAP | UG/L  | :             | 50    | U              | :50   | U | 50     | U     | 50    | U | 50    | V        |
| WM54 ZINC.DISSOLVED        | В٧ | ICAP | UG/L  | :             | 20    | U              | 20    | υ | 1200   |       | 20    | υ | 44    |          |
| WM55 CALCIUM.DISSOLVED     | ВУ | ICAP | MG/L  | :             | 32    |                | :31   |   | 130    |       | 35    |   | 43    |          |
| WM56 MAGNESIUM.DISSOLVED   | ВУ | ICAP | MG/L  | : <del></del> | 19    |                | 18    |   | 53     |       | 19    |   | 24    |          |
| WM57 SODIUM, DISSOLVED     | ВУ | ICAP | MG/L  | : <del></del> | 5.0   | U              | 5.0   | U | 5.6    |       | 5.0   | U | 5.0   | U        |
| WM58 POTASSIUM, DISSOLVED  | BY | ICAP | MG/L  | :             | 5.0   | U              | 5.0   | U | 5.0    | U     | 5.0   | U | 5.0   | U        |
| ZZO1 SAMPLE NUMBER         |    |      | NA NA | 120           | 200   |                | 201   |   | 202    |       | 203   |   | 204   |          |
| ZZO2 ACTIVITY CODE         |    |      | : NA  | CSXCR         | CSXCR | <del>-</del> - | CSXCR |   | :CSXCR |       | CSXCR |   | CSXCR |          |

١

|                     | COMPOUND    | UNITS          | 205  |     | 206  |   | 207  |   | 208   |         | 208L        | 208R        |
|---------------------|-------------|----------------|------|-----|------|---|------|---|-------|---------|-------------|-------------|
| WFO1 WATER TEMP     |             | , c            | 23   |     | : 25 |   | 28   |   | 29    | :-      | <del></del> | - ;<br>:    |
| WF05 PH. FIELD      |             | SU             | 7.63 |     | 7.42 |   | 7.33 |   | 7.44  | :-      |             | -:          |
| WF10 CONDUCTIVITY   | (FIELD)     | UMHOS          | 280  |     | 260  |   | :380 |   | 360   | :       |             | -:          |
| WMO1 SILVER         | BY ICAP     | : UG/L         | 10   | Ü   | 10   | U | :10  | บ | 10    | U       |             | :           |
| WMO2 ALUMINUM       | BY ICAP     | : UG/L         | 220  | U   | 240  | U | 200  | U | : 240 | U :     |             | :           |
| WMO3 ARSENIC        | BY ICAP     | : UG/L         | 10   | U   | 10   | U | :10  | U | : 10  | Ū :     |             | -:          |
| WMO4 BARIUM         | BY ICAP     | : UG/L         | 200  | U   | 200  | U | 200  | U | 200   | U       |             |             |
| WMO5 BERYLLIUM      | BY ICAP     | UG/L           | 5.0  | υ   | 5.0  | U | 5.0  | U | 5.0   | υ       |             | :           |
| WMO6 CADMIUM        | BY ICAP     | UG/L           | 5.0  | U   | 5.0  | U | 5.0  | U | 5.0   | Ū :     |             | :           |
| WMO7 COBALT         | BY ICAP     | :UG/L          | : 50 | U   | 50   | U | :50  | U | 50    | U       |             | :           |
| WMO8 CHROMIUM       | BY ICAP     | UG/L           | : 10 | U   | 10   | U | .10  | U | 10    | U :     |             | :           |
| WMO9 COPPER         | BY ICAP     | :UG/L          | : 25 | U   | 25   | U | : 25 | U | 25    | U :     |             | :           |
| WM10 IRON           | BY ICAP     | : UG/L         | 330  |     | 340  |   | :270 |   | 310   | :-      |             | :           |
| WM11 MANGANESE      | BY ICAP     | :UG/L          | 78   |     | 74   |   | 75   |   | 67    | :-      |             | :           |
| WM12 MOLYBDENUM     | BY ICAP     | -UG/L          | N/A  | Ō_  | N/A  | 0 | N/A  | 0 | N/A   | 0 :     |             | :           |
| WW13 MICKEL         | BY ICAD     | UG/L           | 40   | Ü   | : 40 | U | 40   | U | : 40  | Ū:      |             | -           |
| WM14 LEAD           | By ICAP     | -UG/L          | .29  | . – | : 32 |   | : 34 | - | : 33  | :       |             | :           |
| WM15 ANTIMONY       | BY ICAP     | UG/L           | 60   | U   | 60   | U | 60   | U | 60    | U       |             |             |
| WM16 SELENIUM       | BY ICAP     | : UG/L         | :5.0 | U   | 5.0  | U | :5.0 | U | :5.0  | U :     |             | :           |
| WM17 TITANIUM       | BY ICAP     | UG/L           | N/A  | 0   | N/A  | 0 | N/A  | 0 | :N/A  | 0 .     |             | <del></del> |
| WM18 THALLIUM       | BY ICAP     | UG/L           | 10   | U   | 10   | U | : 10 | U | 10    | U       |             | <u> </u>    |
| WM19 VANADIUM       | BY ICAP     | UG/L           | 50   | υ   | 50   | U | :50  | U | 50    | U :     |             | :           |
| WM20 ZINC           | BY ICAP     | UG/L           | 74   |     | :84  |   | 100  |   | :98   | :-      |             | -:          |
| WM21 CALCIUM, TOTAL | L BY ICAP   | :MG/L          | : 41 |     | 42   |   | 42   |   | 42    | :-      |             |             |
| WM22 MAGNESIUM, TO  | TAL BY ICAP | : <b>M</b> G/L | 23   |     | 24   |   | :24  |   | :23   | :-<br>: |             | -:          |
| WM23 SODIUM, TOTAL  | BY ICAP     | MG/L           | :5.0 | u   | :5.0 | U | :5.0 | U | :5.0  | U :     |             | -;<br>:     |

| COMPOUND                       | UNITS     | 120 | 200   |   | 201  |            | 202   |   | 203   |       | 204   |         |
|--------------------------------|-----------|-----|-------|---|------|------------|-------|---|-------|-------|-------|---------|
| WF10 CONDUCTIVITY (FIELD)      | : UMHOS : |     | 170   |   | 170  |            | : 550 |   | 200   |       | 290   | ·:<br>: |
| WMO1 SILVER BY ICAP            | UG/L      |     | 10    | U | :10  | U          | 10    | U | 10    | υ     | 10    | U       |
| WMO2 ALUMINUM BY ICAP          | UG/L      |     | 200   | U | 280  | U          | 200   | υ | : 380 | U     | : 350 | U :     |
| WMO3 ARSENIC BY ICAP           | UG/L      |     | 10    | U | 10   | <u>-</u> - | 10    | U | 10    | U     | :10   | U :     |
| WMO4 BARIUM BY ICAP            | UG/L      |     | 200   | Ų | 200  | U          | 200   | U | 200   | U     | 200   | U       |
| WMO5 BERYLLIUM BY ICAP         | UG/L      |     | 5.0   | Ū | 5.0  |            | :5.0  | U | 5.0   | U     | 5.0   | U :     |
| WMO6 CADMIUM BY ICAP           | :UG/L     |     | 5.0   | U | 5.0  | U          | 5.2   | U | 5.0   | U     | 5.0   | U :     |
| WMO7 COBALT BY ICAP            | UG/L .    |     | : 50  | υ | 50   | U          | 50    | υ | :50   | υ     | :50   | U :     |
| WMO8 CHROMIUM BY ICAP          | UG/L      |     | 10    | U | 10   | U          | 10    | U | 10    | U     | :10   | U :     |
| WMO9 COPPER BY ICAP            | UG/L      |     | : 25  | U | : 25 | U          | 25    | U | 25    | <br>U | : 25  | U       |
| WM10 IRON BY ICAP              | UG/L      |     | 260   |   | 360  |            | : 280 |   | :550  |       | 530   |         |
| WM11 MANGANESE BY ICAP         | :UG/L     |     | :59   |   | 54   |            | 300   |   | : 75  |       | :89   | :       |
| WM12 MOLYBDENUM BY ICAP        | :UG/L     |     | : N/A | 0 | :N/A | 0          | N/A   | 0 | :N/A  | 0     | :N/A  | 0 :     |
| WM13 NICKEL BY ICAP            | UG/L      |     | 40    | U | 40   | U          | 40    | υ | 40    | U     | 40    | U :     |
| WM14 LEAD BY ICAP              | HG/L      | _   | 3.0   | U | 3.0  | U          | :61   |   | 15    |       | : 37  |         |
| WM15 ANTIMONY BY ICAD          | . UG/L    |     | : 6Ū  | U | 60   | U          | 60    | U | 60    | U     | :60   | U       |
| WM16 SELENIUM BY ICAP          | : UG/L    |     | 5.0   | U | .5.0 | U          | .5.0  | U | :5.0  | U     | 5.0   | υ :     |
| WM17 TITANIUM BY ICAP          | UG/L      |     | N/A   | 0 | :N/A | 0          | N/A   | 0 | N/A   | 0     | N/A   | 0 .     |
| WM18 THALLIUM BY ICAP          | UG/L      |     | 10    | U | :10  | U          | 10    | υ | 10    | U     | 10    | U :     |
| WM19 VANADIUM BY ICAP          | UG/L      |     | 50    | U | 50   | U          | 50    | U | :50   | U     | 50    | U .     |
| WM20 ZINC BY ICAP              | UG/L      |     | 20    | υ | .74  |            | 1300  |   | 44    |       | 81    |         |
| WM21 CALCIUM, TOTAL BY ICAP    | .MG/L     |     | : 31  |   | 30   |            | 130   |   | 33    |       | 41    | .~=;    |
| WM22 MAGNESIUM, TOTAL BY ICAP  | MG/L      |     | 18    |   | 18   |            | 51    |   | 18    |       | 23    | ;       |
| WM23 SODIUM, TOTAL BY ICAP     | MG/L      |     | 5 0   | U | 5 0  | U          | 5.3   |   | 5.0   | U     | 5.0   | U .     |
| WM24 POTASSIUM, TOTAL BY ICAP  | MG/L      |     | 5.0   | υ | 5.0  | U          | :5.0  | U | :5.0  | U     | 5.0   | U :     |
| WM35 SILVER, DISSOLVED BY ICAP | UG/L      |     | 10    | υ | 10   | υ          | 10    | U | 10    | U     | 10    | U       |

|                   | COMPOUND | UNITS              | 106   |        | 107    |       | 108     |   | 109     |   | 110                      |              | 111          |       |
|-------------------|----------|--------------------|-------|--------|--------|-------|---------|---|---------|---|--------------------------|--------------|--------------|-------|
| SMO1 SILVER       | BY ICAP  | :MG/KG:3.          | 1     | :      | 6.8    |       | : 4.4   |   | 2.9     |   | : <del></del><br>. 4 . 6 | <br>J        | :<br>: 2 . 1 | <br>U |
| SMO2 ALUMINUM     | BY ICAP  | :MG/KG:13          | 300   |        | 1200   |       | 940     |   | 1500    |   | 3260                     |              | 6800         |       |
| SMO3 ARSENIC      | BY ICAP  | : <b>M</b> G/KG:8. | 3     | J      | 9.0    |       | 2 2     | U | 6.4     | J | 5.5                      |              | 6.7          |       |
| SMO4 BARIUM       | BY ICAP  | :MG/KG:46          | 5     | U      | 48     | U     | 44      | U | : 46    | U | :49                      |              | : 99         | J     |
| SMO5 BERYLLIUM    | BY ICAP  | :MG/KG:1.          | 2     | U      | 1.2    | U     | 1.1     | U | 1.2     | U | 1.0                      | U            | :1.0         | U     |
| SMO6 CADMIUM      | BY ICAP  | :MG/KG:42          | 2     |        | 88     |       | 59      |   | : 24    |   | 32                       |              | 6.3          |       |
| SMO7 COBALT       | BY ICAP  | MG/KG: 12          | ?     | U      | 12     | U     | 11      | U | 12      | U | 52                       |              | 10           | U     |
| SMO8 CHROMIUM     | BY ICAP  | MG/KG 5.           | 9     | U      | 5.7    | U     | : 4.7   | U | 7.2     |   | 5 7                      |              | :9.9         |       |
| SMO9 COPPER       | BY ICAP  | MG/KG: 17          | ,     | J      | 6.0    | U     | :5.5    | U | 18      | J | 10                       | U            | 13           |       |
| SM10 IRON         | BY ICAP  | :MG/KG: 18         | 3000  |        | 23000  |       | 21000   |   | 17000   |   | 16000                    |              | 12000        |       |
| SM11 MANGANESE    | BY ICAP  | :MG/KG: 25         | 500   |        | 3300   |       | 3200    |   | 2700    |   | 3100                     | J            | 680          | J     |
| SM12 MOLYBDENUM   | BY ICAP  | :MG/KG:N/          | 'A    | 0      | : N/A  | 0     | N/A     | 0 | N/A     | 0 | N/A                      | 0            | N/A          | 0     |
| SM13 NICKEL       | BY ICAP  | .MG/KG:9.          | 3     | U      | 12     |       | 9.6     |   | 13      |   | :59                      |              | 13           |       |
| SM14 LEAD         | BY ICAP  | :MG/KG:16          | 500   |        | 3600   |       | 1300    |   | 1300    |   | 540                      |              | 350          |       |
| SM15 ANTIMONY     | BY ICAP  | :MG/KG:14          | 1     | U      | 14     | U     | 15      | U | 15      | U | : 12                     | U            | :12          | U     |
| SM16 SELENIUM     | BY ICAD  | MG/FG.1.           | 2     | u<br>Ü | 7 Z    | U     | . 1 1   | U | :1.2    | U | 1 5                      |              | :1 0         | U     |
| SM17 TITANIUM     | By ICAP  |                    | 'Α    | 0      | N/A    | 0     | : N / A | 0 | :N/A    | Ú | N/A                      | 0            | :N/A         | 0     |
| SM18 THALLIUM     | BY ICAP  | :MG/KG:2.          | 3     | U      | 2 4    | <br>U | 2 2     | U | 2.3     | U | 2 1                      | υ            | 2 1          | U     |
| SM19 VANADIUM     | BY ICAP  | :MG/KG:12          | 2     | U      | 12     | U     | 11      | U | 12      | U | : 12                     |              | 18           |       |
| SM20 ZINC         | BY ICAP  | MG/KG: 22          | 200   | J      | : 4500 | J     | 2600    | J | 1100    | J | 1900                     |              | 400          |       |
| SM21 CALCIUM      | BY ICAP  | :MG/KG:13          | 30000 |        | 160000 |       | 150000  |   | 130000  |   | 85000                    | <del>-</del> | 15000        |       |
| SM22 MAGNESIUM    | BY ICAP  | MG/KG:68           | 3000  |        | 92000  |       | :86000  |   | 70000   |   | 43000                    |              | 7800         |       |
| SM23 SODIUM       | BY ICAP  | .MG/KG.12          | 200   | U      | 1200   | U     | 1100    | U | 1200    | U | 1000                     | U            | 1000         | U     |
| SM24 POTASSIUM    | BY ICAP  | :MG/KG.12          | 200   | U      | : 1200 | U     | 1100    | U | 1200    | U | 1000                     | U            | 1000         | บ     |
| ZZO1 SAMPLE NUMBE | R        | NA 10              | )6    |        | : 107  |       | 108     |   | 109     |   | :110                     |              | 111          |       |
| ZZO2 ACTIVITY COD | E        | NA CS              | SXCR  |        | CSXCR  |       | CSXCR   |   | : CSXCR |   | CSXCR                    |              | CSXCR        |       |

|                   | COMPOUND | UNITS   | 100   |   | 101   |   | 102    |   | 103   |   | 104    |   | 105    |          |
|-------------------|----------|---------|-------|---|-------|---|--------|---|-------|---|--------|---|--------|----------|
| SMO1 SILVER       | BY ICAP  | :MG/KG: | 2.2   | U | 2.3   | U | 11     |   | 2.6   | U | 12     |   | 2.2    | <u>U</u> |
| SMO2 ALUMINUM     | BY ICAP  | MG/KG:  | 2800  |   | 2400  |   | 1300   |   | 1900  |   | 1200   |   | 1300   |          |
| SMO3 ARSENIC      | BY ICAP  | MG/KG   | 4.4   | J | 5.5   | J | 2.5    | U | 30    | J | 2.2    | U | 6.2    | J        |
| SMO4 BARIUM       | BY ICAP  | MG/KG:  | 45    | U | 49    |   | 49     | U | :56   |   | :44    | U | : 45   | U        |
| SMO5 BERYLLIUM    | BY ICAP  | :MG/KG  | 1.1   | U | 1.1   | U | 1.2    | U | 1.3   | υ | 1.1    | U | 1.1    | U        |
| SMO6 CADMIUM      | BY ICAP  | :MG/KG  | 1.1   | U | :1.1  | U | 140    |   | 46    |   | :130   |   | 21     |          |
| SMO7 COBALT       | BY ICAP  | MG/KG:  | 11    | U | 11    | U | 12     | U | 13    | U | 11     | U | 11     | U        |
| SMO8 CHROMIUM     | BY ICAP  | :MG/KG  | 11    |   | : 16  |   | 3.7    | U | 13    |   | :5.2   | บ | 6.2    | υ        |
| SMO9 COPPER       | BY ICAP  | MG/KG   | 5.6   | U | 5.7   | U | 12     | J | :6.6  | U | 6.7    | J | : 35   | J        |
| SM10 IRON         | BY ICAP  | :MG/KG  | 7400  |   | 12000 |   | 22000  |   | 17000 |   | 25000  |   | 22000  |          |
| SM11 MANGANESE    | BY ICAP  | MG/KG   | 400   |   | 480   |   | 3600   |   | :1300 |   | 3400   |   | 3000   |          |
| SM12 MOLYBDENUM   | BY ICAP  | MG/KG   | N/A   | 0 | N/A   | 0 | N/A    | 0 | :N/A  | 0 | :N/A   | 0 | :N/A   | 0        |
| SM13 NICKEL       | BY ICAP  | MG/KG   | 9.0   | U | 9.1   | U | 9.8    | U | :10   | U | 8.9    | U | 10     |          |
| SM14 LEAD         | BY ICAP  | :MG/KG: | 1.1   | U | 1.4   |   | 10000  |   | 720   |   | 5500   |   | 1700   |          |
| SM15 ANTIMONY     | BY ICAP  | MG/KG   | 13    | U | : 14  | U | 15     | υ | :16   | υ | 13     | U | :13    | U        |
| SM16 SELENIUM     | BY ICAP  | .MG/KG  | 1.1   | Ü | :1.1  | U | 1.2    | U | 1.3   | U | 1.1    | U | :1.1   | U        |
| SM17 TITANIUM     | BY ICAP  | :MG/KG  | N/A   | 0 | N/A   | 0 | N/A    | 0 | :N/A  | 0 | N/A    | 0 | :N/A   | 0        |
| SM18 THALLIUM     | BY ICAP  | :MG/KG  | 2.2   | U | 2.3   | U | 2.5    | U | 2.6   | U | 2.2    | U | 2.2    | U        |
| SM19 VANADIUM     | BY ICAP  | :MG/KG  | 13    |   | 20    |   | 12     | U | 21    |   | 11     | υ | 11     | U        |
| SM20 ZINC         | BY ICAP  | MG/KG   | 21    | J | 53    | J | 6500   | J | 1900  | J | 6600   | J | 840    | J        |
| SM21 CALCIUM      | BY ICAP  | MG/KG   | 3500  |   | 2300  |   | 190000 |   | 36000 |   | 140000 |   | 130000 |          |
| SM22 MAGNESIUM    | BY ICAP  | MG/KG   | 2100  |   | 1100  | U | 110000 |   | 20000 |   | 79000  |   | 72000  |          |
| SM23 SODIUM       | BY ICAP  | MG/KG   | 1100  | U | 1100  | U | 1200   | U | 1300  | υ | 1100   | U | 1100   | U        |
| SM24 POTASSIUM    | BY ICAP  | MG/KG   | 1100  | U | 1100  | U | 1200   | U | 1300  | U | 1100   | U | 1100   | U        |
| ZZO1 SAMPLE NUMBE | R        | : NA    | 100   |   | 101   |   | 102    |   | 103   |   | :104   |   | 105    |          |
| ZZO2 ACTIVITY COD | E        | : NA    | CSXCR |   | CSXCR |   | CSXCR  |   | CSXCR |   | CSXCR  |   | CSXCR  |          |

| COMPO                      | UND     | UNITS | 205       |   | 206  |          | 207  |        | 208                   |   | 208L  |   | 208R |   |
|----------------------------|---------|-------|-----------|---|------|----------|------|--------|-----------------------|---|-------|---|------|---|
| WM24 POTASSIUM, TOTAL BY   | ICAP    | :MG/L | :<br>:5.0 | U | 5.0  | <u>-</u> | 5.0  | υ<br>υ | : <del></del><br>:5.0 |   | :     |   | :    |   |
| WM35 SILVER, DISSOLVED     | BY ICAP | :UG/L | : 10      | U | 10   | U        | 10   | U      | 10                    | U | : 10  | U | :50  |   |
| WM36 ALUMINUM, DISSOLVED   | BY ICAP | :UG/L | 200       | U | 200  | U        | 200  | U      | 200                   | U | 200   | U | 2000 |   |
| WM37 ARSENIC.DISSOLVED     | BY ICAP | :UG/L | 10        | U | 10   | υ        | 10   | U      | 10                    | υ | 10    | U | 40   |   |
| WM38 BARIUM.DISSOLVED      | BY ICAP | UG/L  | 200       | U | 200  | υ        | 200  | υ      | 200                   | U | 200   | U | 2000 |   |
| WM39 BERYLLIUM, DISSOLVED  | BY ICAP | UG/L  | 5.0       | U | 5.0  | U        | 5.0  | U      | 5.0                   | U | 5.0   | U | 50   |   |
| WM40 CADMIUM, DISSOLVED    | BY ICAP | UG/L  | 5.0       | U | 5.0  | U        | 5.0  | U      | 5.0                   | U | 5.0   | U | :50  |   |
| WM41 COBALT.DISSOLVED      | BY ICAP | UG/L  | 50        | U | 50   | U        | 50   | U      | 50                    | U | 50    | U | 500  |   |
| WM42 CHROMIUM.DISSOLVED    | BY ICAP | UG/L  | 10        | U | 10   | U        | 10   | U      | 10                    | U | 10    | U | 200  |   |
| WM43 COPPER.DISSOLVED      | BY ICAP | UG/L  | 25        | U | 25   | บ        | 25   | U      | 25                    | U | 25    | U | 250  |   |
| WM44 IRON.DISSOLVED        | BY ICAP | :UG/L | 1900      |   | 100  | U        | 100  | U      | 100                   | U | :100  | U | 1000 |   |
| WM45 MANGANESE, DISSOLVED  | BY ICAP | UG/L  | 50        |   | 38   |          | 38   |        | 35                    |   | 37    |   | 500  |   |
| WM46 MOLYBDENUM, DISSOLVED | BY ICAP | UG/L  | N/A       | 0 | N/A  | 0        | N/A  | 0      | N/A                   | 0 | : N/A | 0 | N/A  | 0 |
| WM47 NICKEL, DISSOLVED     | BY ICAP | UG/L  | 40        | U | 40   | υ        | 40   | U      | : 40                  | U | : 40  | U | 500  |   |
| WM48 LEAD, DISSOLVED       | BY ICAP | UG/L  | 3.0       | U | 3.0  | U        | 3.9  | U      | 4.0                   |   | 3.7   |   | 20   |   |
| WM49 ANTIMONY DISSOLVED    | BY ICAP | UG/L  | .60       | ü | :60  | U        | :60  | U      | :60                   | U | :60   | U | :500 |   |
| WMSO SELENIUM, DISSOLVED   | BY ICAP | UG/L  | 5.0       | Ü | 5.0  | U        | :5.0 | U      | :5.0                  | U | :5.0  | U | :10  |   |
| WM51 TITANIUM.DISSOLVED    | BY ICAP | UG/L  | N/A       | 0 | :N/A | 0        | :N/A | 0      | :N/A                  | 0 | : N/A | 0 | :N/A | 0 |
| WM52 THALLIUM, DISSOLVED   | BY ICAP | UG/L  | 10        | U | 10   | U        | :10  | U      | 10                    | U | :10   | U | 50   |   |
| WM53 VANADIUM, DISSOLVED   | BY ICAP | UG/L  | 50        | U | 50   | U        | 50   | U      | 50                    | U | 50    | U | 500  |   |
| WM54 ZINC.DISSOLVED        | BY ICAP | UG/L  | 41        |   | 56   |          | 68   |        | 68                    |   | :69   |   | 500  |   |
| WM55 CALCIUM.DISSOLVED     | BY ICAP | MG/L  | 43        |   | 43   |          | 43   |        | 45                    |   | 45    |   | :N/A | 0 |
| WM56 MAGNESIUM, DISSOLVED  | BY ICAP | MG/L  | 24        |   | 24   |          | 24   |        | 25                    |   | 25    |   | N/A  | 0 |
| WM57 SODIUM.DISSOLVED      | BY ICAP | MG/L  | 5.0       | U | 5 0  | U        | 5.0  | U      | 5.0                   | U | 5.0   | U | N/A  | 0 |
| WM58 POTASSIUM, DISSOLVED  | BY ICAP | MG/L  | 5.0       | U | 5.0  | U        | 5.0  | U      | 5.0                   | U | 5.0   | U | N/A  | 0 |
| ZZO1 SAMPLE NUMBER         |         | : NA  | 205       |   | 206  |          | 207  |        | 208                   |   | 208   |   | 208  |   |

|                    | COMPOUND     | UNITS  | 2085 20 | 9     | 210   |   | 211   |              | 212                   |                | 212  | D |
|--------------------|--------------|--------|---------|-------|-------|---|-------|--------------|-----------------------|----------------|------|---|
| WFO1 WATER TEMP    |              |        | 19      |       | :18.5 |   | 26    |              | : <del></del><br>: 25 |                | :    |   |
| WF05 PH. FIELD     |              | SU :   | :7.45   |       | 7.33  |   | 7.60  |              | 7.29                  |                | :    |   |
| WF10 CONDUCTIVITY  | (FIELD)      | UMHOS  | :370    |       | :550  |   | 245   |              | 290                   |                | :    |   |
| WMO1 SILVER        | BY ICAP      | UG/L   | 10      | Ų     | 10    | U | 10    | U            | 10                    | U              | 10   | U |
| WM02 ALUMINUM      | BY ICAP      | UG/L   | 250     | U     | 200   | υ | 250   | U            | 200                   | U              | 200  | U |
| WMO3 ARSENIC       | BY ICAP      | UG/L   | : 10    | U     | 10    | U | : 10  | U            | 10                    | U              | 10   | U |
| WMO4 BARIUM        | BY ICAP      | UG/L : | 200     | U     | 200   | U | : 200 | U            | 200                   | U              | 200  | U |
| WMO5 BERYLLIUM     | BY ICAP      | UG/L   | 5.0     | บ     | :5.0  | U | 5.0   | U            | :5.0                  | υ              | :5.0 | U |
| WMO6 CADMIUM       | BY ICAP      | UG/L   | 5.0     | <br>U | :5.0  | U | :5.0  | U            | 5.0                   | <del>-</del> - | :5.0 | U |
| WMO7 COBALT        | BY ICAP      | UG/L   | :50     | U     | :50   | U | :50   | U            | 50                    | U              | :50  | U |
| WMO8 CHROMIUM      | BY ICAP      | UG/L   | 10      | U     | .10   | υ | :10   | <del>-</del> | 10                    | U              | :10  | U |
| WMO9 COPPER        | BY ICAP      | UG/L   | : 25    | U     | : 25  | U | : 25  | U            | 25                    | u<br>U         | 25   | U |
| WM10 IRON          | BY ICAP      | UG/L : | 320     |       | 240   |   | 320   |              | 260                   |                | 100  | U |
| WM11 MANGANESE     | BY ICAP      | : UG/L | 62      |       | 280   |   | 81    |              | .57                   |                | .60  |   |
| WM12 MOLYBDENUM    | BY ICAP      | UG/L   | N/A     | 0     | N/A   | 0 | :N/A  | 0            | N/A                   | 0              | N/A  | 0 |
| WM13 MICHEL        | BY ICAD      | UG/L   | : 40    | <br>U | 40    | U | :40   | U            | 40                    | U              | 40   | U |
| WM14 LEAD          | By ICAP      | UG/L . | .31     |       | 6.0   | - | : 26  |              | . 29                  |                | :28  |   |
| WM15 ANTIMONY      | BY ICAP      | UG/L   | 60      | U     | :60   | U | 60    | U            | :60                   | U              | 60   | U |
| WM16 SELENIUM      | BY ICAP      | UG/L   | 5.0     | U     | :5.0  | U | 5.0   | U            | :5.0                  | U              | 5.0  | U |
| WM17 TITANIUM      | BY ICAP      | UG/L   | N/A     | 0     | N/A   | 0 | :N/A  | 0            | . N/A                 | 0              | N/A  | 0 |
| WM18 THALLIUM      | BY ICAP      | UG/L   | 10      | U     | 10    | U | 10    | U            | 10                    | U              | 10   | U |
| WM19 VANADIUM      | BY ICAP      | UG/L   | :50     | U     | :50   | U | :50   | U            | :50                   | U              | . 50 | U |
| WM20 ZINC          | BY ICAP      | UG/L   | : 98    |       | 42    |   | :62   |              | 120                   |                | 130  | U |
| WM21 CALCIUM, TOTA | AL BY ICAP   | MG/L   | 42      |       | 92    |   | 40    |              | 43                    |                | : 46 |   |
| WM22 MAGNESIUM, TO | OTAL BY ICAP | MG/L   | 24      |       | 53    |   | 23    |              | 24                    |                | 26   |   |
| WM23 SODIUM. TOTAL | L BY ICAP    | MG/L   | :5.0    | U     | :8.9  |   | .5.0  | U            | 5 0                   | U              | 5.0  | U |

| COMPOUND           | UNITS | 205   | 206   | 207   | 208     | 208L  | 208R  |
|--------------------|-------|-------|-------|-------|---------|-------|-------|
| ZZO2 ACTIVITY CODE | : NA  | CSXCR | CSXCR | CSXCR | : CSXCR | CSXCR | CSXCR |

| COMPO                     | UND |      | UNITS | 2085  |   | 209 |   | 210  |   | 211   |   | 212          |       | 212D      |          |
|---------------------------|-----|------|-------|-------|---|-----|---|------|---|-------|---|--------------|-------|-----------|----------|
| WM24 POTASSIUM, TOTAL BY  | ICA | ·    | MG/L  |       |   | 5.0 | U | :5.0 | U | 5.0   | U | :<br>: 5 . 0 | <br>U | :<br>:5.0 | :<br>U : |
| WM35 SILVER, DISSOLVED    | BY  | ICAP | UG/L  | 55    |   | 10  | U | 10   | U | 10    | U | : 10         | U     | 10        | U :      |
| WM36 ALUMINUM, DISSOLVED  | BY  | ICAP | UG/L  | 2000  |   | 200 | U | 200  | U | 200   | U | 200          | U     | 200       | U        |
| WM37 ARSENIC, DISSOLVED   | BY  | ICAP | UG/L  | 44    |   | 10  | U | 10   | U | 10    | U | 10           | U     | 10        | U :      |
| WM38 BARIUM.DISSOLVED     | ВУ  | ICAP | UG/L  | 2100  |   | 200 | U | 200  | U | 200   | U | 200          | U     | 200       | U        |
| WM39 BERYLLIUM, DISSOLVED | В٧  | ICAP | UG/L  | 47    |   | 5.0 | U | 5.0  | U | 5.0   | U | 5.0          | U     | :5.0      | U        |
| WM40 CADMIUM, DISSOLVED   | BY  | ICAP | UG/L  | 58    |   | 5.0 | U | :5.0 | U | 5.0   | U | 5.0          | U     | :5.0      | U :      |
| WM41 COBALT.DISSOLVED     | BY  | ICAP | UG/L  | 510   |   | 50  | บ | 50   | U | 50    | บ | :50          | υ     | :50       | U :      |
| WM42 CHROMIUM, DISSOLVED  | ВУ  | ICAP | UG/L  | 230   |   | 10  | U | 10   | U | 10    | U | : 10         | U     | 10        | U :      |
| WM43 COPPER.DISSOLVED     | BY  | ICAP | UG/L  | 250   |   | 25  | U | 25   | U | 25    | U | : 25         | U     | 25        | U :      |
| WM44 IRON.DISSOLVED       | BY  | ICAP | UG/L  | 1200  |   | 100 | U | 100  | U | : 100 | U | 100          | U     | 100       | U        |
| WM45 MANGANESE, DISSOLVED | BY  | ICAP | UG/L  | : 560 |   | 39  |   | 230  |   | 58    |   | 36           |       | : 35      | :        |
| WM46 MOLYBDENUM.DISSOLVED | BY  | ICAP | UG/L  | N/A   | 0 | N/A | 0 | N/A  | 0 | N/A   | 0 | N/A          | 0     | N/A       | 0 :      |
| WM47 NICKEL, DISSOLVED    | ВУ  | ICAP | UG/L  | 550   |   | 40  | U | 40   | U | 40    | U | 40           | υ     | 40        | U        |
| WM48 LEAD.DISSOLVED       | ВУ  | ICAP | UG/L  | 20    | _ | 4.5 |   | 3.0  | U | 3.0   | U | 4.4          |       | 4.8       | :        |
| WM49 ANTIMONY DISSOLVED   | BY  | ICAP | UG/L  | 510   |   | :60 | U | :60  | U | 60    | U | 60           | U     | :60       | U:       |
| WM50 SELENIUM, DISSOLVED  | BY  | ICAP | UG/L  | 10    |   | 5.0 | U | 5.0  | U | :5.0  | U | 5.0          | U     | 5.0       | U        |
| WM51 TITANIUM.DISSOLVED   | BY  | ICAP | UG/L  | N/A   | 0 | N/A | 0 | N/A  | 0 | N/A   | 0 | N/A          | 0     | N/A       | 0 :      |
| WM52 THALLIUM.DISSOLVED   | ВУ  | ICAP | UG/L  | : 56  |   | 10  | U | 10   | U | 10    | U | 10           | U     | 10        | U :      |
| WM53 VANADIUM, DISSOLVED  | BY  | ICAP | UG/L  | 510   |   | 50  | U | 50   | U | 50    | U | 50           | U     | 50        | U :      |
| WM54 ZINC.DISSOLVED       | BY  | ICAP | UG/L  | 570   |   | 86  |   | 20   | U | 34    | U | 100          |       | 99        |          |
| WM55 CALCIUM, DISSOLVED   | BY  | ICAP | MG/L  | N/A   | 0 | 47  |   | 98   |   | : 43  |   | 46           |       | 43        |          |
| WM56 MAGNESIUM, DISSOLVED | BY  | ICAP | MG/L  | N/A   | 0 | 27  |   | 57   |   | :24   |   | : 26         |       | 24        | :        |
| WM57 SODIUM, DISSOLVED    | BY  | ICAP | MG/L  | : N/A | 0 | 5.0 | U | 9.7  |   | 5.0   | υ | 5.0          | U     | 5.0       | U :      |
| WM58 POTASSIUM, DISSOLVED | BY  | ICAP | MG/L  | : N/A | 0 | 5.0 | U | 5.0  | υ | :5.0  | U | 5.0          | U     | 5.0       | U        |
| 2201 SAMPLE NUMBER        |     |      | : NA  | 208   |   | 209 |   | 210  |   | :211  |   | 212          |       | 212       | :        |
|                           |     |      |       |       |   |     |   |      |   |       |   |              |       |           | ,        |

| COMPOUND           | UNITS  | 2085 | 209     | 210   | 211   | 212   | 212D  |
|--------------------|--------|------|---------|-------|-------|-------|-------|
| ZZO2 ACTIVITY CODE | NA : ( | SXCR | : CSXCR | CSXCR | CSXCR | CSXCR | CSXCR |

|                     | COMPOUND    | UNITS  | 213  |        | 214                   |   | 215  |   | 215L  |            | 215R |   | 2159  | 5        |
|---------------------|-------------|--------|------|--------|-----------------------|---|------|---|-------|------------|------|---|-------|----------|
| WFO1 WATER TEMP     |             |        | 26   |        | : <del></del><br>: 23 |   | 23   |   | :     | - <b>-</b> | :    |   | :     |          |
| WF05 PH, FIELD      |             | SU     | 7.55 |        | 7.31                  |   | 8.0  |   | :     |            |      |   | :     |          |
| WF10 CONDUCTIVITY   | (FIELD)     | UMHOS  | 290  |        | 350                   |   | 550  |   |       |            |      |   | :     |          |
| WMO1 SILVER         | BY ICAP     | UG/L   | 10   | U      | 10                    | U | 10   | υ | 10    | U          | 50   |   | 57    |          |
| WMO2 ALUMINUM       | BY ICAP     | :UG/L  | 220  | U      | 200                   | U | 200  | υ | 200   | U          | 2000 |   | 2100  |          |
| WMO3 ARSENIC        | BY ICAP     | UG/L   | 10   | U      | 10                    | U | :10  | U | : 10  | U          | 40   |   | 40    |          |
| WMO4 BARIUM         | BY ICAP     | UG/L   | 200  | U      | 200                   | U | 200  | U | 200   | U          | 2000 |   | 2000  |          |
| WMO5 BERYLLIUM      | BY ICAP     | UG/L   | 5.0  | U      | 5.0                   | U | 5.0  | Ų | 5 0   | υ          | :50  |   | : 49  |          |
| WMO6 CADMIUM        | BY ICAP     | UG/L   | 5.0  | U      | 5.0                   | U | 5.0  | U | 5.0   | U          | 50   |   | 54    |          |
| WMO7 COBALT         | BY ICAP     | UG/L   | 50   | U      | 50                    | U | 50   | U | 50    | U          | :500 |   | :480  |          |
| WMO8 CHROMIUM       | BY ICAP     | . UG/L | :10  | U      | 10                    | U | :10  | U | . 10  | U          | 200  |   | . 190 | <b>-</b> |
| WMO9 COPPER         | BY ICAP     | :UG/L  | : 25 | U      | 25                    | U | 25   | U | 25    | U          | 250  |   | 240   |          |
| WM10 IRON           | BY ICAP     | .UG/L  | 260  |        | .18                   |   | 100  | υ | 170   |            | 1000 |   | 1100  |          |
| WM11 MANGANESE      | BY ICAP     | UG/L   | :56  |        | :50                   |   | 20   |   | :50   |            | 500  |   | 530   |          |
| WM12 MOLYBDENUM     | BY ICAP     | UG/L   | N/A  | 0      | :N/A                  | 0 | :N/A | 0 | N/A   | 0          | N/A  | 0 | :N/A  | 0        |
| WM13 NICKEL         | BY JOAN     | UG/L   | . 40 | <br>ij | : 40                  | U | 40   | U | 40    | U          | 500  |   | :520  |          |
| WM14 LEAD           | BY ICAP     | :UG/L  | : 30 |        | : 27                  |   | : 32 |   | 28    |            | . 20 |   | : 48  |          |
| WM15 ANTIMONY       | BY ICAP     | UG/L   | 60   | U      | 60                    | U | 60   | U | 60    | υ          | :500 |   | 520   |          |
| WM16 SELENIUM       | BY ICAP     | UG/L   | 5.0  | U      | 5.0                   | U | 5 0  | U | 5.0   | U          | 10   |   | :8.6  |          |
| WM17 TITANIUM       | BY ICAP     | · UG/L | N/A  | 0      | N/A                   | 0 | N/A  | 0 | :N/A  | 0          | N/A  | 0 | N/A   | 0        |
| WM18 THALLIUM       | BY ICAP     | UG/L   | 10   | U      | 10                    | U | 10   | U | 10    | U          | :50  |   | : 50  |          |
| WM19 VANADIUM       | BY ICAP     | UG/L   | 50   | Ū      | :50                   | U | 50   | U | 50    | U          | 500  |   | 480   |          |
| WM20 ZINC           | BY ICAP     | UG/L   | 130  |        | 150                   |   | 120  |   | : 150 |            | 500  |   | 640   |          |
| WM21 CALCIUM, TOTAL | L BY ICAP   | MG/L   | 43   |        | . 48                  |   | 86   |   | 48    |            | N/A  | 0 | N/A   | 0        |
| WM22 MAGNESIUM, TO  | TAL BY ICAP | MG/L   | 24   |        | 27                    |   | : 46 |   | 27000 |            | :N/A | 0 | : N/A | 0        |
| WM23 SODIUM, TOTAL  | BY ICAP     | MG/L   | 5.0  | U      | 5.0                   | U | 22   |   | :5.0  | U          | N/A  | 0 | N/A   | 0        |
|                     |             |        |      |        | :                     |   | :    |   |       |            | -:   |   |       |          |

| COMPOU                      | ND      | UNITS | 213   |   | 214  |   | 215  |       | 215L  | 215R                                                | 2155        |   |
|-----------------------------|---------|-------|-------|---|------|---|------|-------|-------|-----------------------------------------------------|-------------|---|
| WM24 POTASSIUM, TOTAL BY IC | CAP     | MG/L  | 5.0   | U | 5.0  | U | .5.0 | <br>U | 5.0 U | N/A 0                                               | : N/A       | 0 |
| WM35 SILVER.DISSOLVED       | BY ICAP | UG/L  | : 10  | U | : 10 | U | 10   |       | :     | :                                                   | :           | : |
| WM36 ALUMINUM, DISSOLVED    | BY ICAP | :UG/L | 200   | U | 200  | U | 200  | U     | :     | :                                                   | -:          | : |
| WM37 ARSENIC.DISSOLVED      | BY ICAP | UG/L  | 10    | U | 10   | U | 10   | U     |       |                                                     | -:          | : |
| WM38 BARIUM, DISSOLVED      | BY ICAP | :UG/L | 200   | U | 200  | υ | 200  | U     |       | :                                                   | :           | : |
| WM39 BERYLLIUM.DISSOLVED    | BY ICAP | UG/L  | :5.0  | U | :5.0 | υ | :5 0 | U     | :     |                                                     | <del></del> |   |
| WM40 CADMIUM.DISSOLVED      | BY ICAP | :UG/L | :5.0  | U | 5.0  | U | 5.0  | U     |       |                                                     | - :         |   |
| WM41 COBALT.DISSOLVED       | BY ICAP | :UG/L | :50   | V | 50   | υ | 50   | U     | :     |                                                     |             |   |
| WM42 CHROMIUM, DISSOLVED    | BY ICAP | :UG/L | 10    | U | 10   | U | 10   | U     |       | :                                                   | - :         |   |
| WM43 COPPER.DISSOLVED       | BY ICAP | UG/L  | 25    | U | 25   | U | 25   | U     |       | :                                                   | -:          |   |
| WM44 IRON.DISSOLVED         | BY ICAP | .UG/L | 100   | U | 100  | U | 100  | บ     | :     | · .                                                 | :           |   |
| WM45 MANGANESE, DISSOLVED   | BY ICAP | UG/L  | : 35  |   | 34   |   | 15   | U     |       |                                                     | -:          |   |
| WM46 MOLYBDENUM.DISSOLVED   | BY ICAP | UG/L  | : N/A | 0 | N/A  | 0 | N/A  | 0     |       | :                                                   | :           |   |
| WM47 NICKEL, DISSOLVED      | BY ICAP | UG/L  | 40    | U | 40   | U | 40   | U     |       |                                                     | - :         |   |
| WM48 LEAD.DISSOLVED         | BY ICAP | UG/L  | 5 4   | _ | 5 7  |   | 16   |       |       |                                                     | :           |   |
| WM49 ANTIMONY DISSOLVED     | BY ICAP | UG/L  | 60    | ΰ | :6Ū  | U | :60  | U     | :     |                                                     |             |   |
| WM50 SELENIUM.DISSOLVED     | BY ICAP | UG/L  | 5.0   | U | 5 0  | U | 5.0  | U     |       |                                                     |             |   |
| WM51 TITANIUM DISSOLVED     | BY ICAP | :UG/L | N/A   | 0 | N/A  | 0 | N/A  | 0     |       |                                                     |             |   |
| WM52 THALLIUM.DISSOLVED     | BY ICAP | UG/L  | :10   | U | 10   | V | 10   | U     |       | :                                                   | :           |   |
| WM53 VANADIUM, DISSOLVED    | BY ICAP | UG/L  | 50    | U | 50   | U | 50   | U     | :     | :                                                   | :           |   |
| WM54 ZINC.DISSOLVED         | BY ICAP | UG/L  | 110   |   | 130  |   | :130 |       |       |                                                     | <del></del> |   |
| WM55 CALCIUM.DISSOLVED      | BY ICAP | MG/L  | 47    |   | 50   |   | 93   |       |       | :                                                   |             |   |
| WM56 MAGNESIUM.DISSOLVED    | BY ICAP | MG/L  | 26    |   | 28   |   | 50   |       | :     |                                                     | :           |   |
| WM57 SODIUM, DISSOLVED      | BY ICAP | MG/L  | 5 0   | U | 5.0  | U | 23   |       |       | :                                                   |             |   |
| WM58 POTASSIUM, DISSOLVED   | BY ICAP | .MG/L | 5.0   | U | :5.0 | U | 5.0  | U     | :     | · . – <del>– – – – – – – – – – – – – – – – – </del> | -;<br>:     |   |
| ZZO1 SAMPLE NUMBER          |         | : NA  | 213   |   | 214  |   | 215  |       | : 215 | 215                                                 | 215         |   |

|                    | COMPOUND | UNITS    | 112    |    | 112D   |       | 113    |   | 114     |   | 115          |          | 116          |          |
|--------------------|----------|----------|--------|----|--------|-------|--------|---|---------|---|--------------|----------|--------------|----------|
| SMO1 SILVER        | BY ICAP  | : MG/KG: | 4.2    | U  | : 13   | <br>J | 2.5    | U | 2.9     | u | :<br>: 5 · 6 | <br>J    | :<br>: 2 . 3 | :<br>U : |
| SMO2 ALUMINUM      | BY ICAP  | : MG/KG  | 1600   |    | 1800   |       | 2000   |   | : 1800  |   | 1300         |          | 2000         | :        |
| SMO3 ARSENIC       | BY ICAP  | :MG/KG:  | 11     |    | 6.4    |       | 18     |   | 7.9     |   | :21          |          | 7.1          | :        |
| SMO4 BARIUM        | BY ICAP  | MG/KG    | 50     | U  | 49     | U     | 49     | U | 46      | U | :63          | J        | 46           | U :      |
| SMO5 BERYLLIUM     | BY ICAP  | MG/KG:   | 1.3    | U  | 1.2    | U     | 1.2    | U | 1.2     | U | :1.5         |          | 1.2          | U :      |
| SMO6 CADMIUM       | BY ICAP  | :MG/KG   | 63     |    | 120    |       | : 16   |   | 28      |   | : 18         | <b></b>  | 14           | :        |
| SMO7 COBALT        | BY ICAP  | MG/KG:   | 13     | U  | 12     | U     | .12    | U | 12      | U | 16           |          | 12           | :        |
| SMO8 CHROMIUM      | BY ICAP  | MG/KG    | 7.7    |    | 4.4    |       | 7.9    |   | 18      |   | : 2 9        |          | 6 4          | :        |
| SMO9 COPPER        | BY ICAP  | MG/KG    | 6.7    | U  | 7.1    | U     | :6.2   | U | 6.7     | U | : 25         |          | 15           |          |
| SM10 IRON          | BY ICAP  | MG/KG    | 25000  |    | 29000  |       | 23000  |   | 26000   |   | 39000        |          | 26000        |          |
| SM11 MANGANESE     | BY ICAP  | :MG/KG:  | 3300   | J  | 3300   | J     | 3100   | J | :3100   | J | 5500         | J        | 3200         | J ·      |
| SM12 MOLYBDENUM    | BY ICAP  | :MG/KG   | N/A    | 0  | : N/A  | 0     | N/A    | 0 | N/A     | 0 | N/A          | 0        | N/A          | 0 :      |
| SM13 NICKEL        | BY ICAP  | MG/KG:   | 12     |    | 9.8    | U     | 12     |   | 11      |   | 18           |          | 13           |          |
| SM14 LEAD          | BY ICAP  | :MG/KG:  | 3100   |    | 3400   |       | 2500   |   | 3800    |   | 3500         |          | 1200         |          |
| SM15 ANTIMONY      | BY ICAP  | MG/KG    | 15     | U  | 15     | U     | 15     | U | 14      | U | 15           | U        | : 14         | U        |
| SM16 SELENIUM      | BY ICAP  | MG/NG    | 1.3    | ij | :1-2   | U     | 1 2    | U | 1.2     | U | 1 3          | U        | 1 2          | U :      |
| SM17 TITANIUM      | By ICAP  | : MG/KG  | N/A    | 0  | N/A    | 0     | : N/A  | 0 | : N/A   | 0 | N/A          | 0        | :N/A         | 0        |
| SM18 THALLIUM      | BY ICAP  | :MG/K.G  | 2.5    | υ  | 2.4    | U     | 2.5    | U | 2 3     | U | . 2 . 5      | U        | 2.3          | U        |
| SM19 VANADIUM      | BY ICAP  | :MG/KG   | 15     |    | 17     |       | 12     |   | 17      |   | : 13         | บ        | 16           |          |
| SM2O ZINC          | BY ICAP  | MG/KG:   | 3300   |    | 6700   |       | 810    |   | 1800    |   | 970          |          | 1000         |          |
| SM21 CALCIUM       | BY ICAP  | .MG/KG   | 160000 |    | 150000 |       | 160000 |   | 150000  |   | 180000       | <b>-</b> | 140000       |          |
| SM22 MAGNESIUM     | BY ICAP  | MG/KG    | 87000  |    | 86000  |       | 87000  |   | : 88000 |   | 100000       |          | 76000        |          |
| SM23 SODIUM        | BY ICAP  | .MG/KG.  | 1300   | U  | 1200   | U     | 1200   | U | 1200    | U | 1300         | U        | 1200         | U .      |
| SM24 POTASSIUM     | BY ICAP  | MG/KG:   | 1300   | U  | : 1200 | U     | 1200   | U | 1200    | U | 1300         | U        | 1200         | U        |
| ZZO1 SAMPLE NUMBER | \        | : NA     | 112    |    | 112    |       | 113    |   | : 114   |   | 115          |          | 116          | :        |
| ZZO2 ACTIVITY CODE |          | : NA     | CSXCR  |    | CSXCR  |       | CSXCR  |   | CSXCR   |   | CSXCR        |          | CSXCR        | :        |

|                   | COMPOUND | UNITS      | 117     |   | 118     |       | 118L   |          | 118R  |   | 1185  |   | 119     |   |
|-------------------|----------|------------|---------|---|---------|-------|--------|----------|-------|---|-------|---|---------|---|
| SMO1 SILVER       | BY ICAP  | :MG/KG:5   | <br>. 1 | J | 2.1     | <br>U | 4.5    | <u>-</u> | 10    |   | 13    |   | 2.1     | U |
| SMO2 ALUMINUM     | BY ICAP  | : MG/KG: 7 | 00      |   | 830     |       | 660    |          | : N/A | 0 | : N/A | 0 | 1200    |   |
| SMO3 ARSENIC      | BY ICAP  | :MG/KG:1   | 1       |   | 2.2     | U     | 2.2    | U        | 8.2   |   | 9.0   |   | 5.5     | J |
| SMO4 BARIUM       | BY ICAP  | MG/KG:4    | 8       | U | 110     | J     | 41     | U        | 410   |   | 640   |   | 42      | U |
| SMO5 BERYLLIUM    | BY ICAP  | MG/KG:1    | . 4     | U | 1.0     | U     | 1 3    | U        | 10    |   | 11    |   | 1.1     | U |
| SMO6 CADMIUM      | BY ICAP  | MG/KG:3    | 7       |   | 1.0     | U     | 4.0    | U        | : 10  |   | 12    |   | 6.1     |   |
| SMO7 COBALT       | BY ICAP  | MG/KG:4    | 4       |   | 10      | U     | 3.1    |          | 100   |   | 120   |   | 11      | U |
| SMO8 CHROMIUM     | BY ICAP  | MG/KG 2    | . 8     |   | 4.4     |       | 4.7    |          | 41    |   | 47    |   | 4.7     |   |
| SMO9 COPPER       | BY ICAP  | MG/KG 3    | 20      |   | 5.2     | U     | 12     | U        | 51    |   | :56   |   | 8.2     | U |
| SM10 IRON         | BY ICAP  | MG/KG:4    | 7000    |   | 6200    |       | 4700   |          | N/A   | 0 | :N/A  | 0 | 15000   |   |
| SM11 MANGANESE    | BY ICAP  | . MG/KG: 5 | 300     | J | 900     | J     | 220    |          | : 100 |   | :1500 |   | . 1700  | J |
| SM12 MOLYBDENUM   | BY ICAP  | :MG/KG:N   | /A      | 0 | N/A     | 0     | N/A    | 0        | N/A   | 0 | N/A   | 0 | N/A     | 0 |
| SM13 NICKEL       | BY ICAP  | MG/KG.5    | 8       |   | 5.8     |       | 8.2    | U        | 100   |   | 120   |   | 13      |   |
| SM14 LEAD         | BY ICAP  | MG/KG:8    | 700     |   | 4.4     |       | 17     | U        | 100   |   | 120   |   | 610     |   |
| SM15 ANTIMONY     | BY ICAP  | MG/KG 1    | 5       | U | 12      | U     | 12     | U        | 100   |   | .98   |   | :13     | U |
| SM16 SELENIUM     | BY ICAP  | .MG/FG.7   | . 2     |   | . 1 . 0 | U     | 1 0    | U        | 2.1   |   | 2.2   |   | . 1 . 1 | U |
| SM17 TITANIUM     | By ICAP  | MG/KG.N    | /A      | 0 | N/A     | 0     | .N/A   | 0        | :N/A  | 0 | :N/A  | 0 | : N/A   | 0 |
| SM18 THALLIUM     | BY ICAP  | MG/KG:2    | . 4     | U | 2 1     | U     | 2.1    | U        | 10    |   | 9.4   |   | 2.1     | U |
| SM19 VANADIUM     | BY ICAP  | :MG/KG:1   | 2       | U | 10      | U     | 10     | U        | 100   |   | :120  |   | 11      |   |
| SM20 ZINC         | BY ICAP  | MG/KG:1    | 500     |   | 7.7     | U     | 14     | U        | 100   |   | 120   |   | 370     |   |
| SM21 CALCIUM      | BY ICAP  | MG/KG:2    | 10000   |   | 1500    |       | : 1000 | U        | N/A   | 0 | :N/A  | 0 | :59000  |   |
| SM22 MAGNESIUM    | BY ICAP  | MG/KG:1    | 10000   |   | 1000    | U     | 1000   | U        | N/A   | 0 | N/A   | 0 | 31000   |   |
| SM23 SODIUM       | BY ICAP  | MG/KG.1    | 200     | U | 1000    | U     | 1000   | U        | :N/A  | 0 | N/A   | 0 | . 1100  | U |
| SM24 POTASSIUM    | BY ICAP  | :MG/KG:1   | 200     | U | 1000    | U     | 1000   | U        | N/A   | 0 | :N/A  | 0 | 1100    | U |
| ZZO1 SAMPLE NUMBE | R        | . NA : 1   | 17      |   | 118     |       | :118   |          | :118  |   | :118  |   | :119    |   |
| ZZO2 ACTIVITY COD | E        | NA C       | SXCR    |   | CSXCR   |       | CSXCR  |          | CSXCR |   | CSXCR |   | CSXCR   |   |

ACTIVITY: O-CSXCR

|                 | COMPOUND | UNITS 120    | ) 20            | 201   | 202                                   | 203                                   | 204           |
|-----------------|----------|--------------|-----------------|-------|---------------------------------------|---------------------------------------|---------------|
| SMO1 SILVER     | BY ICAP  | :MG/KG:2.2   | U :             | :     | :                                     | ·                                     | :             |
| SMO2 ALUMINUM   | BY ICAP  | MG/KG:930    | :               |       | :                                     | :                                     | :             |
| SMO3 ARSENIC    | BY ICAP  | :MG/KG:4.5   | U :             | :     | :                                     | :                                     | <del></del> ; |
| SMO4 BARIUM     | BY ICAP  | :MG/KG:43    | U :             | :     |                                       | :                                     | :             |
| SMO5 BERYLLIUM  | BY ICAP  | :MG/KG:1.1   | U :             | ·     | :                                     |                                       |               |
| SMOG CADMIUM    | BY ICAP  | MG/KG:3.7    | U :             | :     | :                                     | :                                     | :             |
| SMO7 COBALT     | BY ICAP  | :MG/KG:1.1   | U :             | :     | :                                     | · · · · · · · · · · · · · · · · · · · |               |
| SMO8 CHROMIUM   | BY ICAP  | MG/KG:3.1    | - <del></del> : | :     | :<br>:                                | :                                     | :             |
| SMO9 COPPER     | BY ICAP  | :MG/KG:8.5   | U :             | :     | :                                     | :<br>:                                | :             |
| SM10 IRON       | BY ICAP  | MG/KG: 15000 | :               |       | ·:                                    | · :                                   | :             |
| SM11 MANGANESE  | BY ICAP  | MG/KG:1800   | J :             |       | :                                     | <u>-</u>                              | :             |
| SM12 MOLYBDENUM | BY ICAP  | :MG/KG:N/A   | 0               | :     | :                                     |                                       | :             |
| SM13 NICKEL     | BY ICAP  | MG/KG:8.6    | U               | :     |                                       | :                                     | :             |
| SM14 LEAD       | BY ICAP  | MG/KG:680    |                 |       |                                       | · : <del>-</del>                      | :             |
| SM15 ANTIMONY   | BY ICAP  | MG/KG 13     | U               |       |                                       |                                       | :             |
| SM16 SELENIUM   | BY ICAP  | .MG/%G.1.1   | υ:              |       |                                       | · · · · · · · · · · · · · · · · · · · |               |
| SM17 TITANIUM   | By ICAP  | :MG/KG:N/A   | 0 .             |       | : : : : : : : : : : : : : : : : : : : | :                                     |               |
| SM18 THALLIUM   | BY ICAP  | MG/KG: 2.2   | U :             |       | :<br>:                                | :                                     |               |
| SM19 VANADIUM   | BY ICAP  | :MG/KG:11    | U :             | :     | :                                     | :                                     | :             |
| SM20 ZINC       | BY ICAP  | :MG/KG:290   |                 |       | :                                     | :                                     | :             |
| SM21 CALCIUM    | BY ICAP  | MG/KG:66000  | :               | :     |                                       | :                                     | :             |
| SM22 MAGNESIUM  | BY ICAP  | MG/KG: 35500 | :               | :     | :<br>:                                | :                                     | :             |
| SM23 SODIUM     | BY ICAP  | MG/KG:1100   | U .             |       | :                                     | :                                     | :             |
| SM24 POTASSIUM  | BY ICAP  | :MG/KG:1100  | U               | :     |                                       | :                                     | : <del></del> |
| WFO1 WATER TEMP |          | · 'C         | 24              | 27    | 26                                    | 25                                    | : 23          |
| WF05 PH, FIELD  |          | SU           | :6.96           | .7.23 | 7.20                                  | 7 48                                  | 7.27          |

1

| COMPOUND           | UNITS 213 | 214 215     | 215L  | 215R  | 2155  |
|--------------------|-----------|-------------|-------|-------|-------|
| ZZO2 ACTIVITY CODE | NA CSXCR  | CSXCR CSXCR | CSXCR | CSXCR | CSXCR |

|                   | COMPOUND     | UNITS          | 216  |        | 217  |   | 218   |   | 219  |   | 219L  |   | 219  | R        |
|-------------------|--------------|----------------|------|--------|------|---|-------|---|------|---|-------|---|------|----------|
| WF01 WATER TEMP   |              | , c            | 27   |        | 23   |   | 27    |   | 25   |   | :     |   | :    |          |
| WF05 PH, FIELD    |              | SU             | 7.26 |        | 7.58 |   | 7.34  |   | 7.46 |   | :     |   | :    |          |
| WF10 CONDUCTIVITY | (FIELD)      | UMHOS          | 348  |        | 650  |   | 205   |   | 315  |   | :     |   | :    |          |
| WMO1 SILVER       | BY ICAP      | UG/L           | 10   | U      | 10   | U | 10    | U | 10   | υ | N/A   | 0 | :N/A | 0        |
| WMO2 ALUMINUM     | BY ICAP      | UG/L           | 220  | U      | 200  | U | 360   | U | 200  | U | :N/A  | 0 | :N/A | 0        |
| WMO3 ARSENIC      | BY ICAP      | UG/L           | 10   | U      | 10   | Ų | :10   | U | 10   | U | :10   | U | 40   |          |
| WMO4 BARIUM       | BY ICAP      | : UG/L         | 200  | U      | 200  | U | 200   | U | 200  | U | : N/A | 0 | :N/A | 0        |
| WMO5 BERYLLIUM    | BY ICAP      | : UG/L         | 5.0  | U      | 5.0  | U | :5.0  | U | :5.0 | U | :N/A  | 0 | N/A  | 0        |
| WMO6 CADMIUM      | BY ICAP      | UG/L           | 5.0  | U      | 5.0  | U | 5.0   | U | 5.0  | U | :N/A  | 0 | :N/A | 0        |
| WMO7 COBALT       | BY ICAP      | UG/L           | 50   | U      | 50   | U | 50    | บ | 50   | บ | :N/A  | 0 | :N/A | :<br>0 : |
| WMO8 CHROMIUM     | BY ICAP      | : UG/L         | 10   | υ<br>υ | 12   | U | 10    | U | 10   | U | :N/A  | 0 | :N/A | 0        |
| WMO9 COPPER       | BY ICAP      | UG/L           | : 25 | U      | 25   | U | 25    | U | 25   | U | N/A   | 0 | :N/A | 0        |
| WM10 IRON         | BY ICAP      | . UG/L         | 290  |        | 770  |   | : 450 |   | 160  |   | : N/A | 0 | :N/A | 0 .      |
| WM11 MANGANESE    | BY ICAP      | UG/L           | 62   |        | 17   |   | 73    |   | 61   |   | N/A   | 0 | :N/A | 0        |
| WM12 MOLYBDENUM   | BY ICAP      | :UG/L          | N/A  | 0      | N/A  | 0 | :N/A  | 0 | :N/A | 0 | :N/A  | 0 | :N/A | 0        |
| MMJ3 NICKEL       | BY ICAD      | . UG/L         | . 40 | Ü      | : 40 | υ | :40   | U | 40   | U | N/A   | 0 | N/A  | 0        |
| WM14 LFAD         | BY ICAP      | :UG/L          | : 49 |        | .22  |   | 3.0   | Ü | : 26 | J | : 28  |   | : 20 |          |
| WM15 ANTIMONY     | BY ICAP      | UG/L           | 60   | U      | 60   | U | 60    | U | :60  | U | N/A   | 0 | :N/A | 0 .      |
| WM16 SELENIUM     | BY ICAP      | : UG/L         | 5.0  | U      | 5.0  | U | :5.0  | U | 5.0  | U | :5.0  | U | :10  | :        |
| WM17 TITANIUM     | BY ICAP      | UG/L           | N/A  | 0      | N/A  | 0 | :N/A  | 0 | N/A  | 0 | : N/A | 0 | :N/A | 0        |
| WM18 THALLIUM     | BY ICAP      | UG/L           | 10   | U      | 10   | υ | 10    | U | 10   | U | : 10  | U | 50   |          |
| WM19 VANADIUM     | BY ICAP      | UG/L           | :50  | U      | 50   | U | 50    | U | 50   | U | N/A   | 0 | N/A  | 0        |
| WM20 ZINC         | BY ICAP      | UG/L           | 130  |        | 34   | U | 20    | U | 91   |   | :N/A  | 0 | N/A  | 0        |
| WM21 CALCIUM, TOT | AL BY ICAP   | : <b>M</b> G/L | :50  |        | 71   |   | :34   |   | 51   |   | :N/A  | 0 | :N/A | 0        |
| WM22 MAGNESIUM, T | OTAL BY ICAP | :MG/L          | 27   |        | 44   |   | : 15  |   | 28   |   | :N/A  | 0 | :N/A | 0        |
| WM23 SODIUM, TOTA | AL BY ICAP   | : <b>M</b> G/L | :5.3 |        | 71   |   | :5.0  | U | :5.8 |   | :N/A  | 0 | N/A  | 0        |

| COMPOUN                      | ID      | UNITS | 216   |                | 217  |   | 218 |   | 219  |   | 219L |          | 219R                                  |   |
|------------------------------|---------|-------|-------|----------------|------|---|-----|---|------|---|------|----------|---------------------------------------|---|
| WM24 POTASSIUM, TOTAL BY IC  | CAP     | MG/L  | 5.0   | <del>-</del> - | : 14 |   | 5.0 | บ | 5.0  | U | N/A  | 0        | :<br>: N/A                            | 0 |
| WM35 SILVER, DISSOLVED E     | BY ICAP | UG/L  | 10    | U              | 10   | υ | 10  | U | 10   | υ | :    |          | :                                     |   |
| WM36 ALUMINUM.DISSOLVED E    | BY ICAP | UG/L  | 200   | U              | 200  | U | 200 | U | 200  | U | :    |          | · · · · · · · · · · · · · · · · · · · |   |
| WM37 ARSENIC, DISSOLVED E    | Y ICAP  | UG/L  | 10    | υ              | :10  | υ | :10 | υ | 10   | υ | :    |          | :                                     |   |
| WM38 BARIUM.DISSOLVED E      | Y ICAP  | UG/L  | 200   | U              | 200  | U | 200 | U | 200  | U | :    |          | :                                     |   |
| WM39 BERYLLIUM.DISSOLVED E   | Y ICAP  | UG/L  | 5.0   | U              | 5.0  | U | 5.0 | U | 5.0  | U | :    |          | :                                     |   |
| WM40 CADMIUM, DISSOLVED E    | Y ICAP  | UG/L  | 5.0   | U              | 5.0  | Ü | 5.0 | U | 5.0  | U | :    |          | :                                     |   |
| WM41 COBALT, DISSOLVED E     | BY ICAP | UG/L  | 50    | U              | 50   | U | 50  | U | 50   | υ | :    |          | :                                     |   |
| WM42 CHROMIUM, DISSOLVED E   | BY ICAP | UG/L  | 10    | U              | : 18 | U | 10  | U | 10   | U |      |          | :                                     |   |
| WM43 COPPER.DISSOLVED E      | BY ICAP | UG/L  | 25    | U              | 25   | U | 25  | U | 25   | U | :    |          | :                                     |   |
| WM44 IRON.DISSOLVED E        | BY ICAP | UG/L  | 100   | υ              | 100  | υ | 100 | U | 100  | U | :    |          | :                                     |   |
| WM45 MANGANESE, DISSOLVED E  | BY ICAP | UG/L  | : 44  |                | : 15 | U | 35  |   | 36   |   | :    |          | :                                     |   |
| WM46 MOLYBDENUM, DISSOLVED E | Y ICAP  | UG/L  | . N/A | 0              | N/A  | 0 | N/A | 0 | N/A  | 0 | :    |          |                                       |   |
| WM47 NICKEL, DISSOLVED E     | BY ICAP | UG/L  | :40   | U              | 40   | U | 40  | U | 40   | U | :    |          | :                                     |   |
| WM48 LEAD, DISSOLVED E       | BY ICAP | UG/L  | 9.5   | -              | 11   |   | 3.0 | U | 8.2  | J | :    | <b>-</b> | :                                     |   |
| WM49 ANTIMONY, DISSOLVED E   | BY ICAP | UG/L  | 60    | Ü              | 60   | υ | :60 | U | 60   | U | :    |          | :                                     |   |
| WM50 SELENIUM, DISSOLVED E   | BY ILAP | UG/L  | 5.0   | U              | 5.0  | U | 5.0 | U | 5.0  | U | :    |          | :                                     |   |
| WM51 TITANIUM.DISSOLVED E    | BY ICAP | UG/L  | : N/A | 0              | N/A  | 0 | N/A | 0 | N/A  | 0 | :    |          | :                                     |   |
| WM52 THALLIUM.DISSOLVED E    | BY ICAP | UG/L  | 10    | U              | 10   | V | 10  | U | 10   | U | :    |          | :                                     |   |
| WM53 VANADIUM, DISSOLVED E   | BY ICAP | UG/L  | 50    | U              | 50   | U | 50  | U | 50   | U | :    |          | :                                     |   |
| WM54 ZINC, DISSOLVED         | BY ICAP | UG/L  | 100   |                | 31   | υ | 20  | U | 62   |   | :    |          | :                                     |   |
| WM55 CALCIUM, DISSOLVED E    | BY ICAP | MG/L  | 54    |                | 77   |   | 37  |   | 53   |   | :    |          | :                                     |   |
| WM56 MAGNESIUM, DISSOLVED E  | BY ICAP | MG/L  | 30    |                | 48   |   | 16  |   | 29   |   | :    |          | :                                     |   |
| WM57 SODIUM.DISSOLVED E      | BY ICAP | MG/L  | 5.9   |                | 76   |   | 5.0 | U | 6.1  |   | :    |          | :                                     |   |
| WM58 POTASSIUM, DISSOLVED    | BY ICAP | MG/L  | 5.0   | U              | : 16 |   | 5.0 | U | 5.0  | U | ·    |          | :                                     |   |
| ZZO1 SAMPLE NUMBER           |         | :NA   | 216   |                | 217  |   | 218 |   | :219 |   | 219  |          | 219                                   |   |

| COMPOUND           | UNITS   | 216   | 217   | 218   | 219   | 219L  | 219R   |
|--------------------|---------|-------|-------|-------|-------|-------|--------|
| ZZO2 ACTIVITY CODE | :<br>NA | CSXCR | CSXCR | CSXCR | CSXCR | CSXCR | :CSXCR |

|                     | COMPOUND                                | UNITS  | 2195  |   | 220  |   | 220L  |   | 220R  |   | 2205  |   | 300       |        |
|---------------------|-----------------------------------------|--------|-------|---|------|---|-------|---|-------|---|-------|---|-----------|--------|
| WFO1 WATER TEMP     | · • • • • • • • • • • • • • • • • • • • | : 'C   | :     |   | 26   |   | :     |   | :     |   | :     |   | :<br>: 22 |        |
| WF05 PH, FIELD      |                                         | SU     | :     |   | 7.4  |   |       |   | :     |   |       |   | : 7.38    |        |
| WF10 CONDUCTIVITY   | (FIELD)                                 | UMHOS  | :     |   | 310  |   | :     |   |       |   | :     |   | :600      |        |
| WMO1 SILVER         | BY ICAP                                 | UG/L   | N/A   | 0 | 10   | U | 10    | U | 50    |   | :55   |   | : 10      | U      |
| WMO2 ALUMINUM       | BY ICAP                                 | UG/L   | N/A   | 0 | :210 |   | 200   | U | 2000  |   | 2200  |   | 250       |        |
| WMO3 ARSENIC        | BY ICAP                                 | :UG/L  | 44    |   | 10   | U | :N/A  | 0 | : N/A | 0 | N/A   | 0 | 10        | U      |
| WMO4 BARIUM         | BY ICAP                                 | UG/L   | : N/A | 0 | 200  | υ | 200   | υ | 2000  |   | 2200  |   | 200       | υ      |
| WMO5 BERYLLIUM      | BY ICAP                                 | UG/L   | : N/A | 0 | 5.0  | U | 5 0   | U | :50   |   | 47    |   | 5.0       | U      |
| WMO6 CADMIUM        | BY ICAP                                 | UG/L   | N/A   | 0 | :5.0 | U | 5.0   | U | :50   |   | 62    |   | :5.5      |        |
| WMO7 COBALT         | BY ICAP                                 | :UG/L  | : N/A | 0 | 50   | U | 50    | U | 500   |   | 510   |   | 50        | U      |
| WMO8 CHROMIUM       | BY ICAP                                 | . UG/L | : N/A | 0 | 10   | U | 10    | U | : 200 |   | 200   |   | 10        | U      |
| WMO9 COPPER         | BY ICAP                                 | UG/L   | : N/A | 0 | : 25 | U | 25    | U | 250   |   | 250   |   | 25        | U      |
| WM10 IRON           | BY ICAP                                 | : UG/L | N/A   | 0 | 340  |   | :330  |   | 1000  |   | 1300  |   | 1700      |        |
| WM11 MANGANESE      | BY ICAP                                 | : UG/L | N/A   | 0 | 99   |   | 99    |   | :500  |   | .610  |   | : 360     |        |
| WM12 MOLYBDENUM     | BY ICAP                                 | UG/L   | N/A   | 0 | N/A  | 0 | N/A   | 0 | :N/A  | 0 | N/A   | 0 | : N/A     |        |
| WM13 MICKEL         | BY ICAP                                 | UG/L   | .N/A  | Û | 4Ü   | υ | 40    | U | 500   |   | 510   |   | 40        |        |
| WM14 LEAD           | By ICAP                                 | .UG/L  | .44   | , | .49  | J | .69   |   | .500  |   | 620   |   | : 250     | ·<br>J |
| WM15 ANTIMONY       | BY ICAP                                 | UG/L   | N/A   | 0 | :60  | U | :60   | U | 500   |   | 520   |   | 60        | u      |
| WM16 SELENIUM       | BY ICAP                                 | UG/L   | 12    |   | 5.0  | U | N/A   | 0 | :N/A  | 0 | : N/A | 0 | 5.0       | <br>U  |
| WM17 TITANIUM       | BY ICAP                                 | UG/L   | N/A   | 0 | N/A  | 0 | N/A   | 0 | :N/A  | 0 | :N/A  | 0 | N/A       | C      |
| WM18 THALLIUM       | BY ICAP                                 | :UG/L  | 48    |   | : 10 | U | . N/A | 0 | :N/A  | 0 | N/A   | 0 | 10        |        |
| WM19 VANADIUM       | BY ICAP                                 | : UG/L | :N/A  | 0 | 50   | U | 50    | U | 500   |   | .510  |   | 50        | U      |
| WM20 ZINC           | BY ICAP                                 | . UG/L | : N/A | 0 | 70   |   | 68    |   | 500   |   | 580   |   | : 3400    |        |
| WM21 CALCIUM, TOTAL | L BY ICAP                               | MG/L   | N/A   | 0 | 51   |   | 51    |   | :N/A  | 0 | N/A   | 0 | 130       |        |
| WM22 MAGNESIUM, TO  | TAL BY ICAP                             | MG/L   | :N/A  | 0 | 28   |   | :28   |   | :N/A  | 0 | :N/A  | 0 | 52        |        |
| WM23 SODIUM, TOTAL  | BY ICAP                                 | : MG/L | : N/A | 0 | 6.3  |   | :6.3  |   | . N/A | 0 | :N/A  | 0 | :5.0      |        |

| COMPO                      | UND     | UNITS       | 2195          | 220  |   | 220L          | 220R          |              | 2205         | 300   |                |
|----------------------------|---------|-------------|---------------|------|---|---------------|---------------|--------------|--------------|-------|----------------|
| WM24 POTASSIUM, TOTAL BY   | ICAP    | :<br>MG/L : | N/A 0         | 5.0  | U | :<br>: 5 . 0  | U :N/A        | 0            | N/A          | 0:6.0 |                |
| WM35 SILVER, DISSOLVED     | BY ICAP | UG/L        |               | 10   | U | :             | :             | :            |              | :10   | U              |
| WM36 ALUMINUM, DISSOLVED   | BY ICAP | :UG/L       |               | 200  | U |               |               | :            |              | . 200 | U              |
| WM37 ARSENIC, DISSOLVED    | BY ICAP | UG/L        |               | . 10 | U | :             |               | :            |              | 10    | U              |
| WM38 BARIUM.DISSOLVED      | BY ICAP | UG/L        |               | 200  | U |               | : <del></del> |              | <del>-</del> | 200   | U              |
| WM39 BERYLLIUM.DISSOLVED   | BY ICAP | UG/L        |               | 5.0  | U | :             | :             | :            |              | :5.0  | U              |
| WM40 CADMIUM.DISSOLVED     | BY ICAP | :UG/L       |               | 5.0  | U | : <del></del> | :             | :            |              | :5.0  | U              |
| WM41 COBALT, DISSOLVED     | BY ICAP | UG/L        |               | : 50 | U | :             |               | :            |              | :50   | <del>-</del> - |
| WM42 CHROMIUM, DISSOLVED   | BY ICAP | UG/L        |               | 10   | U | :             | :             | :            |              | 10    | U              |
| WM43 COPPER.DISSOLVED      | BY ICAP | UG/L        |               | 25   | U |               |               | :            |              | 25    | U              |
| WM44 IRON.DISSOLVED        | BY ICAP | :UG/L       | :             | 100  | U |               |               |              |              | 100   | U              |
| WM45 MANGANESE, DISSOLVED  | BY ICAP | UG/L        |               | 43   |   |               |               |              |              | 15    | U              |
| WM46 MOLYBDENUM, DISSOLVED | BY ICAP | UG/L        | :             | :N/A | 0 |               |               |              |              | N/A   | 0              |
| WM47 NICKEL.DISSOLVED      | BY ICAP | ·UG/L       |               | 40   | U | :             |               |              |              | 40    | U              |
| WM48 LEAD, DISSOLVED       | BY ICAP | UG/L        | . <del></del> | 11   | J |               | :             | :            |              | N/A   | 1              |
| WMAQ ANTIMONY DISSOLVED    | BY ICAP | . UG/L      |               | 60   | U | :             |               |              |              | :60   | U              |
| wM50 SELENIUM, DISSOLVED   | BY ILAP | . U6/L      | <u> </u>      | 5 0  | U | :             |               |              |              | :5.0  | U              |
| WM51 TITANIUM.DISSOLVED    | BY ICAP | UG/L        | :             | :N/A | 0 | :             | :             |              |              | N/A   | 0              |
| WM52 THALLIUM.DISSOLVED    | BY ICAP | :UG/L       |               | :10  | U | :             | :             |              |              | 10    | U              |
| WM53 VANADIUM, DISSOLVED   | BY ICAP | UG/L        | :             | :50  | U |               | :             |              |              | :50   | U              |
| WM54 ZINC, DISSOLVED       | BY ICAP | UG/L        | :             | : 39 |   |               | :             | - <b></b> -: | ·            | 1900  |                |
| WM55 CALCIUM.DISSOLVED     | BY ICAP | MG/L        | :             | :51  |   |               | :             |              |              | 120   |                |
| WM56 MAGNESIUM, DISSOLVED  | BY ICAP | MG/L        | :             | 28   |   | :             | ;             |              | ·            | .49   |                |
| WM57 SODIUM.DISSOLVED      | BY ICAP | MG/L        | :             | 6.5  |   |               |               |              |              | 5.0   | U              |
| WM58 POTASSIUM.DISSOLVED   | BY ICAP | MG/L        | :             | 5.0  | U | :             | :             |              |              | 5.0   | U              |
| ZZO1 SAMPLE NUMBER         | ·*      | NA NA       | 219           | 220  |   | 220           | 220           |              | 220          | : 300 |                |

|                    | COMPOUND | UNITS  | 2195  | 220    | 220L    | 220R  | 2205  | 300     |
|--------------------|----------|--------|-------|--------|---------|-------|-------|---------|
| ZZO2 ACTIVITY CODE |          | NA<br> | CSXCR | :CSXCR | : CSXCR | CSXCR | CSXCR | : CSXCR |

|                     | COMPOUND    | UNITS          | 301     |   | 301L  |   | 301R  | ! | 3015  |   | 302  |            | 303   |   |
|---------------------|-------------|----------------|---------|---|-------|---|-------|---|-------|---|------|------------|-------|---|
| WFO1 WATER TEMP     |             | : ''c          | 17      |   | :     |   | :     |   | :     |   | 28   |            | 28    |   |
| WF05 PH. FIELD      |             | SU             | 7.16    |   | :     |   | :     |   | :     |   | 7 25 |            | 7.07  |   |
| WF10 CONDUCTIVITY   | (FIELD)     | UMHOS          | 550     |   | :     |   |       |   | :     |   | 600  |            | 1100  |   |
| WMO1 SILVER         | BY ICAP     | UG/L           | 10      | U | : N/A | 0 | N/A   | 0 | :N/A  | 0 | 10   | U          | :14   |   |
| WMO2 ALUMINUM       | BY ICAP     | UG/L           | 200     | U | N/A   | 0 | N/A   | 0 | :N/A  | 0 | 790  |            | 29000 |   |
| WMO3 ARSENIC        | BY ICAP     | UG/L           | : 10    | u | N/A   | 0 | :N/A  | 0 | N/A   | 0 | 10   | <u>-</u> - | 21    |   |
| WMO4 BARIUM         | BY ICAP     | UG/L           | 200     | U | N/A   | 0 | N/A   | 0 | :N/A  | 0 | 200  | U          | :510  | U |
| WMO5 BERYLLIUM      | BY ICAP     | UG/L           | 5.0     | U | N/A   | 0 | N/A   | 0 | N/A   | 0 | 5.0  | U          | :5.0  | U |
| WMO6 CADMIUM        | BY ICAP     | UG/L           | 5.0     | U | N/A   | 0 | N/A   | 0 | :N/A  | 0 | 5.0  | U          | :190  |   |
| WMO7 COBALT         | BY ICAP     | : UG/L         | 50      | v | :N/A  | 0 | N/A   | 0 | :N/A  | 0 | 50   | U          | :85   |   |
| WMO8 CHROMIUM       | BY ICAP     | : UG/L         | 10      | U | N/A   | 0 | :N/A  | 0 | :N/A  | 0 | 10   | U          | 30    |   |
| WMO9 COPPER         | BY ICAP     | UG/L           | 25      | U | N/A   | 0 | :N/A  | 0 | :N/A  | 0 | 25   | U          | .140  |   |
| WM10 IRON           | BY ICAP     | UG/L           | 100     | U | N/A   | 0 | N/A   | 0 | N/A   | 0 | 2100 |            | 75000 |   |
| WM11 MANGANESE      | BY ICAP     | UG/L           | 15      | U | :N/A  | 0 | N/A   | 0 | :N/A  | 0 | 570  |            | :8.9  |   |
| WM12 MOLYBDENUM     | BY ICAP     | UG/L           | N/A     | 0 | N/A   | 0 | N/A   | 0 | : N/A | 0 | N/A  | 0          | :N/A  | 0 |
| WM13 MICKEL         | BY ICAP     | . VG/L         | . 53    |   | . N/A | ύ | : N/A | υ | :N/A  | 0 | 40   | บ          | :92   |   |
| WM14 LEAD           | By ICAP     | :UG/L          | : 36    | J | . N/A | 0 | N/A   | 0 | : N/A | 0 | : 86 | J          | 14000 | J |
| WM15 ANTIMONY       | BY ICAP     | UG/L           | 60      | U | :N/A  | 0 | : N/A | 0 | N/A   | 0 | :60  | U          | :60   | U |
| WM16 SELENIUM       | BY ICAP     | UG/L           | 5.0     | บ | N/A   | 0 | : N/A | 0 | : N/A | 0 | :5.0 | U          | :5.0  | U |
| WM17 TITANIUM       | BY ICAP     | UG/L           | : N/A   | 0 | : N/A | 0 | : N/A | 0 | : N/A | 0 | N/A  | 0          | N/A   | 0 |
| WM18 THALLIUM       | BY ICAP     | UG/L           | . 10    | U | :N/A  | 0 | N/A   | 0 | : N/A | 0 | . 10 | U          | 10    | U |
| WM19 VANADIUM       | BY ICAP     | :UG/L          | 50      | U | :N/A  | 0 | . N/A | 0 | :N/A  | 0 | : 50 | U          | :81   |   |
| WM20 ZINC           | BY ICAP     | .UG/L          | . 180   |   | : N/A | 0 | . N/A | 0 | :N/A  | 0 | 98   |            | 9100  |   |
| WM21 CALCIUM, TOTAL | L BY ICAP   | MG/L           | : 110   |   | :N/A  | 0 | : N/A | 0 | : N/A | 0 | 130  |            | : 460 |   |
| WM22 MAGNESIUM. TO  | TAL BY ICAP | : <b>M</b> G/L | 64      |   | :N/A  | 0 | N/A   | 0 | :N/A  | 0 | :59  |            | 210   |   |
| WM23 SODIUM, TOTAL  | BY ICAP     | :MG/L          | : 9 . 8 |   | : N/A | 0 | :N/A  | 0 | :N/A  | 0 | 5.0  |            | :6.1  |   |

| COMP                      | DUND        | UNITS          | 301   |       | 301L    | 301R          |          | 3015            | 302   |             | 303    |   |
|---------------------------|-------------|----------------|-------|-------|---------|---------------|----------|-----------------|-------|-------------|--------|---|
| WM24 POTASSIUM, TOTAL BY  | ICAP        | : <b>M</b> G/L | :5.0  | <br>U | : N/A 0 | N/A           | 0        | N/A 0           | :5.0  |             | 12     |   |
| WM35 SILVER, DISSOLVED    | BY ICAP     | UG/L           | :10   | U     | :       | :             |          | :               | :10   | . <b></b> - | :10    | U |
| WM36 ALUMINUM, DISSOLVED  | BY ICAP     | :UG/L          | 200   | U     | :       | :             |          | :               | 200   | U           | 200    | υ |
| WM37 ARSENIC.DISSOLVED    | BY ICAP     | :UG/L          | :10   | U     | :       | :             |          | : <b></b>       | : 10  | U           | :10    | U |
| WM38 BARIUM.DISSOLVED     | BY ICAP     | UG/L           | 200   | U     | :       | :             |          | :               | 200   | U           | 200    | U |
| WM39 BERYLLIUM.DISSOLVED  | BY ICAP     | :UG/L          | 5.0   | υ     | :       | :             |          | · <del></del>   | :5.0  | U           | 5.0    | บ |
| WM40 CADMIUM.DISSOLVED    | BY ICAP     | UG/L           | 5.0   | U     | :       | :             |          | ; <b></b>       | :5.0  | U           | :5.0   | U |
| WM41 COBALT, DISSOLVED    | BY ICAP     | UG/L           | :50   | U     | :       | :             |          | :               | :50   | U           | :50    | U |
| WM42 CHROMIUM, DISSOLVED  | BY ICAP     | UG/L           | :10   | U     | :       | :             |          | : <b></b>       | :10   | U           | 10     | U |
| WM43 COPPER.DISSOLVED     | BY ICAP     | :UG/L          | : 25  | U     | :       | :             |          | : <del></del> : | : 25  | U           | 25     | Ü |
| WM44 IRON.DISSOLVED       | BY ICAP     | : UG/L         | 100   | U     | :       | :             |          | :               | :100  | U           | 100    | U |
| WM45 MANGANESE, DISSOLVED | BY ICAP     | :UG/L          | : 15  | υ     | :       | :             |          | :               | 350   |             | : 1800 |   |
| WM46 MOLYBDENUM.DISSOLVE  | D BY ICAP   | : UG/L         | .N/A  | 0     | :       | :             |          |                 | : N/A | 0           | :N/A   | 0 |
| WM47 NICKEL.DISSOLVED     | BY ICAP     | UG/L           | :60   |       | :       | -:<br>:       |          |                 | : 40  | U           | 40     | U |
| WM48 LEAD.DISSOLVED       | BY ICAP     | UG/L           | 33    | J     | :       | <del></del> - |          |                 | .N/A  | I           | :N/A   | I |
| WMAG ANTIMONY DISSOLVED   | BY ICAP     | UG/L           | .60   | ü     |         | -:            | <b>-</b> | :               | 60    | U           | :60    | U |
| WM50 SELENIUM, DISSOLVED  | BY ILAP     | UG/L           | :5.0  | U     |         | :             | -        |                 | 5.0   | U           | :5.0   | บ |
| WM51 TITANIUM.DISSOLVED   | BY ICAP     | UG/L           | · N/A | 0     | :       | :             |          | ;               | :N/A  | 0           | N/A    | 0 |
| WM52 THALLIUM.DISSOLVED   | BY ICAP     | :UG/L          | :10   | U     | :       | :             |          | :               | :10   | U           | 10     | U |
| WM53 VANADIUM.DISSOLVED   | BY ICAP     | UG/L           | 50    | U     | :       | -:            |          |                 | :50   | U           | 50     | U |
| WM54 ZINC,DISSOLVED       | BY ICAP     | UG/L           | 190   |       |         | :             |          | :               | 27    |             | 65     |   |
| WM55 CALCIUM.DISSOLVED    | BY ICAP     | MG/L           | 110   |       | :       |               |          | : <b></b>       | .130  |             | 230    |   |
| WM56 MAGNESIUM.DISSOLVED  | BY ICAP     | MG/L           | :66   |       | :       | -:            |          | :               | 59    |             | :89    |   |
| WM57 SODIUM, DISSOLVED    | BY ICAP     | .MG/L          | 10    |       | ;       | -:            |          | :               | 5 0   | U           | :6.5   |   |
| WM58 POTASSIUM, DISSOLVED | BY ICAP     | : <b>M</b> G/L | :5.0  | U     | :       | :             |          | :               | :5.0  | U           | :8.1   |   |
| ZZO1 SAMPLE NUMBER        | <del></del> | :<br>NA        | 301   |       | : 301   | 301           |          | . 301           | 302   |             | 303    |   |

| COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UNITS | 301     | 301L    | 301R  | 3015                                  | 302   | 303   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|---------|-------|---------------------------------------|-------|-------|
| ZZO2 ACTIVITY CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA NA | : CSXCR | : CSXCR | CSXCR | CSXCR                                 | CSXCR | CSXCR |
| The state of the s |       |         |         |       | · · · · · · · · · · · · · · · · · · · |       |       |

|                    | COMPOUND     | UNITS          | 304          |   | 305                   |   | 306  |   | 307  |   | 308  |   | 309  |   |
|--------------------|--------------|----------------|--------------|---|-----------------------|---|------|---|------|---|------|---|------|---|
| WFO1 WATER TEMP    |              | : 'C           | 25           |   | : <del></del><br>: 21 |   | 25   |   | 17   |   | 18   |   | 18   |   |
| WF05 PH, FIELD     |              | SU             | 7.57         |   | 10.62                 |   | 7.39 |   | 6.92 |   | 6.97 |   | 6.56 |   |
| WF10 CONDUCTIVITY  | (FIELD)      | : UMHOS        | 600          |   | 2100                  |   | 1400 |   | 550  |   | 680  |   | 1400 |   |
| WMO1 SILVER        | BY ICAP      | UG/L           | 10           | U | 10                    | U | 10   | U | 10   | U | 10   | U | 10   | U |
| WMO2 ALUMINUM      | BY ICAP      | UG/L           | 200          | U | 200                   | U | 200  | U | 200  | U | 200  | U | 470  |   |
| WMO3 ARSENIC       | BY ICAP      | UG/L           | 10           | U | 10                    | U | : 10 | U | :10  | U | 10   | U | 59   |   |
| WMO4 BARIUM        | BY ICAP      | UG/L           | 200          | U | : 200                 | U | 200  | U | 200  | U | 200  | U | :210 |   |
| WMO5 BERYLLIUM     | BY ICAP      | UG/L           | 5.0          | U | :5.0                  | U | :5.0 | U | 5.0  | U | 5 0  | U | 5.0  | U |
| WMO6 CADMIUM       | BY ICAP      | UG/L           | 5.0          | U | 5.0                   | U | :5.0 | U | 5.0  | U | 5.0  | U | :6.9 |   |
| WMO7 COBALT        | BY ICAP      | UG/L           | 50           | U | :50                   | U | 400  |   | 50   | U | :50  | U | 50   | U |
| WMO8 CHROMIUM      | BY ICAP      | UG/L           | 10           | U | 10                    | U | 10   | บ | : 10 | U | 10   | U | 10   | U |
| WMO9 COPPER        | BY ICAP      | UG/L           | 25           | U | 25                    | U | . 25 | U | 25   | U | 25   | U | 25   | U |
| WM10 IRON          | BY ICAP      | UG/L           | 370          |   | 100                   | U | 2000 |   | 100  | U | 100  | U | :12  |   |
| WM11 MANGANESE     | BY ICAP      | :UG/L          | :51          |   | 93                    |   | 2200 |   | 15   | U | : 15 | U | 200  |   |
| WM12 MOLYBDENUM    | BY ICAP      | UG/L           | N/A          | 0 | :N/A                  | 0 | N/A  | 0 | .N/A | 0 | :N/A | 0 | :N/A | 0 |
| WM13 NICKEL        | BY ICAP      | UG/L           | 40           | ü | :40                   | υ | 310  |   | .40  | U | 40   | U | :61  |   |
| WM14 LEAD          | BY ICAP      | :UG/L          | .63          | J | .5.1                  | J | 330  | J | : 17 | J | :3.0 | U | :680 | J |
| WM15 ANTIMONY      | BY ICAP      | UG/L           | 60           | U | 60                    | U | 60   | U | :60  | U | :60  | υ | :60  | υ |
| WM16 SELENIUM      | BY ICAP      | UG/L           | :5.0         | U | 5.0                   | U | 5.0  | U | :5.0 | U | 5.0  | υ | 5.0  | U |
| WM17 TITANIUM      | BY ICAP      | UG/L           | :N/A         | 0 | :N/A                  | 0 | N/A  | 0 | N/A  | 0 | :N/A | 0 | :N/A | 0 |
| WM18 THALLIUM      | BY ICAP      | UG/L           | 10           | U | 10                    | U | : 10 | U | 10   | U | :10  | U | 10   | U |
| WM19 VANADIUM      | BY ICAP      | :UG/L          | :50          | U | 50                    | U | 50   | U | :50  | U | .50  | U | 50   | U |
| WM20 ZINC          | BY ICAP      | . UG/L         | 200          |   | 20                    | U | 8900 |   | 140  |   | 26   |   | :850 |   |
| WM21 CALCIUM, TOTA | AL BY ICAP   | : <b>M</b> G/L | : 110        |   | 430                   |   | 260  |   | 110  |   | :62  |   | :220 |   |
| WM22 MAGNESIUM, TO | OTAL BY ICAP | MG/L           | :60          |   | 73                    |   | 130  |   | :61  |   | : 46 |   | :64  |   |
| WM23 SODIUM, TOTAL | BY ICAP      | : MG/L         | :<br>: 7 . 7 |   | :57                   |   | :24  |   | :7.9 |   | 14   |   | :63  |   |

| COMPOUND                           | UNITS | 304  |           | 305   |   | 306  |    | 307   |   | 308   |   | 309  |     |
|------------------------------------|-------|------|-----------|-------|---|------|----|-------|---|-------|---|------|-----|
| WM24 POTASSIUM, TOTAL BY ICAP      | MG/L  | 5.0  | U         | 110   |   | : 11 |    | :5.0  | U | 5.0   |   | 27   | :   |
| WM35 SILVER, DISSOLVED BY ICAP     | UG/L  | 10   | U         | : 10  | U | : 10 | U  | 10    | U | 10    | U | 10   | U   |
| WM36 ALUMINUM, DISSOLVED BY ICAP   | UG/L  | 200  | U         | : 200 | U | 200  | U  | 200   | U | 200   | U | 200  | U   |
| WM37 ARSENIC, DISSOLVED BY ICAP    | UG/L  | 10   | U         | : 10  | U | : 10 | U  | 10    | U | 10    | U | 37   | :   |
| WM38 BARIUM.DISSOLVED BY ICAP      | UG/L  | 200  | U         | 200   | U | 200  | U  | 200   | U | 200   | U | 210  |     |
| WM39 BERYLLIUM, DISSOLVED BY ICAP  | UG/L  | 5.0  | U         | 5.0   | U | 5.0  | U  | 5.0   | U | 5.0   | U | 5.0  | υ:  |
| WM40 CADMIUM, DISSOLVED BY ICAP    | UG/L  | :5.0 | U         | 5.0   | U | 5.0  | U  | 5.0   | U | 5.0   | U | 5.0  | U   |
| WM41 COBALT.DISSOLVED BY ICAP      | UG/L  | :50  | υ         | 50    | υ | 400  |    | 50    | υ | :50   | U | 50   | U   |
| WM42 CHROMIUM, DISSOLVED BY ICAP   | UG/L  | : 10 | U         | 10    | U | 10   | U  | : 10  | U | 10    | U | 10   | U   |
| WM43 COPPER.DISSOLVED BY ICAP      | UG/L  | 25   | U         | 25    | U | 25   | U  | : 25  | U | : 25  | บ | 25   | U   |
| WM44 IRON.DISSOLVED BY ICAP        | .UG/L | 100  | U         | 100   | U | 100  | ับ | 100   | U | 100   | U | 7900 |     |
| WM45 MANGANESE.DISSOLVED BY ICAP   | UG/L  | : 15 | U         | 15    | U | 2200 |    | : 15  | U | 15    | U | 170  |     |
| WM46 MOLYBDENUM, DISSOLVED BY ICAP | UG/L  | N/A  | 0         | N/A   | 0 | N/A  | 0  | N/A   | 0 | N/A   | 0 | N/A  | 0   |
| WM47 NICKEL.DISSOLVED BY ICAP      | UG/L  | 40   | U         | 40    | U | 320  |    | 43    |   | 40    | U | 40   | U   |
| WM48 LEAD.DISSOLVED BY ICAP        | UG/L  | 20   | J         | N/A   | I | 29   | J  | 14    | J | N/A   | I | 4.1  | U   |
| WM49 ANTIMONY, DISSOLVED BY ICAP   | UG/L  | .60  | ü         | 60    | υ | 60   | U  | 60    | U | :60   | U | 60   | U : |
| WM50 SELENIUM, DISSOLVED BY ICAP   | :UG/L | 5.0  | U         | :5.0  | U | :5.0 | U  | :5.0  | U | 5.0   | U | 5.0  | ับ  |
| WM51 TITANIUM.DISSOLVED BY ICAP    | UG/L  | :N/A | 0         | N/A   | 0 | N/A  | 0  | N/A   | 0 | : N/A | 0 | N/A  | 0   |
| WM52 THALLIUM, DISSOLVED BY ICAP   | :UG/L | 10   | υ         | 10    | U | 10   | U  | 10    | U | : 10  | U | 10   | U   |
| WM53 VANADIUM.DISSOLVED BY ICAP    | :UG/L | : 50 | U         | 50    | υ | 50   | U  | 50    | U | : 50  | U | 50   | U   |
| WM54 ZINC.DISSOLVED BY ICAP        | UG/L  | 160  |           | 20    | υ | 6400 |    | : 140 |   | :31   |   | 520  |     |
| WM55 CALCIUM.DISSOLVED BY ICAP     | MG/L  | 110  |           | 390   |   | 270  |    | 110   |   | 67    |   | 230  |     |
| WM56 MAGNESIUM, DISSOLVED BY ICAP  | MG/L  | 60   |           | 5.0   | U | 130  |    | 65    |   | :50   |   | 67   |     |
| WM57 SODIUM, DISSOLVED BY ICAP     | MG/L  | .7.9 |           | :58   |   | : 25 |    | 8.1   |   | : 15  |   | :68  |     |
| WM58 POTASSIUM,DISSOLVED BY ICAP   | MG/L  | 5.0  | U         | 110   |   | 12   |    | :5.0  | U | 5.0   | U | 28   |     |
| ZZO1 SAMPLE NUMBER                 | : NA  | 304  | _ <b></b> | 305   |   | 306  |    | 307   |   | 308   |   | 309  |     |

| CC                 | DMPOUND U | INITS  | 304  | 305   | 306   | 307   | 308   | 309   |
|--------------------|-----------|--------|------|-------|-------|-------|-------|-------|
| ZZO2 ACTIVITY CODE | : N       | IA : C | SXCR | CSXCR | CSXCR | CSXCR | CSXCR | CSXCR |

|                    | COMPOUND     | UNITS  | 309D | 309L   | 309R | 3095                                  | 310   |            | 311   |     |
|--------------------|--------------|--------|------|--------|------|---------------------------------------|-------|------------|-------|-----|
| WFO1 WATER TEMP    |              | : ′C   | :    | ·:     | :    | :                                     | : 15  |            | : 17  |     |
| WFO5 PH. FIELD     |              | : SU   | :    | :      | :    | -:                                    | :6.78 | - <b>-</b> | :6.56 |     |
| WF10 CONDUCTIVITY  | (FIELD)      | UMHOS  | :    | :      |      | -:                                    | : 900 |            | 1100  |     |
| WMO1 SILVER        | BY ICAP      | UG/L   | 10   | U      | :    | - :                                   | : 10  | U          | 10    | U   |
| WMO2 ALUMINUM      | BY ICAP      | UG/L   | 420  |        |      | · · · · · · · · · · · · · · · · · · · | 200   | U          | 1800  |     |
| WMO3 ARSENIC       | BY ICAP      | UG/L   | :59  | :      | :    |                                       | 25    |            | :64   |     |
| WMO4 BARIUM        | BY ICAP      | UG/L   | :210 |        | :    |                                       | 200   | U          | 200   | U   |
| WMO5 BERYLLIUM     | BY ICAP      | : UG/L | 5 0  | U      | :    | :                                     | 5.0   | U          | 5.0   | u   |
| WMO6 CADMIUM       | BY ICAP      | UG/L   | :8.0 | :      | :    | - : <b></b>                           | 5.0   | U          | 11    |     |
| WMO7 COBALT        | BY ICAP      | UG/L   | :50  | υ      | :    | - :                                   | :50   | U          | :50   | U   |
| WMO8 CHROMIUM      | BY ICAP      | :UG/L  | 10   | U      | :    | :                                     | : 10  | U          | 10    | ι   |
| WMO9 COPPER        | BY ICAP      | UG/L   | 25   | U      | :    | :                                     | : 25  | U          | 25    | i l |
| WM10 IRON          | BY ICAP      | UG/L   | . 12 |        |      | :                                     | : 750 |            | 51    |     |
| WM11 MANGANESE     | BY ICAP      | UG/L   | 200  | :      |      |                                       | 120   |            | :6900 |     |
| WM12 MOLYBDENUM    | BY ICAP      | UG/L   | N/A  | 0 :    |      |                                       | .N/A  | 0          | :N/A  | C   |
| WM13 NICKEL        | BY ICAD      | .UG/L  | .49  | :      | :    |                                       | 40    | U          | :64   |     |
| WW14 LEAD          | By ICAP      | :UG/L  | 650  | J      |      | :                                     | : 23  | J          | :5000 | J   |
| WM15 ANTIMONY      | BY ICAP      | : UG/L | 60   | U      | :    | :                                     | :60   | U          | 60    | U   |
| WM16 SELENIUM      | BY ICAP      | UG/L   | 5.0  | U      |      | -:                                    | 5.0   | U          | 5.0   |     |
| WM17 TITANIUM      | BY ICAP      | UG/L   | N/A  | 0      |      | :                                     | : N/A | 0          | N/A   | ·   |
| WM18 THALLIUM      | BY ICAP      | UG/L   | 10   | U :    |      | :                                     | 10    | U          | 10    | ί   |
| WM19 VANADIUM      | BY ICAP      | : UG/L | 50   | U ;    |      | :                                     | 50    | U          | 50    | ι   |
| WM20 ZINC          | BY ICAP      | UG/L   | .830 |        |      | :                                     | 94    |            | 530   |     |
| WM21 CALCIUM, TOTA | AL BY ICAP   | MG/L   | 220  | ;      |      | :                                     | 210   |            | : 470 |     |
| WM22 MAGNESIUM, TO | OTAL BY ICAP | MG/L   | 64   | ;      | :    | :                                     | 72    |            | 220   |     |
| WM23 SODIUM, TOTAL | BY ICAP      | MG/L   | :63  | ;<br>: |      | -:<br>:                               | .5.0  |            | :5.0  | U   |

| COMPOUND                          | UNITS          | 309D |   | 309L          |   | 309R   | 3095     | 310        |    | 311  |        |
|-----------------------------------|----------------|------|---|---------------|---|--------|----------|------------|----|------|--------|
| WM24 POTASSIUM, TOTAL BY ICAP     | : <b>M</b> G/L | 28   |   | ; <del></del> |   | :      | :        | -:<br>:5.8 |    | :6.9 | :      |
| WM35 SILVER, DISSOLVED BY ICA     | AP UG/L        | 10   | U | 10            | U | 50     | 44       | 10         | U  | 10   | :<br>U |
| WM36 ALUMINUM, DISSOLVED BY ICA   | AP UG/L        | 200  | U | 200           | U | 2000   | 2200     | : 200      | Ų  | 200  | U :    |
| WM37 ARSENIC, DISSOLVED BY ICA    | AP UG/L        | 37   |   | 36            |   | 40     | 40       | : 17       |    | : 34 |        |
| WM38 BARIUM, DISSOLVED BY ICA     | AP UG/L        | 210  |   | 210           |   | 2000   | 2400     | 200        | U  | 200  | U      |
| WM39 BERYLLIUM, DISSOLVED BY ICA  | AP UG/L        | 5.0  | U | 5.0           | U | :50    | 51       | 5.0        | U  | 5.0  | U      |
| WM40 CADMIUM, DISSOLVED BY ICA    | AP UG/L        | 5.0  | U | 5.0           | U | : 50   | 57       | 5.0        | U  | 5.0  | U      |
| WM41 COBALT.DISSOLVED BY ICA      | AP UG/L        | 50   | U | :50           | U | 500    | 550      | 50         | U  | 50   | U      |
| WM42 CHROMIUM, DISSOLVED BY ICA   | AP UG/L        | 10   | υ | 10            | U | 200    | 210      | : 10       | U  | 10   | U      |
| WM43 COPPER.DISSOLVED BY ICA      | AP UG/L        | 25   | U | 25            | U | 250    | 260      | : 25       | IJ | 25   | U :    |
| WM44 IRON, DISSOLVED BY ICA       | AP : UG/L      | 8200 |   | 7900          |   | 1000   | 8700     | 510        |    | 9300 |        |
| WM45 MANGANESE, DISSOLVED BY ICA  | AP UG/L        | 180  |   | 170           |   | 500    | 710      | 130        |    | 340  |        |
| WM46 MOLYBDENUM, DISSOLVED BY ICA | AP UG/L        | N/A  | 0 | N/A           | 0 | N/A    | N/A C    | ) :N/A     | 0  | N/A  | 0      |
| WM47 NICKEL, DISSOLVED BY ICA     | AP UG/L        | 40   | U | 43            |   | 500    | 560      | 40         | U  | 40   | U      |
| WM48 LEAD.DISSOLVED BY ICA        | AP UG/L        | 3.3  | U | :3.3          |   | 20     | 22       | 3.0        | U  | :3.0 | U      |
| WM/9 ANTIMONY DISSOLVED BY ICA    | AD UG/L        | . 60 | Ü | 60            | U | :500   | 570      | :60        | U  | :60  | U .    |
| WM50 SELENIUM, DISSOLVED BY ICA   | AP UG/L        | 5.0  | U | .5.0          | U | 10     | :6.1     | 5.0        | U  | 5.0  | U      |
| WM51 TITANIUM.DISSOLVED BY ICA    | AP UG/L        | N/A  | 0 | . N/A         | 0 | N/A C  | N/A C    | N/A        | 0  | N/A  | 0      |
| WM52 THALLIUM.DISSOLVED BY ICA    | AP UG/L        | 10   | U | 10            | U | 50     | 46       | : 10       | υ  | 10   | U      |
| WM53 VANADIUM, DISSOLVED BY ICA   | AP UG/L        | 50   | U | 50            | U | 500    | 550      | 50         | U  | 50   | U      |
| WM54 ZINC, DISSOLVED BY ICA       | AP UG/L        | 550  |   | :520          |   | :500   | 1100     | : 290      |    | 20   | U      |
| WM55 CALCIUM.DISSOLVED BY ICA     | AP MG/L        | 240  |   | 220           |   | :N/A ( | N/A C    | 220        |    | 160  |        |
| WM56 MAGNESIUM, DISSOLVED BY ICA  | AP MG/L        | 70   |   | 66            |   | N/A (  | ) :N/A ( | 77         |    | 47   |        |
| WM57 SODIUM, DISSOLVED BY ICA     | AP :MG/L       | 71   |   | 66            |   | N/A (  | ) :N/A ( | 5.0        | U  | 5.0  | U      |
| WM58 POTASSIUM, DISSOLVED BY IC   | AP :MG/L       | 30   |   | 28            |   | N/A (  | ) :N/A ( | 5.7        |    | :5.0 | U      |
| ZZO1 SAMPLE NUMBER                | : NA           | 309  |   | 309           |   | 309    | 309      | 310        |    | 311  |        |

| COMPOUND           | UNITS | 309D  | 309L  | 309R  | 3095  | 310   | 311   |
|--------------------|-------|-------|-------|-------|-------|-------|-------|
| ZZO2 ACTIVITY CODE | NA NA | CSXCR | CSXCR | CSXCR | CSXCR | CSXCR | CSXCR |

|                    | COMPOUND    | UNITS  | 312   |   | 314    |   | 315      |   | 316   |             | 317   |   | 318  |   |
|--------------------|-------------|--------|-------|---|--------|---|----------|---|-------|-------------|-------|---|------|---|
| WFO1 WATER TEMP    |             | ::::   | 16    |   | 25     |   | 25       |   | 20    |             | 20    |   | : 17 |   |
| WF05 PH. FIELD     |             | SU :   | 6.45  |   | 7.15   |   | : 7 . 05 |   | 6.93  |             | 7.11  |   | 7.04 |   |
| WF10 CONDUCTIVITY  | (FIELD)     | UMHOS  | 700   |   | 470    |   | 420      |   | 600   |             | 700   |   | 550  |   |
| WMO1 SILVER        | BY ICAP     | UG/L   | 10    | U | : 10   | U | :10      | U | 10    | U           | 10    | U | 10   | U |
| WMO2 ALUMINUM      | BY ICAP     | UG/L   | 200   | U | : 2800 |   | 2900     |   | 5200  | <del></del> | 4100  |   | 200  | U |
| WMO3 ARSENIC       | BY ICAP     | UG/L   | 110   |   | : 14   |   | :14      |   | : 46  |             | :85   |   | 10   | U |
| WMO4 BARIUM        | BY ICAP     | UG/L   | 200   | υ | : 200  | U | 200      | U | 200   | U           | 200   | U | 200  | U |
| WMO5 BERYLLIUM     | BY ICAP     | UG/L   | 5.0   | U | :5.0   | U | 5.0      | U | 5.0   | U           | 5.0   | U | :5.0 | U |
| WMO6 CADMIUM       | BY ICAP     | UG/L   | 37    |   | 5.0    | V | 8.6      |   | 30    |             | : 26  |   | 5.0  | U |
| WMO7 COBALT        | BY ICAP     | UG/L   | 350   |   | 85     |   | 56       |   | 170   |             | :53   |   | : 50 | U |
| WMO8 CHROMIUM      | BY ICAP     | UG/L   | 10    | U | :10    | U | 10       | U | 10    | <br>U       | 10    | U | 10   | U |
| WMO9 COPPER        | BY ICAP     | :UG/L  | 28    | U | 78     | Ü | 140      |   | 240   |             | 44    | U | 25   | U |
| WM10 IRON          | BY ICAP     | UG/L   | . 36  |   | 11000  |   | 15000    |   | 67    |             | : 66  |   | :170 | บ |
| WM11 MANGANESE     | BY ICAP     | UG/L   | 370   |   | 1400   |   | 1800     |   | 9000  |             | 8900  |   | :46  |   |
| WM12 MOLYBDENUM    | BY ICAP     | UG/L   | N/A   | 0 | :N/A   | 0 | N/A      | 0 | :N/A  | 0           | N/A   | 0 | :N/A | 0 |
| MM13 MICKEL        | BY ICAD     | . UG/L | . 660 |   | :83    |   | : /0     |   | 170   |             | 60    |   | 52   |   |
| WM14 LEAD          | By ICAP     | . UG/L | 9300  | J | 1700   | J | 3800     | J | :8200 | J           | 10000 | J | 63   | J |
| WM15 ANTIMONY      | BY ICAP     | UG/L   | 60    | U | 60     | U | 60       | U | 66    | U           | 60    | บ | 60   | U |
| WM16 SELENIUM      | BY ICAP     | UG/L   | 5.0   | U | :5.0   | U | 5.0      | u | 5.0   | U           | 5.0   | U | 5.0  | U |
| WM17 TITANIUM      | BY ICAP     | UG/L   | N/A   | 0 | : N/A  | 0 | N/A      | 0 | N/A   | 0           | N/A   | 0 | N/A  | 0 |
| WM18 THALLIUM      | BY ICAP     | UG/L   | 10    | U | : 10   | U | 10       | U | :10   | U           | : 10  | U | 10   | U |
| WM19 VANADIUM      | BY ICAP     | UG/L   | 50    | U | 50     | U | 50       | U | 50    | U           | 50    | U | :50  | U |
| WM20 ZINC          | BY ICAP     | UG/L   | 26    |   | 470    |   | 560      |   | 2500  |             | 1400  |   | .180 |   |
| WM21 CALCIUM, TOTA | AL BY ICAP  | MG/L   | 270   |   | 150    |   | 120      |   | 450   |             | 450   |   | 110  |   |
| WM22 MAGNESIUM, TO | TAL BY ICAP | MG/L   | 87    |   | 68     |   | : 71     |   | 270   |             | 270   |   | 62   |   |
| WM23 SODIUM, TOTAL | BY ICAP     | MG/L   | 7.3   |   | 5.0    | U | 5.0      | U | 5.0   | U           | 5.0   | Ų | 9 5  |   |
|                    |             | :      | :     |   | :      |   | ;        |   |       |             | ;     |   | ;    |   |

### ANALYSIS REQUEST DETAIL REPORT

ACTIVITY: O-CSXCR

| COMPOUND                           | UNITS  | 312   |   | 314  |   | 315  |   | 316   |   | 317  |   | 318  |   |
|------------------------------------|--------|-------|---|------|---|------|---|-------|---|------|---|------|---|
| WM24 POTASSIUM, TOTAL BY ICAP      | : MG/L | 9.8   |   | 5.3  |   | 5.9  |   | 12    |   | : 10 |   | :5.0 | u |
| WM35 SILVER, DISSOLVED BY ICAP     | UG/L   | 10    | U | . 10 | U | 10   | υ | 10    | U | 10   | U | 10   | U |
| WM36 ALUMINUM, DISSOLVED BY ICAP   | UG/L   | : 200 | U | 200  | U | 200  | U | 200   | U | 200  | U | 200  | υ |
| WM37 ARSENIC.DISSOLVED BY ICAP     | UG/L   | :10   | U | : 10 | U | 10   | U | 10    | U | 51   |   | 10   | U |
| WM38 BARIUM, DISSOLVED BY ICAP     | :UG/L  | 200   | U | 200  | U | 200  | U | 200   | U | 200  | U | 200  | U |
| WM39 BERYLLIUM.DISSOLVED BY ICAP   | :UG/L  | 5.0   | U | 5.0  | U | :5.0 | U | 5.0   | U | :5.0 | U | 5.0  | U |
| WM40 CADMIUM, DISSOLVED BY ICAP    | :UG/L  | 27    |   | 5.0  | U | 5.0  | U | 5.0   | U | 5.0  | U | 5.0  | U |
| WM41 COBALT.DISSOLVED BY ICAP      | UG/L   | 360   |   | 55   |   | 50   | U | 50    | U | :50  | U | 50   | U |
| WM42 CHROMIUM, DISSOLVED BY ICAP   | UG/L   | 10    | U | 10   | U | :10  | บ | 10    | U | : 10 | U | 10   | U |
| WM43 COPPER.DISSOLVED BY ICAP      | UG/L   | 25    | U | 25   | U | 25   | υ | 25    | U | 25   | U | 25   | U |
| WM44 IRON, DISSOLVED BY ICAP       | UG/L   | 100   | U | 100  | U | 100  | U | 100   | υ | 100  | U | 100  | U |
| WM45 MANGANESE, DISSOLVED BY ICAP  | UG/L   | 180   |   | 96   |   | : 45 |   | 70    |   | 43   |   | 22   |   |
| WM46 MOLYBDENUM, DISSOLVED BY ICAP | UG/L   | N/A   | 0 | N/A  | 0 | N/A  | 0 | N/A   | 0 | N/A  | 0 | N/A  | 0 |
| WM47 NICKEL.DISSOLVED BY ICAP      | UG/L   | 620   |   | 43   |   | 40   | U | 40    | U | 40   | U | 86   |   |
| WM48 LEAD, DISSOLVED BY ICAP       | UG/L   | 60    |   | : 74 |   | 9.3  |   | 46    |   | 3.0  | U | 28   |   |
| WM49 ANTIMONY, DISSOLVED BY ICAP   | UG/L   | .60   | Ü | 60   | U | :60  | U | 60    | U | :60  | U | 60   | U |
| WM50 SELENIUM, DISSOLVED BY ICAP   | : UG/L | 5.0   | U | 5.0  | U | 5.0  | U | :5.0  | U | 5.0  | U | 5.0  | U |
| WM51 TITANIUM, DISSOLVED BY ICAP   | UG/L   | N/A   | 0 | N/A  | 0 | N/A  | 0 | N/A   | 0 | N/A  | 0 | :N/A | 0 |
| WM52 THALLIUM, DISSOLVED BY ICAP   | UG/L   | :10   | U | 10   | U | 10   | U | 10    | U | 10   | U | 10   | U |
| WM53 VANADIUM, DISSOLVED BY ICAP   | UG/L   | 50    | U | 50   | U | :50  | U | 50    | U | 50   | บ | 50   | υ |
| WM54 ZINC.DISSOLVED BY ICAP        | UG/L   | 23000 |   | 170  |   | 200  | U | 450   |   | 20   | U | 160  |   |
| WM55 CALCIUM, DISSOLVED BY ICAP    | MG/L   | 270   |   | 93   |   | : 46 |   | 61    |   | 84   |   | 110  |   |
| WM56 MAGNESIUM, DISSOLVED BY ICAP  | MG/L   | 88    |   | 40   |   | 35   |   | 62    |   | 89   |   | 64   |   |
| WM57 SODIUM.DISSOLVED BY ICAP      | MG/L   | 7.6   |   | :5.0 | U | 5.0  | U | 5.0   | U | 5.0  | U | 9.8  |   |
| WM58 POTASSIUM, DISSOLVED BY ICAP  | MG/L   | 10    |   | 5.0  | U | 5.0  | U | : 7.5 |   | 7.0  |   | :5.0 | U |
| ZZO1 SAMPLE NUMBER                 | NA NA  | :312  |   | 314  |   | :315 |   | 316   |   | 317  |   | 318  |   |

| COMPOU             | UNITS | 312     | 314   | 315   | 316   | 317     | 318   |
|--------------------|-------|---------|-------|-------|-------|---------|-------|
| ZZO2 ACTIVITY CODE | NA    | : CSXCR | CSXCR | CSXCR | CSXCR | : CSXCR | CSXCR |

| COMPOUND                      | UNITS   | 318L                | 318R                                  | 3185           | 319   | 319L | 319R     |
|-------------------------------|---------|---------------------|---------------------------------------|----------------|-------|------|----------|
| WFO1 WATER TEMP               |         |                     | -:                                    | -:             | 19    | :    | -:       |
| WFO5 PH, FIELD                | SU      |                     | -: <del></del>                        | :              | 7.54  | :    | :        |
| WF10 CONDUCTIVITY (FIELD)     | UMHOS   |                     | -:                                    | :              | 650   | :    | - :      |
| WMO1 SILVER BY ICAP           | UG/L    |                     | - :                                   |                | 10    | U :  | -:       |
| WMO2 ALUMINUM BY ICAP         | UG/L    |                     |                                       | -;             | 200   | U :  | <u> </u> |
| WMO3 ARSENIC BY ICAP          | UG/L    |                     | :                                     | :              | : 10  | U :  |          |
| WMO4 BARIUM BY ICAP           | UG/L    |                     | - ; <del>-</del>                      | -,             | 200   | U    | -:       |
| WMO5 BERYLLIUM BY ICAP        | UG/L    |                     | -: <del></del>                        |                | 5.0   | υ    |          |
| WMO6 CADMIUM BY ICAP          | UG/L    |                     | :                                     | :              | 5.0   | U :  |          |
| WMO7 COBALT BY ICAP           | UG/L    |                     | -: <del></del>                        | -:             | 50    | U :  | -:       |
| WMO8 CHROMIUM BY ICAP         | .UG/L : |                     | · · · · · · · · · · · · · · · · · · · | -: <del></del> | : 10  | U :  | -:       |
| WMO9 COPPER BY ICAP           | UG/L    |                     | -:                                    | -;             | 25    | U :  | -:<br>:  |
| WM10 IRON BY ICAP             | UG/L    |                     | :                                     | :              | 140   | U    | :        |
| WM11 MANGANESE BY ICAP        | UG/L    |                     | -:                                    | -:             | 22    | :    |          |
| WM12 MOLYBDENUM BY ICAP       | UG/L    | · <del></del> · - · | :                                     |                | N/A   | 0    |          |
| WM13 NICKEL BY ICAD           | . UG/L  |                     |                                       |                | 40    | บ    | :        |
| WM14 LEAD BY ICAP             | UG/L    |                     | :                                     |                | : 43  | J    |          |
| WM15 ANTIMONY BY ICAP         | UG/L    |                     | -                                     | :              | 60    | U    |          |
| WM16 SELENIUM BY ICAP         | UG/L    |                     | :                                     | :              | 5.0   | U    | :        |
| WM17 TITANIUM BY ICAP         | UG/L    |                     | -;                                    | - ;            | : N/A | 0    |          |
| WM18 THALLIUM BY ICAP         | UG/L    |                     | :                                     | - :            | : 10  | U    | :        |
| WM19 VANADIUM BY ICAP         | UG/L    |                     | :                                     | - :            | 50    | V    | -:       |
| WM20 ZINC BY ICAP             | UG/L    |                     | -:                                    | _ : ~=~===     | 170   |      | -;<br>:  |
| WM21 CALCIUM, TOTAL BY ICAP   | MG/L    |                     |                                       |                | 120   |      | - ;      |
| WM22 MAGNESIUM, TOTAL BY ICAP | MG/L    |                     | :                                     |                | : 77  | ·;   | :        |
| WM23 SODIUM, TOTAL BY ICAP    | MG/L :  |                     | -:<br>:                               |                | 14    | :    | -:       |

| COMPO                      | UND     | UNITS          | 318L  |   | 318R  |   | 3185 |   | 319  |   | 319L   |              | 319R |        |
|----------------------------|---------|----------------|-------|---|-------|---|------|---|------|---|--------|--------------|------|--------|
| WM24 POTASSIUM, TOTAL BY I | ICAP    | : <b>M</b> G/L | :     |   | :     |   | :    |   | 7.0  |   | :      | :<br>:       |      | :<br>: |
| WM35 SILVER, DISSOLVED     | BY ICAP | UG/L           | : N/A | 0 | : N/A | 0 | N/A  | 0 | : 10 | U | :10    | J :          | 50   | :      |
| WM36 ALUMINUM, DISSOLVED   | BY ICAP | UG/L           | : N/A | 0 | N/A   | 0 | :N/A | 0 | 200  | U | 200    | J :          | 2000 | :      |
| WM37 ARSENIC.DISSOLVED     | BY ICAP | UG/L           | : 10  | U | 40    |   | : 38 |   | 10   | U | :N/A ( | 5 :          | N/A  | 0      |
| WM38 BARIUM, DISSOLVED     | BY ICAP | UG/L           | N/A   | 0 | N/A   | 0 | N/A  | 0 | 200  | U | 200 (  | U :          | 2000 | :      |
| WM39 BERYLLIUM, DISSOLVED  | BY ICAP | UG/L           | : N/A | 0 | N/A   | 0 | N/A  | 0 | 5.0  | U | 5.0    | J :          | 50   | :      |
| WM40 CADMIUM, DISSOLVED    | BY ICAP | UG/L           | :N/A  | 0 | N/A   | 0 | N/A  | 0 | 5.0  | U | :5.0   | U :          | 50   |        |
| WM41 COBALT.DISSOLVED      | BY ICAP | :UG/L          | N/A   | 0 | N/A   | 0 | N/A  | 0 | 50   | U | 50     | U :          | 500  |        |
| WM42 CHROMIUM.DISSOLVED    | BY ICAP | UG/L           | N/A   | 0 | N/A   | 0 | N/A  | 0 | 10   | U | 10     | J :          | 200  |        |
| WM43 COPPER.DISSOLVED      | BY ICAP | UG/L           | N/A   | ō | N/A   | o | N/A  | 0 | 25   | U | 25     | U :          | 250  |        |
| WM44 IRON.DISSOLVED        | BY ICAP | UG/L           | N/A   | 0 | N/A   | 0 | N/A  | 0 | 100  | U | 140    | :<br>:       | 1000 |        |
| WM45 MANGANESE, DISSOLVED  | BY ICAP | UG/L           | N/A   | 0 | N/A   | 0 | N/A  | o | 15   | U | 19     | :            | 500  |        |
| WM46 MOLYBDENUM, DISSOLVED | BY ICAP | UG/L           | N/A   | 0 | N/A   | 0 | N/A  | 0 | N/A  | 0 | :N/A ( | 5            | N/A  | 0      |
| WM47 NICKEL, DISSOLVED     | BY ICAP | UG/L           | N/A   | 0 | N/A   | 0 | N/A  | 0 | 40   | U | :40    | U :          | 500  |        |
| WM48 LEAD, DISSOLVED       | BY ICAP | UG/L           | 61    |   | 20    |   | 50   |   | 4.4  | U | N/A (  | 0            | N/A  | 0      |
| WM49 ANTIMONY, DISSOLVED   | BY ICAP | UG/L           | . N/A | Ū | N/A   | Ū | :N/A | O | 60   | U | :60    | U            | 500  |        |
| WM50 SELENIUM, DISSOLVED   | BY ICAP | UG/L           | 5.0   | U | 10    |   | :5.3 |   | :5.0 | U | N/A    | 0            | N/A  | 0      |
| WM51 TITANIUM.DISSOLVED    | BY ICAP | UG/L           | N/A   | 0 | N/A   | 0 | N/A  | 0 | N/A  | 0 | N/A (  | 0            | N/A  | 0      |
| WM52 THALLIUM, DISSOLVED   | BY ICAP | UG/L           | :10   | U | :50   |   | 73   |   | 10   | U | N/A (  | 0 :          | N/A  | 0      |
| WM53 VANADIUM.DISSOLVED    | BY ICAP | UG/L           | N/A   | 0 | :N/A  | 0 | N/A  | 0 | 50   | U | 50     | U :          | 500  |        |
| WM54 ZINC.DISSOLVED        | BY ICAP | UG/L           | N/A   | 0 | :N/A  | 0 | N/A  | 0 | 450  |   | 170    | :            | 500  |        |
| WM55 CALCIUM, DISSOLVED    | BY ICAP | MG/L           | N/A   | 0 | N/A   | 0 | N/A  | 0 | 120  |   | 120    |              | N/A  | 0      |
| WM56 MAGNESIUM.DISSOLVED   | BY ICAP | MG/L           | N/A   | 0 | :N/A  | 0 | N/A  | 0 | :81  |   | 77     |              | N/A  | 0      |
| WM57 SODIUM, DISSOLVED     | BY ICAP | MG/L           | N/A   | 0 | :N/A  | 0 | N/A  | 0 | :45  |   | 14     | - <b>-</b> : | N/A  | 0      |
| WM58 POTASSIUM, DISSOLVED  | BY ICAP | MG/L           | N/A   | 0 | : N/A | 0 | N/A  | 0 | 6.4  |   | 7.4    | :<br>:       | N/A  | 0      |
| ZZO1 SAMPLE NUMBER         |         | NA             | 318   |   | :318  |   | 318  |   | 319  |   | 319    |              | 319  |        |

| COMPOUND           | UNITS | 318L    | 318R  | 3185  | 319   | 319L  | 319R    |
|--------------------|-------|---------|-------|-------|-------|-------|---------|
| ZZO2 ACTIVITY CODE | : NA  | : CSXCR | CSXCR | CSXCR | CSXCR | CSXCR | : CSXCR |

|                   | COMPOUND     | UNITS      | 3195 | 320F    |       | 321F  |   | 322F    |              | 323F            |   | 324   |        |
|-------------------|--------------|------------|------|---------|-------|-------|---|---------|--------------|-----------------|---|-------|--------|
| WFO1 WATER TEMP   |              | :-:::::::: | ~    | :       |       | :     |   | :       |              | : <del></del> : |   | : 15  | :      |
| WF05 PH. FIELD    |              | SU         |      | !       |       | :     |   | :       |              |                 |   | 7.10  | :      |
| WF10 CONDUCTIVITY | (FIELD)      | UMHOS      |      |         |       |       |   |         |              | :               |   | 700   | :      |
| WMO1 SILVER       | BY ICAP      | UG/L       |      | 10      | U     | :10   | U | 10      | U            | : 10            | U | 10    | U :    |
| WMO2 ALUMINUM     | BY ICAP      | UG/L       |      | 200     | U     | 200   | U | 200     | U            | 200             | U | 200   | U      |
| WMO3 ARSENIC      | BY ICAP      | :UG/L      |      | : 10    | U     | : 10  | U | : 10    | U            | :10             | U | 10    | U .    |
| WMO4 BARIUM       | BY ICAP      | UG/L :     |      | 200     | U     | 200   | U | 200     | U            | 200             | U | 200   | U      |
| WMO5 BERYLLIUM    | BY ICAP      | UG/L       |      | 5.0     | U     | 5.0   | U | 5.0     | U            | :5.0            | U | 5.0   | U :    |
| WMO6 CADMIUM      | BY ICAP      | UG/L :     |      | 5.0     | U     | :5.0  | U | 5.0     | U            | :5.0            | U | 5.0   | U :    |
| WMO7 COBALT       | BY ICAP      | UG/L       |      | 50      | U     | 50    | U | :50     | U            | 50              | U | :50   | U      |
| WMO8 CHROMIUM     | BY ICAP      | UG/L       |      | 10      | U     | 10    | U | :10     | U            | 10              | U | 10    | U      |
| WMO9 COPPER       | BY ICAP      | UG/L :     |      | 25      | U     | 25    | U | 25      | U            | 25              | u | :25   | U .    |
| WM10 IRON         | BY ICAP      | UG/L       |      | : 100   | U     | : 100 | U | 100     | <br>ู่<br>ู่ | 100             | U | : 100 | U .    |
| WM11 MANGANESE    | BY ICAP      | UG/L       |      | 15      | U     | 15    | u | 15      | U            | : 15            | บ | .15   | υ      |
| WM12 MOLYBDENUM   | BY ICAP      | UG/L       |      | N/A     | 0     | :N/A  | 0 | N/A     | 0            | N/A             | 0 | :N/A  | 0      |
| WM13 MICKEL       | BY ICAD      | .UG/L .    |      | : 40    | U     | 40    | U | 40      | υ            | 40              | υ | :51   |        |
| WM14 LEAD         | By ICAP      | .UG/L      |      | :N/A    | I     | . N/A | i | : 3 . 2 | <br>J        | N/A             | I | : 37  | J :    |
| WM15 ANTIMONY     | BY ICAP      | UG/L       |      | :60     | υ     | 60    | υ | :60     | U            | 60              | U | :60   | U :    |
| WM16 SELENIUM     | BY ICAP      | :UG/L      |      | 5.0     | U     | :5.0  | U | 5.0     | U            | 5.0             | U | :5.0  | :<br>U |
| WM17 TITANIUM     | BY ICAP      | UG/L       |      | : N/A   | 0     | N/A   | 0 | :N/A    | 0            | : N/A           | 0 | N/A   | 0 :    |
| WM18 THALLIUM     | BY ICAP      | UG/L       |      | 10      | U     | 10    | U | . 10    | U            | . 10            | U | . 10  | U :    |
| WM19 VANADIUM     | BY ICAP      | UG/L :     |      | :50     | U     | :50   | υ | :50     | U            | :50             | U | :50   | U      |
| WM20 ZINC         | BY ICAP      | . UG/L :   |      | 20      | U     | 20    | U | 20      | U            | 20              |   | 160   |        |
| WM21 CALCIUM, TOT | AL BY ICAP   | MG/L :     |      | 5 0     | U     | 5 0   | U | :5.0    | U            | 5.0             |   | 110   |        |
| WM22 MAGNESIUM, T | OTAL BY ICAP | MG/L       |      | : 5 . 0 | U     | 5.0   | U | :5.0    | <br>U        | :5.0            | U | :62   |        |
| WM23 SODIUM. TOTA | L BY ICAP    | :MG/L      |      | 5 0     | <br>U | :5.0  | U | :5.0    | U            | :5.0            |   | :9.2  |        |

| COMPOUND                          | UNITS  | 3195  | 320F  | 321F    | 322F     | 323F   | 324      |
|-----------------------------------|--------|-------|-------|---------|----------|--------|----------|
| WM24 POTASSIUM, TOTAL BY ICAP     | : MG/L |       | 5.0 U | : 5.0 U | J :5.0 U | :5.0 U | 5.0 U    |
| WM35 SILVER, DISSOLVED BY ICAP    | UG/L   | 52    | :     | :10     | J 10 U   | 10 U   | 10 U     |
| WM36 ALUMINUM, DISSOLVED BY ICAP  | UG/L   | 2000  | :     | 200     | J 200 U  | :200 U | 200 U    |
| WM37 ARSENIC, DISSOLVED BY ICAP   | UG/L   | N/A O | :     | : 10 l  | J :10 U  | :10 U  | :10 U    |
| WM38 BARIUM, DISSOLVED BY ICAP    | UG/L   | 2000  | :     | 200 (   | J 200 U  | 200 ປ  | 200 U    |
| WM39 BERYLLIUM, DISSOLVED BY ICAP | UG/L   | 46    | :     | 5.0     | J 5.0 U  | :5.0 U | 5.0 U    |
| WM40 CADMIUM, DISSOLVED BY ICAP   | UG/L   | 56    | :     | 5.0     | J 5.0 U  | 5.0 U  | 5.0 U    |
| WM41 COBALT.DISSOLVED BY ICAP     | UG/L   | 470   |       | 50 (    | J 50 U   | :50 U  | 50 U     |
| WM42 CHROMIUM, DISSOLVED BY ICAP  | UG/L   | 180   | : _   | :10     | J 10 U   | 10 U   | 10 U     |
| WM43 COPPER.DISSOLVED BY ICAP     | UG/L   | 240   | :     | 25      | J 25 U   | :25 U  | .25 U    |
| WM44 IRON.DISSOLVED BY ICAP       | UG/L   | 1100  | :     | 100     | J 100 U  | 100 U  | :100 U . |
| WM45 MANGANESE, DISSOLVED BY ICAP | UG/L   | 490   | :     | 15      | J :15 U  | :15 ป  | :15 U :  |
| WM46 MOLYBDENUM.DISSOLVED BY ICAP | UG/L   | N/A O | :     | :N/A (  | D:N/A 0  | :N/A 0 | N/A O    |
| WM47 NICKEL, DISSOLVED BY ICAP    | UG/L   | 490   | :     | :40     | J :40 U  | 40 U   | :88      |
| WM48 LEAD, DISSOLVED BY ICAP      | UG/L   | N/A O | :     | 3.0     | J 3.0 U  | :3.0 U | 28       |
| WM49 ANTIMONY, DISSOLVED BY ICAP  | UG/L   | 470   | :     | :60     | J 60 U   | :60 U  | :60 U    |
| WM50 SELENIUM, DISSOLVED BY ICAP  | UG/L   | N/A O | :     | :5.0    | J :5.0 U | 5.0 U  | :5.0 U   |
| WM51 TITANIUM.DISSOLVED BY ICAP   | UG/L   | N/A O |       | N/A     | N/A 0    | N/A 0  | N/A O    |
| WM52 THALLIUM, DISSOLVED BY ICAP  | UG/L   | N/A O | : _   | 10      | J 10 U   | 10 U   | 10 U     |
| WM53 VANADIUM, DISSOLVED BY ICAP  | UG/L   | 480   | :     | 50      | J 50 U   | 50 U   | 50 U     |
| WM54 ZINC.DISSOLVED BY ICAP       | UG/L   | 640   | : _   | 20      | J 20 U   | 20 U   | 170      |
| WM55 CALCIUM, DISSOLVED BY ICAP   | MG/L   | N/A O | :     | 5.0     | J 5.0 U  | 5.0 U  | 110      |
| WM56 MAGNESIUM, DISSOLVED BY ICAP | MG/L   | N/A O | :     | 5.0     | ม 5.0 V  | :5.0 U | 65       |
| WM57 SODIUM, DISSOLVED BY ICAP    | MG/L   | N/A O | :     | 5.0     | J 5.0 U  | 5.0 U  | 9.7      |
| WM58 POTASSIUM, DISSOLVED BY ICAP | MG/L   | N/A O | :     | 5.0     | J 5.0 U  | 5.0 ช  | 5.0 U    |
| ZZO1 SAMPLE NUMBER                | : NA   | : 319 | 320   | 321     | 322      | 323    | 324      |

| COMPOUND           | UNITS | 3195  | 320F  | 321F    | 322F  | 323F  | 324    |
|--------------------|-------|-------|-------|---------|-------|-------|--------|
| ZZO2 ACTIVITY CODE | NA NA | CSXCR | CSXCR | : CSXCR | CSXCR | CSXCR | :CSXCR |

|                     | COMPOUND      | UNITS  | 324F  |    | 325F |         | 400         | 402         | 403      | 403L |
|---------------------|---------------|--------|-------|----|------|---------|-------------|-------------|----------|------|
| WMO2 ALUMINUM       | BY ICAP       | :UG/L  | 200   | υ  | 200  | :<br>บ: |             | : -:<br>:   | -:       | :    |
| WMO3 ARSENIC        | BY ICAP       | UG/L   | 10    | U  | 10   | U :     |             |             | :        | :    |
| WMO4 BARIUM         | BY ICAP       | UG/L   | 200   | U  | 200  | U :     |             |             | -:       | :    |
| WMO5 BERYLLIUM      | BY ICAP       | UG/L   | 5.0   | U  | 5.0  | U :     |             | :           | -:<br>:  | :    |
| WMO6 CADMIUM        | BY ICAP       | UG/L   | 5.0   | υ  | 5.0  | U       |             | :           | :        | :    |
| WMO7 COBALT         | BY ICAP       | :UG/L  | 50    | U  | :50  | U :     |             | :           | :        | :    |
| WMO8 CHROMIUM       | BY ICAP       | UG/L   | 10    | U  | 10   | U       |             | :           |          | :    |
| WM09 COPPER         | BY ICAP       | UG/L   | 25    | U  | 25   | U       |             |             | -:       | :    |
| WM10 IRON           | BY ICAP       | UG/L   | 100   | U  | 100  | U       |             | ·-:         | :        | :    |
| WM11 MANGANESE      | BY ICAP       | UG/L   | 15    | U  | :15  | U       |             |             | <u> </u> | :    |
| WM12 MOLYBDENUM     | BY ICAP       | : UG/L | : N/A | 0  | N/A  |         |             | :           | -:       | :    |
| WM13 NICKEL         | BY ICAP       | UG/L   | : 40  | υ  | 40   | υ       |             | :           | ;<br>;   | :    |
| WM14 LEAD           | BY ICAP       | :UG/L  | : N/A | I  | N/A  | 1       |             | ;           | - ;      | :    |
| WM15 ANTIMONY       | BY ICAP       | UG/L   | :60   | U  | 60   | U       |             | :           | ·        | :    |
| WM16 SELENIUM       | BY ICAP       | UG/L   | 5.0   | U  | 5.0  | U       | <del></del> |             |          | :    |
| WM17 TITANTUM       | BY ICAP       | . UG/L | . N/A | Ū  | :N/A | U .     |             | :           |          | :    |
| WM18 THALLIUM       | BY ICAP       | .UG/L  | . 10  | U  | . 10 | U :     |             | :           |          | :    |
| WM19 VANADIUM       | BY ICAP       | UG/L   | 50    | U  | 50   | U :     |             |             | :        |      |
| WM20 ZINC           | BY ICAP       | UG/L   | 27    |    | 20   | U       |             | :           | - :      |      |
| WM21 CALCIUM, TOTA  | L BY ICAP     | MG/L   | 5 0   | U  | 5.0  | :       |             | :           |          | :    |
| WM22 MAGNESIUM. TO  | TAL BY ICAP   | MG/L   | 5.0   | U  | .5.0 | U :     |             | :           |          | :    |
| WM23 SODIUM. TOTAL  | BY ICAP       | MG/L   | 5.0   | Ų  | 5.0  | U :     |             | :           |          | :    |
| WM24 POTASSIUM, TO  | TAL BY ICAP   | MG/L   | 5.0   | υ  | 5 0  | U .     |             | <del></del> | -:       | :    |
| WM35 SILVER.DISSOL  | VED BY ICAP   | UG/L   | 10    | U  | :    | :       |             |             | -:       | :    |
| WM36 ALUMINUM, DISS | OLVED BY ICAP | : UG/L | 200   | IJ | :    | :       |             | :           | :        | :    |
| WM37 ARSENIC.DISSO  | LVED BY ICAP  | UG/L   | 10    | U  | :    |         |             |             | -:       | :    |

| COMPOUND                                   | UNITS          | 324F    |     | 325F   | 400             | 402   | 403           | 403L        |
|--------------------------------------------|----------------|---------|-----|--------|-----------------|-------|---------------|-------------|
| WM38 BARIUM, DISSOLVED BY ICAP             | UG/L           | 200     | U : |        | :               | :     |               | - ;         |
| WM39 BERYLLIUM, DISSOLVED BY ICAP          | UG/L           | 5.0     | U : |        |                 |       |               | :           |
| WM40 CADMIUM.DISSOLVED BY ICAP             | UG/L           | 5.0     | U   |        |                 |       | :             |             |
| WM41 COBALT.DISSOLVED BY ICAP              | UG/L           | 50      | U : |        |                 |       |               |             |
| WM42 CHROMIUM, DISSOLVED BY ICAP           | UG/L           | 10      | U : |        |                 |       |               |             |
| WM43 COPPER.DISSOLVED BY ICAP              | UG/L           | 25      | U : |        |                 |       | :             |             |
| WM44 IRON.DISSOLVED BY ICAP                | UG/L           | 100     | U : |        | :               | :     | :             |             |
| WM45 MANGANESE DISSOLVED BY ICAP           | UG/L           | : 15    | U : |        |                 | :     | :             | :           |
| WM46 MOLYBDENUM, DISSOLVED BY ICAP         | UG/L           | : N/A   | 0 : |        |                 | ;     | :             | :           |
| WM47 NICKEL, DISSOLVED BY ICAP             | UG/L           | 40      | U   |        | - ; <del></del> | :     | :             | - ; <b></b> |
| WM48 LEAD.DISSOLVED BY ICAP                | UG/L           | :3.0    | U : |        | -:              | :     | :             | :           |
| WM49 ANTIMONY, DISSOLVED BY ICAP           | UG/L           | :60     | U : |        |                 | :     |               |             |
| WM50 SELENIUM.DISSOLVED BY ICAP            | .UG/L          | :5.0    | U   |        | :               | :     | :             | -:          |
| WM51 TITANIUM, DISSOLVED BY ICAP           | UG/L           | : N/A   | 0   |        | :               | :     |               |             |
| WM52 THALLIUM.DISSOLVED BY ICAP            | UG/L           | 10      | บ็า |        |                 | :     | :             | -:          |
| WM53 VANADIUM.DISSOLVED BY ICAP            | UG/L           | . 50    | υ - |        | :               | :     |               | :           |
| WM54 ZINC.DISSOLVED BY TUAP                | . UG/L         | 20      | U . | ······ |                 | :     | :             | :           |
| WM55 CALCIUM, DISSOLVED BY ICAP            | : <b>M</b> G/L | :5.0    | U   |        |                 | :     | :             | :           |
| WM56 MAGNESIUM, DISSOLVED BY ICAP          | :MG/L          | :5.0    | U   |        | :               | :     | :             | :           |
| WM57 SODIUM, DISSOLVED BY ICAP             | : <b>M</b> G/L | 5.0     | U   |        |                 | :     | <del></del> : | -           |
| WM58 POTASSIUM.DISSOLVED BY ICAP           | : MG/L         | 5.0     | U : |        | :               | :     |               | -:          |
| ZZO1 SAMPLE NUMBER                         | NA NA          | : 324   | : 3 | 325    | 400             | : 402 | . 403         | : 403       |
| ZZO2 ACTIVITY CODE                         | . NA           | . CSXCR | : ( | CSXCR  | CSXCR           | CSXCR | CSXCR         | CSXCR       |
| ZZ99 SAMPLE COLLECTION DATE & BATCH NUMBER | : DT .         | :       | :-  |        | ***             | ***   | ***           | ***         |

| COMPOUND                              | UNITS            | 324F             | 325F   | 400          | 402            | 403        | 403L       |
|---------------------------------------|------------------|------------------|--------|--------------|----------------|------------|------------|
| AMO1 PARTICULATE LEAD IN AIR BY HIVOL | : UG/M3:         |                  | :      | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AMO2 SILVER                           | UG/M3            |                  | -:     | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AMO3 ALUMINUM                         | UG/M3            |                  |        | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AMO4 ARSENIC                          | UG/M3            |                  | :      | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AMO5 BARIUM                           | UG/M3            |                  | :      | ATTACHMENT   | : ATTACHMENT   | ATTACHMENT | ATTACHMENT |
| AMO6 BERYLLIUM                        | UG/ <b>M</b> 3:  |                  | :      | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AMO7 CADMIUM                          | UG/M3:           |                  |        | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AMOS COBALT                           | UG/ <b>M</b> 3   |                  |        | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AMO9 CHROMIUM                         | UG/M3:           |                  |        | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AM10 COPPER                           | :UG/ <b>M3</b> : |                  |        | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AM11 IRON                             | UG/ <b>M</b> 3:  |                  |        | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AM12 MANGANESE                        | UG/M3:           |                  |        | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AM13 NICKEL                           | UG/ <b>M</b> 3   |                  |        | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AM14 ANTIMONY                         | UG/ <b>M</b> 3:  |                  |        | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AM15 SELENIUM                         | UG/M3            | ,                | :      | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AM16 TITANIUM                         | . UG/M3.         |                  |        | ALIACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AM17 THALLIUM                         | . UG/M3:         | <del>-</del> · , |        | ATTACHMENT   | : ATTACHMENT   | ATTACHMENT | ATTACHMENT |
| AM18 VANADIUM                         | UG/M3            |                  | :      | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AM19 MOLYBDENUM                       | UG/M3:           |                  | :      | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AM20 ZINC                             | UG/M3            |                  | :      | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AM21 CALCIUM                          | UG/M3:           |                  | :      | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AM22 MAGNESIUM                        | UG/M3            |                  | :      | : ATTACHMENT | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AM23 SODIUM                           | UG/M3            |                  | :      | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AM24 POTASSIUM                        | UG/M3            |                  |        | ATTACHMENT   | ATTACHMENT     | ATTACHMENT | ATTACHMENT |
| AM25 TIN                              | UG/M3            |                  | :      | :            | :              | :          | ATTACHMENT |
| WMO1 SILVER BY ICAP                   | UG/L :           | 10               | U : 10 | U :          | -: <del></del> | :          | :          |

# ANALYSIS REQUEST DETAIL REPORT

ACTIVITY: O-CSXCR

| COMPOUND                              | UNITS            | 404          | 406             | 407          | 408          | 408L         | 409          |
|---------------------------------------|------------------|--------------|-----------------|--------------|--------------|--------------|--------------|
| AMO1 PARTICULATE LEAD IN AIR BY HIVOL | :UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   |
| AMO2 SILVER                           | UG/M3            | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO3 ALUMINUM                         | UG/M3            | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO4 ARSENIC                          | UG/M3            | ATTACHMENT   | ATTACHMENT      | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMOS BARIUM                           | UG/M3            | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO6 BERYLLIUM                        | : UG/ <b>M</b> 3 | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO7 CADMIUM                          | : UG/ <b>M</b> 3 | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO8 COBALT                           | :UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT      | : ATTACHMENT | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   |
| AMO9 CHROMIUM                         | :UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   |
| AM10 COPPER                           | :UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM11 IRON                             | : UG/ <b>M</b> 3 | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM12 MANGANESE                        | : UG/M3          | ATTACHMENT   | ATTACHMENT      | :ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM13 NICKEL                           | :UG/M3           | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM14 ANTIMONY                         | UG/ <b>M</b> 3   | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM15 SELENIUM                         | UG/M3            | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM16 TITANIUM                         | . UG/ <b>M</b> 3 | . ATTACHMENT | :ATTACHMENT     | ALLACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM17 THALLIUM                         | : UG/ <b>M</b> 3 | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | :ATTACHMENT  | ATTACHMENT   | ATTACHMENT   |
| AM18 VANADIUM                         | :UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM19 MOLYBDENUM                       | :UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   |
| AM20 ZINC                             | :UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM21 CALCIUM                          | :UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM22 MAGNESIUM                        | : UG/M3          | ATTACHMENT   | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM23 SODIUM                           | :UG/ <b>M</b> 3  | : ATTACHMENT | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM24 POTASSIUM                        | : UG/ <b>M</b> 3 | : ATTACHMENT | ATTACHMENT      | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | : ATTACHMENT |
| AM25 TIN                              | :UG/ <b>M</b> 3  | :<br>:       | -: <del>-</del> | -:           | -:<br>:      | : ATTACHMENT | -:<br>:      |
| ZZO1 SAMPLE NUMBER                    | : NA             | : 404        | : 406           | : 407        | - :<br>: 408 | 408          | 409          |

| COMPOUND                                   | UNITS 404 | 406   | 407   | 408     | 408L         | 409   |
|--------------------------------------------|-----------|-------|-------|---------|--------------|-------|
| ZZO2 ACTIVITY CODE                         | NA CSXCR  | CSXCR | CSXCR | : CSXCR | :<br>: CSXCR | CSXCR |
| ZZ99 SAMPLE COLLECTION DATE & BATCH NUMBER | -         | ***   | ***   | ***     | ***          | ***   |

### ANALYSIS REQUEST DETAIL REPORT

ACTIVITY: O-CSXCR

| COMPOUND                              | UNITS            | 410          | 411          | 412          | 413          | 414          | 415          |
|---------------------------------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| AMO1 PARTICULATE LEAD IN AIR BY HIVOL | :UG/M3           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO2 SILVER                           | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO3 ALUMINUM                         | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO4 ARSENIC                          | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMOS BARIUM                           | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO6 BERYLLIUM                        | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO7 CADMIUM                          | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMOS COBALT                           | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT |
| AMO9 CHROMIUM                         | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM10 COPPER                           | :UG/M3           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM11 IRON                             | : UG/M3          | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM12 MANGANESE                        | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM13 NICKEL                           | : UG/M3          | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | :ATTACHMENT  | : ATTACHMENT |
| AM14 ANTIMONY                         | : UG/M3          | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT |
| AM15 SELENIUM                         | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | :ATTACHMENT  |
| AM16 TITANIUM                         | .UG/ <b>M</b> 3  | ATTACHMENT   | :ATTACHMENT  | :AIIACHMENI  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM17 THALLIUM                         | : UG/M3          | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | :ATTACHMENT  |
| AM18 VANADIUM                         | UG/ <b>M</b> 3   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   |
| AM19 MOLYBDENUM                       | : UG/M3          | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM2O ZINC                             | : UG/M3          | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM21 CALCIUM                          | : UG/M3          | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM22 MAGNESIUM                        | : UG/M3          | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM23 SODIUM                           | :UG/M3           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM24 POTASSIUM                        | : UG/ <b>M</b> 3 | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | :ATTACHMENT  |
| 2201 SAMPLE NUMBER                    | : NA             | : 410        | : 411        | : 412        | :413         | :414         | : 415        |
| ZZO2 ACTIVITY CODE                    | NA               | : CSXCR      | CSXCR        | CSXCR        | :CSXCR       | CSXCR        | CSXCR        |

| COMPOUND                                   | UNITS | 410 | 411 | 412 | 413 | 414 | 415 |
|--------------------------------------------|-------|-----|-----|-----|-----|-----|-----|
| ZZ99 SAMPLE COLLECTION DATE & BATCH NUMBER | DT    | *** | *** | *** | *** | *** | *** |

| COMPOUND                              | UNITS            | 416          | 417          | 418          | 419          | 420          | 421          |
|---------------------------------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| AMO1 PARTICULATE LEAD IN AIR BY HIVOL | :UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT |
| AMO2 SILVER                           | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT |
| AMO3 ALUMINUM                         | :UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO4 ARSENIC                          | :UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT |
| AMOS BARIUM                           | :UG/M3           | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   | :ATTACHMENT  | ATTACHMENT   |
| AMO6 BERYLLIUM                        | :UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO7 CADMIUM                          | :UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO8 COBALT                           | : UG/ <b>M</b> 3 | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | : ATTACHMENT | : ATTACHMENT |
| AMO9 CHROMIUM                         | : UG/ <b>M</b> 3 | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT |
| AM10 COPPER                           | : UG/ <b>M</b> 3 | ATTACHMENT   | : ATTACHMENT | : ATTACHMENT | : ATTACHMENT | : ATTACHMENT | : ATTACHMENT |
| AM11 IRON                             | :UG/ <b>M</b> 3  | ATTACHMENT   | : ATTACHMENT | : ATTACHMENT | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   |
| AM12 MANGANESE                        | : UG/ <b>M</b> 3 | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   |
| AM13 NICKEL                           | :UG/M3           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM14 ANTIMONY                         | :UG/ <b>M</b> 3  | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | : ATTACHMENT |
| AM15 SELENIUM                         | UG/M3            | ATTACHMENT   | :ATTACHMENT  | :ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM16 TITANIUM                         | . UG/ <b>M</b> 3 | . ATTACHMENT | :ATTACHMENT  | : AllALHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM17 THALLIUM                         | : UG/M3          | ATTACHMENT   | . ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM18 VANADIUM                         | UG/M3            | ATTACHMENT   | :ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM19 MOLYBDENUM                       | UG/M3            | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM20 ZINC                             | UG/M3            | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM21 CALCIUM                          | UG/M3            | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   |
| AM22 MAGNESIUM                        | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM23 SODIUM                           | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM24 POTASSIUM                        | : UG/M3          | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| ZZO1 SAMPLE NUMBER                    | : NA             | 416          | :417         | :418         | :419         | 420          | : 421        |
| ZZO2 ACTIVITY CODE                    | : NA             | : CSXCR      | CSXCR        | CSXCR        | CSXCR        | CSXCR        | :CSXCR       |

| COMPOUND                                   | UNITS | 416 | 417 | 418 | 419 | 420 | 421            |
|--------------------------------------------|-------|-----|-----|-----|-----|-----|----------------|
| ZZ99 SAMPLE COLLECTION DATE & BATCH NUMBER | _     | *** | *** | *** | *** | *** | :::<br>* * * * |

| COMPOUND                              | UNITS                | 422           | 422L         | 423          | 424          | 424F                                  | 425            |
|---------------------------------------|----------------------|---------------|--------------|--------------|--------------|---------------------------------------|----------------|
| AMO1 PARTICULATE LEAD IN AIR BY HIVOL | : UG/M3              | ATTACHMENT    | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | *                                     | : ATTACHMENT   |
| AMO2 SILVER                           | UG/M3                | ATTACHMENT    | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | *                                     | ATTACHMENT     |
| AMO3 ALUMINUM                         | UG/M3                | ATTACHMENT    | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | *                                     | ATTACHMENT     |
| AMO4 ARSENIC                          | UG/M3                | ATTACHMENT    | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | *                                     | ATTACHMENT     |
| AMO5 BARIUM                           | UG/M3                | ATTACHMENT    | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | *                                     | ATTACHMENT     |
| AMO6 BERYLLIUM                        | UG/ <b>M</b> 3       | ATTACHMENT    | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | *                                     | ATTACHMENT     |
| AMO7 CADMIUM                          | UG/M3                | ATTACHMENT    | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | *                                     | ATTACHMENT     |
| AMO8 COBALT                           | :UG/ <b>M</b> 3      | ATTACHMENT    | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | · *                                   | ATTACHMENT     |
| AMO9 CHROMIUM                         | : UG/ <b>M</b> 3     | ATTACHMENT    | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | *                                     | ATTACHMENT     |
| AM10 COPPER                           | : UG/ <b>M</b> 3     | ATTACHMENT    | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | *                                     | :ATTACHMENT    |
| AM11 IRON                             | :UG/ <b>M</b> 3      | ATTACHMENT    | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | *                                     | ATTACHMENT     |
| AM12 MANGANESE                        | : UG/M3              | ATTACHMENT    | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | *                                     | ATTACHMENT     |
| AM13 NICKEL                           | : UG/ <b>M</b> 3     | ATTACHMENT    | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | *                                     | ATTACHMENT     |
| AM14 ANTIMONY                         | : UG/M3              | ATTACHMENT    | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | *                                     | ATTACHMENT     |
| AM15 SELENIUM                         | UG/M3                | ATTACHMENT    | :ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | · · · · · · · · · · · · · · · · · · · | ATTACHMENT     |
| AM16 TITANIUM                         | <br>. UG/ <b>M</b> 3 | ATTACHMENT    | :ATTACHMENT  | ALLACHMENT   | :ATTACHMENT  | · : *                                 | ATTACHMENT     |
| AM17 THALLIUM                         | :UG/M3               | ATTACHMENT    | ATTACHMENT   | : ATTACHMENT | :ATTACHMENT  | *                                     | ATTACHMENT     |
| AM18 VANADIUM                         | : UG/M3              | ATTACHMENT    | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | *                                     | ATTACHMENT     |
| AM19 MOLYBDENUM                       | :UG/M3               | ATTACHMENT    | :ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | · •                                   | ATTACHMENT     |
| AM20 ZINC                             | : UG/M3              | ATTACHMENT    | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | *                                     | ATTACHMENT     |
| AM21 CALCIUM                          | : UG/M3              | ATTACHMENT    | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | *                                     | ATTACHMENT     |
| AM22 MAGNESIUM                        | UG/M3                | ATTACHMENT    | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   | *                                     | ATTACHMENT     |
| AM23 SODIUM                           | : UG/ <b>M</b> 3     | ATTACHMENT    | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   | *                                     | ATTACHMENT     |
| AM24 POTASSIUM                        | .UG/ <b>M</b> 3      | ATTACHMENT    | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   | *                                     | ATTACHMENT     |
| AM25 TIN                              | : UG/ <b>M</b> 3     | ; <del></del> | : ATTACHMENT | - :          | : ATTACHMENT | -:<br>:                               | : <del>-</del> |
| ZZO1 SAMPLE NUMBER                    | :<br>: NA            | :422          | -:<br>:422   | 423          | -:<br>:424   | : 424                                 | : 425          |

| COMPOUND                                   | UNITS | 422   | 422L    | 423   | 424     | 424F  | 425 |   |
|--------------------------------------------|-------|-------|---------|-------|---------|-------|-----|---|
| ZZO2 ACTIVITY CODE                         | NA    | CSXCR | : CSXCR | CSXCR | . CSXCR | CSXCR | :   | : |
| ZZ99 SAMPLE COLLECTION DATE & BATCH NUMBER | DT    | ***   | ***     |       | ***     | * * * | *** |   |

#### ANALYSIS REQUEST DETAIL REPORT

COMPOUND UNITS 426 427 428 429 430 431 AMO1 PARTICULATE LEAD IN AIR BY HIVOL : UG/M3: ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT AMO2 SILVER :UG/M3:ATTACHMENT ATTACHMENT ATTACHMENT ATTACHMENT ATTACHMENT : ATTACHMENT AMO3 ALUMINUM UG/M3: ATTACHMENT ATTACHMENT ATTACHMENT ATTACHMENT ATTACHMENT : ATTACHMENT AMO4 ARSENIC UG/M3: ATTACHMENT : ATTACHMENT : ATTACHMENT ATTACHMENT ATTACHMENT : ATTACHMENT AMOS BARIUM UG/M3: ATTACHMENT ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT AMO6 BERYLLIUM : UG/M3: ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT AMO7 CADMIUM : UG/M3: ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT AMOS COBALT UG/M3: ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT **ATTACHMENT** : ATTACHMENT AMO9 CHROMIUM UG/M3: ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT ATTACHMENT : ATTACHMENT AM10 COPPER **ATTACHMENT** UG/M3: ATTACHMENT : ATTACHMENT ATTACHMENT : ATTACHMENT : ATTACHMENT AM11 IRON :UG/M3:ATTACHMENT ATTACHMENT ATTACHMENT : ATTACHMENT ATTACHMENT ATTACHMENT AM12 MANGANESE UG/M3:ATTACHMENT ATTACHMENT ATTACHMENT : ATTACHMENT ATTACHMENT ATTACHMENT AM13 NICKEL :UG/M3:ATTACHMENT : ATTACHMENT ATTACHMENT **ATTACHMENT** ATTACHMENT : ATTACHMENT AM14 ANTIMONY : UG/M3 : ATTACHMENT ATTACHMENT ATTACHMENT : ATTACHMENT **ATTACHMENT** ATTACHMENT AM15 SELENIUM :UG/M3:ATTACHMENT ATTACHMENT ATTACHMENT : ATTACHMENT ATTACHMENT : ATTACHMENT AM16 TITANIUM .UG/M3.ATTACHMENT : ATTACHMENT ALLACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT AM17 THALLIUM : UG/M3: ATTACHMENT : ATTACHMENT ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT AM18 VANADIUM :UG/M3:ATTACHMENT : ATTACHMENT : ATTACHMENT ATTACHMENT ATTACHMENT : ATTACHMENT AM19 MOLYBDENUM : UG/M3: ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT AM20 ZINC : UG/M3: ATTACHMENT : ATTACHMENT ATTACHMENT : ATTACHMENT : ATTACHMENT ATTACHMENT AM21 CALCIUM UG/M3:ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACHMENT : ATTACH**MENT** : ATTACHMENT AM22 MAGNESIUM UG/M3: ATTACHMENT : ATTACHMENT ATTACHMENT ATTACHMENT ATTACHMENT ATTACHMENT AM23 SODIUM : UG/M3 : ATTACHMENT : ATTACHMENT ATTACHMENT : ATTACHMENT **ATTACHMENT** ATTACHMENT AM24 POTASSIUM : UG/M3 : ATTACHMENT : ATTACHMENT ATTACHMENT : ATTACHMENT ATTACHMENT : ATTACHMENT 2201 SAMPLE NUMBER : NA : 426 : 427 428 429 430 : 431 : CSXCR CSXCR CSXCR : CSXCR ZZO2 ACTIVITY CODE :NA : CSXCR : CSXCR

ACTIVITY: O-CSXCR

| COMPOUND                                   | UNITS | 426 | 427 | 428 | 429 | 430 | 431 |
|--------------------------------------------|-------|-----|-----|-----|-----|-----|-----|
| ZZ99 SAMPLE COLLECTION DATE & BATCH NUMBER | DT :  | *** | *** | *** |     | *** | *** |
|                                            |       |     | :   |     |     | -·  | :   |

### ANALYSIS REQUEST DETAIL REPORT

ACTIVITY: O-CSXCR

| COMPOUND                              | UNITS            | 432        | 432F        | 433          | 433L         | 434          | 435          |
|---------------------------------------|------------------|------------|-------------|--------------|--------------|--------------|--------------|
| AMO1 PARTICULATE LEAD IN AIR BY HIVOL | : UG/M3          | ATTACHMENT | *           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO2 SILVER                           | : UG/M3          | ATTACHMENT | *           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO3 ALUMINUM                         | :UG/ <b>M</b> 3  | ATTACHMENT | *           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO4 ARSENIC                          | : UG/ <b>M</b> 3 | ATTACHMENT | : *         | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMOS BARIUM                           | : UG/ <b>M</b> 3 | ATTACHMENT | *           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO6 BERYLLIUM                        | : UG/M3          | ATTACHMENT | *           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO7 CADMIUM                          | UG/M3            | ATTACHMENT | *           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMOS COBALT                           | : UG/ <b>M</b> 3 | ATTACHMENT | : *         | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO9 CHROMIUM                         | UG/M3            | ATTACHMENT | *           | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | : ATTACHMENT |
| AM10 COPPER                           | UG/M3            | ATTACHMENT | *           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT |
| AM11 IRON                             | UG/M3            | ATTACHMENT | *           | ATTACHMENT   | : ATTACHMENT | : ATTACHMENT | : ATTACHMENT |
| AM12 MANGANESE                        | UG/M3            | ATTACHMENT | *           | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   |
| AM13 NICKEL                           | UG/M3            | ATTACHMENT | : *         | ATTACHMENT   | :ATTACHMENT  | : ATTACHMENT | :ATTACHMENT  |
| AM14 ANTIMONY                         | UG/M3            | ATTACHMENT | *           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM15 SELENIUM                         | UG/M3            | ATTACHMENT | *           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM16 ILIANIUM                         | . UG/M3          | ATTACHMENT | *           | : ALIACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM17 THALLIUM                         | : UG/M3          | ATTACHMENT | *           | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   |
| AM18 VANADIUM                         | UG/M3            | ATTACHMENT | *           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM19 MOLYBDENUM                       | UG/M3            | ATTACHMENT | *           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM20 ZINC                             | UG/M3            | ATTACHMENT | *           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT |
| AM21 CALCIUM                          | : UG/M3          | ATTACHMENT | · · · · · · | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM22 MAGNESIUM                        | UG/M3            | ATTACHMENT | *           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM23 SODIUM                           | UG/M3            | ATTACHMENT | *           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM24 POTASSIUM                        | :UG/ <b>M</b> 3  | ATTACHMENT | *           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM25 TIN                              | :UG/ <b>M</b> 3  | ATTACHMENT | -:<br>:     | :            | ATTACHMENT   | :            | -:           |
| ZZO1 SAMPLE NUMBER                    | : NA             | : 432      | : 432       | 433          | 433          | 434          | : 435        |

| COMPOUND                                   | UNITS 4     | 432 432F | 433   | 433L      | 434     | 435   |     |
|--------------------------------------------|-------------|----------|-------|-----------|---------|-------|-----|
| ZZO2 ACTIVITY CODE                         | : NA : CSX( | CR CSXCR | CSXCR | <br>CSXCR | . CSXCR | CSXCR | - : |
| ZZ99 SAMPLE COLLECTION DATE & BATCH NUMBER | -           | ·        |       | ***       | ***     | * * * | - : |

| COMPOUND                              | UNITS            | 436          | 437         | 438          | 439            | 440          | 440F            |
|---------------------------------------|------------------|--------------|-------------|--------------|----------------|--------------|-----------------|
| AMO1 PARTICULATE LEAD IN AIR BY HIVOL | : UG/M3          | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | *               |
| AMO2 SILVER                           | UG/M3            | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | : *             |
| AMO3 ALUMINUM                         | UG/M3            | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | *               |
| AMO4 ARSENIC                          | UG/M3            | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | *               |
| AMOS BARIUM                           | UG/M3            | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | *               |
| AMO6 BERYLLIUM                        | UG/M3            | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | ; <del></del>   |
| AMO7 CADMIUM                          | UG/M3            | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | ; <del></del> * |
| AMOS COBALT                           | UG/M3            | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | : *             |
| AMO9 CHROMIUM                         | UG/M3            | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | *               |
| AM10 COPPER                           | : UG/ <b>M</b> 3 | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | *               |
| AM11 IRON                             | : UG/ <b>M</b> 3 | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | : *             |
| AM12 MANGANESE                        | : UG/M3          | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | : ATTACHMENT | : *             |
| AM13 NICKEL                           | .UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | :ATTACHMENT  | ; *             |
| AM14 ANTIMONY                         | :UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | ;               |
| AM15 SELENIUM                         | UG/ <b>M</b> 3   | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | *               |
| AM16 ITTANIUM                         | . UG/ <b>M</b> 3 | . ATTACHMENT | :ATTACHMENT | ALIACHMENT   | ATTACHMENT     | : ATTACHMENT | *               |
| AM17 THALLIUM                         | : UG/M3          | ATTACHMENT   | .ATTACHMENT | ATTACHMENT   | :ATTACHMENT    | ATTACHMENT   | *               |
| AM18 VANADIUM                         | :UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | : ATTACHMENT | *               |
| AM19 MOLYBDENUM                       | : UG/ <b>M</b> 3 | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | *               |
| AM20 ZINC                             | UG/ <b>M</b> 3   | ATTACHMENT   | ATTACHMENT  | : ATTACHMENT | : ATTACHMENT   | ATTACHMENT   | *               |
| AM21 CALCIUM                          | UG/M3            | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | ; *             |
| AM22 MAGNESIUM                        | : UG/ <b>M3</b>  | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | *               |
| AM23 SODIUM                           | UG/ <b>M</b> 3   | : ATTACHMENT | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | *               |
| AM24 POTASSIUM                        | : UG/M3          | : ATTACHMENT | ATTACHMENT  | ATTACHMENT   | ATTACHMENT     | ATTACHMENT   | *               |
| AM25 TIN                              | : UG/ <b>M</b> 3 | :            | :           | - :          | -: <del></del> | ATTACHMENT   | :               |
| ZZO1 SAMPLE NUMBER                    | :<br>NA          | : 436        | -:<br>:437  | - :<br>: 438 | 439            | 440          | : 440           |

| COMPOUND                                   | UNITS | 436  | 437   | 438   | 439   | 440   | 440F  |
|--------------------------------------------|-------|------|-------|-------|-------|-------|-------|
| ZZO2 ACTIVITY CODE                         | NA C  | SXCR | CSXCR | CSXCR | CSXCR | CSXCR | CSXCR |
| ZZ99 SAMPLE COLLECTION DATE & BATCH NUMBER | DT :  | ***  | ***   | ***   | · *** | ***   | ***   |

# ANALYSIS REQUEST DETAIL REPORT

ACTIVITY: O-CSXCR

| COMPOUND                              | UNITS            | 441        | 442          | 443          | 444          | 445          | 446          |
|---------------------------------------|------------------|------------|--------------|--------------|--------------|--------------|--------------|
| AMO1 PARTICULATE LEAD IN AIR BY HIVOL | :UG/M3           | ATTACHMENT | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT |
| AMO2 SILVER                           | UG/M3            | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMOS ALUMINUM                         | : UG/M3          | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO4 ARSENIC                          | UG/M3            | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO5 BARIUM                           | UG/M3            | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO6 BERYLLIUM                        | UG/M3            | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO7 CADMIUM                          | UG/M3            | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO8 COBALT                           | :UG/ <b>M</b> 3  | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AMO9 CHROMIUM                         | :UG/ <b>M</b> 3  | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | : ATTACHMENT | ATTACHMENT   |
| AM10 COPPER                           | :UG/ <b>M</b> 3  | ATTACHMENT | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   |
| AM11 IRON                             | : UG/ <b>M</b> 3 | ATTACHMENT | ATTACHMENT   | :ATTACHMENT  | : ATTACHMENT | : ATTACHMENT | ATTACHMENT   |
| AM12 MANGANESE                        | : UG/M3          | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM13 NICKEL                           | :UG/ <b>M</b> 3  | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM14 ANTIMONY                         | : UG/ <b>M3</b>  | ATTACHMENT | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT |
| AM15 SELENIUM                         | UG/M3            | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | :ATTACHMENT  |
| AM16 TITANIUM                         | . UG/ <b>M</b> 3 | ATTACHMENT | :ATTACHMENT  | ALIACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT |
| AM17 THALLIUM                         | .UG/M3           | ATTACHMENT | : ATTACHMENT | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   |
| AM18 VANADIUM                         | :UG/ <b>M</b> 3  | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM19 MOLYBDENUM                       | UG/M3            | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM20 ZINC                             | : UG/ <b>M</b> 3 | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM21 CALCIUM                          | : UG/ <b>M</b> 3 | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM22 MAGNESIUM                        | :UG/ <b>M</b> 3  | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM23 SODIUM                           | UG/M3            | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| AM24 POTASSIUM                        | UG/M3            | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   |
| ZZO1 SAMPLE NUMBER                    | NA :             | : 441      | : 442        | : 443        | : 444        | 445          | 446          |
| ZZO2 ACTIVITY CODE                    | : NA             | :CSXCR     | CSXCR        | CSXCR        | CSXCR        | CSXCR        | CSXCR        |

| COMPOUND                                   | UNITS    | 441                                   | 442 | 443 | 444 | 445 | 446 |
|--------------------------------------------|----------|---------------------------------------|-----|-----|-----|-----|-----|
| ZZ99 SAMPLE COLLECTION DATE & BATCH NUMBER | R : DT . | · · · · · · · · · · · · · · · · · · · | *** | *** | -:  | *** | *** |

| COMPOUND                            | UNITS            | 448          | 449          | 900M         | 901R         | 9015         | 902A        |
|-------------------------------------|------------------|--------------|--------------|--------------|--------------|--------------|-------------|
| AMOT PARTICULATE LEAD IN AIR BY HIV | OL UG/M3         | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  |
| AMO2 SILVER                         | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  |
| AMO3 ALUMINUM                       | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  |
| AMO4 ARSENIC                        | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | ATTACHMENT  |
| AMO5 BARIUM                         | : UG/M3          | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  |
| AMO6 BERYLLIUM                      | : UG/M3          | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | : ATTACHMENT | ATTACHMENT  |
| AMO7 CADMIUM                        | : UG/M3          | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT  |
| AMOS COBALT                         | UG/M3            | ATTACHMENT   | : ATTACHMENT | : ATTACHMENT | : ATTACHMENT | ATTACHMENT   | ATTACHMENT  |
| AMO9 CHROMIUM                       | : UG/ <b>M</b> 3 | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | : ATTACHMENT | : ATTACHMENT | ATTACHMENT  |
| AM10 COPPER                         | UG/ <b>M</b> 3   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | :ATTACHMENT |
| AM11 IRON                           | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | :ATTACHMENT |
| AM12 MANGANESE                      | UG/ <b>M</b> 3   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  |
| AM13 NICKEL                         | : UG/M3          | : ATTACHMENT | : ATTACHMENT | : ATTACHMENT | ATTACHMENT   | : ATTACHMENT | ATTACHMENT  |
| AM14 ANTIMONY                       | : UG/M3          | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | :ATTACHMENT  | ATTACHMENT   | ATTACHMENT  |
| AM15 SELENIUM                       | UG/M3            | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | :ATTACHMENT  | ATTACHMENT   | ATTACHMENT  |
| AM16 TITANIUM                       | . UG/M3          | ATTACHMENT   | :ATTACHMENT  | : ATTACHMENT | ATTACHMENT   | : ATTACHMENT | ATTACHMENT  |
| AM17 THALLIUM                       | : UG/M3          | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT   | ATTACHMENT  |
| AM18 VANADIUM                       |                  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT  |
| AM19 MOLYBDENUM                     | : UG/M3          | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  |
| AM20 ZINC                           | : UG/ <b>M</b> 3 | : ATTACHMENT | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | : ATTACHMENT | ATTACHMENT  |
| AM21 CALCIUM                        | : UG/ <b>M</b> 3 | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | : ATTACHMENT | ATTACHMENT  |
| AM22 MAGNESIUM                      | UG/ <b>M</b> 3   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  |
| AM23 SOD1UM                         | :UG/M3           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | :ATTACHMENT  | ATTACHMENT  |
| AM24 POTASSIUM                      | :UG/M3           | ATTACHMENT   | : ATTACHMENT | : ATTACHMENT | : ATTACHMENT | ATTACHMENT   | ATTACHMENT  |
| AM25 TIN                            | :UG/ <b>M</b> 3  | :            | -:           | ATTACHMENT   | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  |
| ZZO1 SAMPLE NUMBER                  | : NA             | 448          | -:<br>:449   | 900          | 901          | 901          | 902         |

| COMPOUND                                   | UNITS | 448   | 449   | 900 <b>M</b> | 901R  | 9015  | 902A        |
|--------------------------------------------|-------|-------|-------|--------------|-------|-------|-------------|
| ZZO2 ACTIVITY CODE                         | NA :  | CSXCR | CSXCR | CSXCR        | CSXCR | :     | :<br>:CSXCR |
| ZZ99 SAMPLE COLLECTION DATE & BATCH NUMBER | DT    | ***   | ***   | ***          | ***   | * * * | ***         |

### ANALYSIS REQUEST DETAIL REPORT

ACTIVITY: O-CSXCR

| COMPOUND                              | UNITS            | <b>902</b> C | 903M        | 904R         | 9045         | 905A        | <b>905</b> C |
|---------------------------------------|------------------|--------------|-------------|--------------|--------------|-------------|--------------|
| AMO1 PARTICULATE LEAD IN AIR BY HIVOL | : UG/M3          | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  | :ATTACHMENT  |
| AMO2 SILVER                           | : UG/M3          | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   |
| AMO3 ALUMINUM                         | : UG/ <b>M</b> 3 | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   |
| AMO4 ARSENIC                          | UG/M3            | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   |
| AMOS BARIUM                           | UG/M3            | ATTACHMENT   | ATTACHMENT  | : ATTACHMENT | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   |
| AMO6 BERYLLIUM                        | :UG/M3           | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   |
| AMO7 CADMIUM                          | UG/M3            | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   |
| AMOS COBALT                           | : UG/ <b>M</b> 3 | ATTACHMENT   | ATTACHMENT  | : ATTACHMENT | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   |
| AMO9 CHROMIUM                         | : UG/ <b>M</b> 3 | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | : ATTACHMENT | ATTACHMENT  | : ATTACHMENT |
| AM10 COPPER                           | UG/M3            | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   |
| AM11 IRON                             | :UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | : ATTACHMENT | ATTACHMENT  | ATTACHMENT   |
| AM12 MANGANESE                        | :UG/ <b>M</b> 3  | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | : ATTACHMENT | ATTACHMENT  | ATTACHMENT   |
| AM13 NICKEL                           | :UG/M3           | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   |
| AM14 ANTIMONY                         | UG/M3            | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | : ATTACHMENT | ATTACHMENT  | ATTACHMENT   |
| AM15 SELENIUM                         | UG/M3            | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | : ATTACHMENT | ATTACHMENT  | ATTACHMENT   |
| AM16 TITANIUM                         | . UG/ <b>M</b> 3 | ATTACHMENT   | :ATTACHMENT | ALIACHMENT   | ATTACHMENT   | ATTACHMENT  | :ATTACHMENT  |
| AM17 THALLIUM                         | : UG/M3          | ATTACHMENT   | ATTACHMENT  | : ATTACHMENT | : ATTACHMENT | ATTACHMENT  | ATTACHMENT   |
| AM18 VANADIUM                         | : UG/ <b>M</b> 3 | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  | :ATTACHMENT  |
| AM19 MOLYBDENUM                       | : UG/M3          | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   |
| AM20 ZINC                             | UG/M3            | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | : ATTACHMENT | ATTACHMENT  | ATTACHMENT   |
| AM21 CALCIUM                          | : UG/M3          | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   |
| AM22 MAGNESIUM                        | UG/M3            | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   |
| AM23 SODIUM                           | . UG/ <b>M</b> 3 | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | : ATTACHMENT | :ATTACHMENT | ATTACHMENT   |
| AM24 POTASSIUM                        | : UG/ <b>M</b> 3 | : ATTACHMENT | ATTACHMENT  | ATTACHMENT   | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   |
| AM25 TIN                              | UG/M3            | ATTACHMENT   | ATTACHMENT  | ATTACHMENT   | : ATTACHMENT | ATTACHMENT  | ATTACHMENT   |
| ZZO1 SAMPLE NUMBER                    | : NA             | 902          | :903        | 904          | 904          | 905         | 905          |



| COMPOUND                                   | UNITS  | 9020         | 903 <b>M</b> | 904R  | 9045    | 905A  | 9050          |
|--------------------------------------------|--------|--------------|--------------|-------|---------|-------|---------------|
| ZZO2 ACTIVITY CODE                         | : NA   | :<br>: CSXCR | :<br>: CSXCR | CSXCR | : CSXCR | CSXCR | ::<br>: CSXCR |
| ZZ99 SAMPLE COLLECTION DATE & BATCH NUMBER | : DT . | : ***        | ***          | * * * | ***     | ***   | ***           |

| COMPOUND                              | UNITS             | 906M       | 907A         | 907C         | 908M    | 909A                                  | 9090   |
|---------------------------------------|-------------------|------------|--------------|--------------|---------|---------------------------------------|--------|
| AMO1 PARTICULATE LEAD IN AIR BY HIVOL | : UG/M3           | ATTACHMENT | ATTACHMENT   | : ATTACHMENT | :       | :                                     | :      |
| AMO2 SILVER                           | : UG/M3:          | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | :       | ::                                    | :      |
| AMO3 ALUMINUM                         | UG/M3             | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | :       | :                                     | :      |
| AMO4 ARSENIC                          | UG/M3             | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | :       | :                                     | :      |
| AMOS BARIUM                           | UG/M3             | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | :       |                                       | :      |
| AMO6 BERYLLIUM                        | UG/M3:            | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | :       | :                                     | :      |
| AMO7 CADMIUM                          | : UG/M3:          | ATTACHMENT | ATTACHMENT   | : ATTACHMENT | :       | :                                     | :      |
| AMOS COBALT                           | UG/M3:            | ATTACHMENT | ATTACHMENT   | : ATTACHMENT | :       | ·:                                    | :      |
| AMO9 CHROMIUM                         | : UG/M3:          | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | :       | :                                     | :      |
| AM10 COPPER                           | UG/M3             | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | :       | :                                     | :      |
| AM11 IRON                             | : UG/M3           | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | :       | :                                     | :      |
| AM12 MANGANESE                        | : UG/M3:          | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | :       | :                                     | :      |
| AM13 NICKEL                           | UG/M3             | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | :       | · · · · · · · · · · · · · · · · · · · | :      |
| AM14 ANTIMONY                         | UG/M3             | ATTACHMENT | ATTACHMENT   | : ATTACHMENT | :       | :                                     | :      |
| AM15 SELENIUM                         | UG/M3             | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | :       |                                       | :      |
| AM16 TITANIUM                         | . UG/ <b>M3</b> . | ATTACHMENT | :ATTACHMENT  | :ATTACHMENT  | :       | · · · · · · · · · · · · · · · · · · · | :      |
| AM17 THALLIUM                         | :UG/ <b>M</b> 3:  | ATTACHMENT | ATTACHMENT   | : ATTACHMENT | :       | :<br>:                                | :      |
| AM18 VANADIUM                         | UG/M3             | ATTACHMENT | ATTACHMENT   | :ATTACHMENT  | :       | :                                     | :      |
| AM19 MOLYBDENUM                       | : UG/M3           | ATTACHMENT | ATTACHMENT   | : ATTACHMENT | :       | :                                     | :      |
| AM20 ZINC                             | : UG/M3           | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | :       | :                                     | :      |
| AM21 CALCIUM                          | : UG/M3           | ATTACHMENT | ATTACHMENT   | : ATTACHMENT | ·:      | :                                     | :      |
| AM22 MAGNESIUM                        | : UG/M3           | ATTACHMENT | : ATTACHMENT | ATTACHMENT   | :       | :                                     | :      |
| AM23 SODIUM                           | UG/ <b>M</b> 3    | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | :       | :                                     | :      |
| AM24 POTASSIUM                        | :UG/M3            | ATTACHMENT | :ATTACHMENT  | ATTACHMENT   | - ;     | ·:<br>:                               | :<br>: |
| AM25 TIN                              | : UG/M3           | ATTACHMENT | ATTACHMENT   | ATTACHMENT   | -:<br>: | ::                                    | :      |
| WMO1 SILVER BY ICAP                   | :UG/L             |            | -;<br>;      | -:           | 10      | U :500                                | 500    |

| COMPOUND                     | UNITS             | 906M  | 907A   | 9070  | 908 <b>M</b> |       | 909A  |   | 9090    |   |
|------------------------------|-------------------|-------|--------|-------|--------------|-------|-------|---|---------|---|
| WMO2 ALUMINUM BY ICAP        | : UG/L            | :     | :      | :     | 200          | <br>U | 2000  |   | 2000    |   |
| WMO3 ARSENIC BY ICAP         | UG/L              | :     | :      |       | 10           | U     | 44    |   | : 47    |   |
| WMO4 BARIUM BY ICAP          | UG/L              | :     |        | :     | 200          | U     | 1900  |   | 2000    |   |
| WMO5 BERYLLIUM BY ICAP       | UG/L              | :     |        | :     | 5.0          | U     | 470   |   | 480     |   |
| WMO6 CADMIUM BY ICAP         | UG/L              | :     | :      |       | 5.0          | υ     | 490   |   | 500     |   |
| WMO7 COBALT BY ICAP          | : UG/L            | :     | :      | :     | :50          | U     | 480   |   | 500     |   |
| WMO8 CHROMIUM BY ICAP        | :UG/L             |       |        |       | 10           | U     | 500   |   | :510    |   |
| WMO9 COPPER BY ICAP          | :UG/L             | :     | :      | :     | 25           | U     | 490   |   | 520     |   |
| WM10 IRON BY ICAP            | UG/L              | :     | :      | ·;    | 100          | U     | 1900  |   | 2000    |   |
| WM11 MANGANESE BY ICAP       | UG/L              | :     | :      | ·     | 15           | U     | :480  |   | 500     |   |
| WM12 MOLYBDENUM BY ICAP      | .UG/L             | :     | :      |       | N/A          | 0     | N/A   | 0 | :N/A    | 0 |
| WM13 NICKEL BY ICAP          | UG/L              |       | ·:     |       | 40           | U     | 460   |   | 480     |   |
| WM14 LEAD BY ICAP            | UG/L              | :     |        | ::    | 3.0          | U     | :98   |   | :98     |   |
| WM15 ANTIMONY BY ICAP        | :UG/L             | :     | :      | :     | :60          | U     | 1000  |   | 980     |   |
| WM16 SELENIUM BY ICAP        | UG/L              | :     | :<br>: |       | .5 0         | U     | .46   |   | .53     |   |
| WM17 TITANIUM BY ICAP        | . 06/L            |       | :      |       | N/A          | 0     | N/A   | 0 | .N/A    | 0 |
| WM18 THALLIUM BY ICAP        | UG/L              |       |        | :     | 10           | U     | 100   |   | :97     |   |
| WM19 VANADIUM BY ICAP        | UG/L              |       |        | :     | 50           | U     | 470   |   | 490     |   |
| WM20 ZINC BY ICAP            | UG/L              | :     | :      | :     | 20           | U     | :2900 |   | :3100   |   |
| WM21 CALCIUM, TOTAL BY ICAP  | MG/L              | :     | :<br>: |       | :5.0         | U     | . 48  |   | 49      |   |
| WM22 MAGNESIUM, TOTAL BY ICA | AP MG/L           |       | ·      |       | 5.0          | U     | . 25  |   | 25      |   |
| WM23 SODIUM, TOTAL BY ICAP   | MG/L              | :     |        |       | 5.0          | U     | 49    |   | 50      |   |
| WM24 POTASSIUM, TOTAL BY ICA | AP MG/L           | :     |        |       | .5.0         | U     | 49    |   | : 49    |   |
| ZZO1 SAMPLE NUMBER           | NA NA             | 906   | 907    | 907   | 908          |       | 909   |   | 909     |   |
| ZZO2 ACTIVITY CODE           | . NA              | CSXCR | CSXCR  | CSXCR | : CSXCR      |       | CSXCR |   | : CSXCR |   |
| ZZ99 SAMPLE COLLECTION DATE  | & BATCH NUMBER DT | ***   | ***    | ***   |              |       |       |   | :       |   |

| COMPOL                     | IND |      | UNITS | 910M  |   | 911A  | 911C  | 912 <b>M</b> |   | 913A  | 913C  |
|----------------------------|-----|------|-------|-------|---|-------|-------|--------------|---|-------|-------|
| WM35 SILVER.DISSOLVED      | BY  | ICAP | UG/L  | 10    | U | : 500 | :520  | 10           | U | 500   | 500   |
| WM36 ALUMINUM, DISSOLVED   | BY  | ICAP | UG/L  | 200   | U | 2000  | 2100  | 200          | U | 2000  | 2000  |
| WM37 ARSENIC.DISSOLVED     | BY  | ICAP | UG/L  | 10    | U | 47    | 41    | 10           | U | 47    | 43    |
| WM38 BARIUM.DISSOLVED      | ВУ  | ICAP | UG/L  | 200   | U | 2000  | 2100  | 200          | U | 2000  | 2000  |
| WM39 BERYLLIUM, DISSOLVED  | ВУ  | ICAP | UG/L  | 5.0   | U | 480   | 470   | :5.0         | U | : 480 | 460   |
| WM40 CADMIUM, DISSOLVED    | В٧  | ICAP | UG/L  | 5.0   | υ | 500   | 530   | 5.0          | U | 500   | 500   |
| WM41 COBALT.DISSOLVED      | В٧  | ICAP | UG/L  | : 50  | U | 500   | 520   | :50          | U | 500   | 490   |
| WM42 CHROMIUM, DISSOLVED   | ВУ  | ICAP | UG/L  | 10    | U | 510   | 510   | 10           | U | 510   | 480   |
| WM43 COPPER.DISSOLVED      | ВУ  | ICAP | UG/L  | 25    | υ | 520   | 520   | 25           | U | 520   | 500   |
| WM44 IRON,DISSOLVED        | ВУ  | ICAP | UG/L  | 100   | ប | 2000  | 2000  | 100          | U | 2000  | 2000  |
| WM45 MANGANESE.DISSOLVED   | В٧  | ICAP | UG/L  | 15    | U | 500   | 510   | 15           | U | 500   | 490   |
| WM46 MOLYBDENUM, DISSOLVED | ВУ  | ICAP | UG/L  | N/A   | 0 | N/A 0 | N/A C | N/A          | 0 | N/A 0 | N/A 0 |
| WM47 NICKEL.DISSOLVED      | BY  | ICAP | UG/L  | 40    | U | : 480 | 480   | : 40         | U | : 480 | 460   |
| WM48 LEAD, DISSOLVED       | В٧  | ICAP | UG/L  | 3.0   | U | : 98  | :91   | 3.0          | U | 97    | 87    |
| WM49 ANTIMONY, DISSOLVED   | ВУ  | ICAP | UG/L  | 60    | U | 980   | 970   | . 60         | U | 980   | 1000  |
| WM50 SELENIUM.DISSOLVED    | BY  | ICAP | UG/L  | 5.0   | Ü | : 53  | 46    | 5.0          | U | :53   | 44    |
| WM51 TITANIUM.DISSOLVED    | Вч  | ICAP | UG/L  | N/A   | 0 | N/A O | N/A C | N/A          | 0 | N/A O | N/A O |
| WM52 THALLIUM.DISSOLVED    | ВЧ  | ICAP | UG/L  | 10    | U | 97    | 96    | 10           | U | 97    | 98    |
| WM53 VANADIUM.DISSOLVED    | В٧  | ICAP | UG/L  | 50    | U | 490   | 500   | :50          | U | 490   | 480   |
| WM54 ZINC.DISSOLVED        | BY  | ICAP | UG/L  | 20    | U | 3100  | 3100  | 20           | U | 3100  | 3000  |
| WM55 CALCIUM.DISSOLVED     | ВУ  | ICAP | MG/L  | 5.0   | υ | 49    | 52    | :5.0         | U | 49    | 49    |
| WM56 MAGNESIUM, DISSOLVED  | BY  | ICAP | MG/L  | 5.0   | U | 25    | 27    | 5.0          | U | 25    | 25    |
| WM57 SODIUM, DISSOLVED     | ВУ  | ICAP | MG/L  | 5.0   | U | 50    | 52    | 5.0          | U | 50    | 49    |
| WM58 POTASSIUM, DISSOLVED  | ВУ  | ICAP | MG/L  | 5.0   | U | :49   | :53   | :5.0         | U | 49    | 50    |
| ZZO1 SAMPLE NUMBER         |     |      | NA .  | 910   |   | 911   | 911   | 912          |   | 913   | 913   |
| ZZO2 ACTIVITY CODE         |     |      | NA NA | CSXCR |   | CSXCR | CSXCR | CSXCR        |   | CSXCR | CSXCR |

|                 | COMPOUND | UNITS    | 914A   | 914C     |   | 914 <b>M</b> |                | 915A | 9150   | 915M           | A |
|-----------------|----------|----------|--------|----------|---|--------------|----------------|------|--------|----------------|---|
| SMO1 SILVER     | BY ICAP  | MG/KG:   | 22     | 23       |   | 2.0          | U              |      | :<br>: | :              |   |
| SMO2 ALUMINUM   | BY ICAP  | MG/KG    | 320    | 320      |   | 40           | U              | :    | :      | :              |   |
| SMO3 ARSENIC    | BY ICAP  | :MG/KG   | 920    | 1100     |   | 2.0          | U              |      | :      | :              |   |
| SMO4 BARIUM     | BY ICAP  | MG/KG    | 4.8    | 40       | U | 40           | U              | :    | :      | :              |   |
| SMO5 BERYLLIUM  | BY ICAP  | MG/KG    | 19     | 18       |   | 1 0          | U              | :    | :      | :              |   |
| SMO6 CADMIUM    | BY ICAP  | MG/KG    | 45     | 45       |   | 1.0          | U              | :    | :      | :              |   |
| SMO7 COBALT     | BY ICAP  | MG/KG:   | 140    | 130      |   | . 10         | U              | :    | :      |                |   |
| SMO8 CHROMIUM   | BY ICAP  | MG/KG:   | 100    | 94       |   | 2.0          | U              | :    | :      | :              |   |
| SMO9 COPPER     | BY ICAP  | MG/KG:   | 6900   | 6800     |   | 5 0          | U              | :    |        | :- <del></del> |   |
| SM10 IRON       | BY ICAP  |          | 22000  | 22000    |   | 20           | U              | :    | :      | :              |   |
| SM11 MANGANESE  | BY ICAP  | MG/KG    | 210    | 200      |   | 3 0          |                | :    | :      | :              |   |
| SM12 MOLYBDENUM | BY ICAP  | : MG/KG: | N/A (  | ) :N/A   | 0 | : N/A        | 0              | :    | :      | :              |   |
| SM13 NICKEL     | BY ICAP  | MG/KG    | 61     | 56       |   | 8.0          | U              | :    | :      |                |   |
| SM14 LEAD       | BY ICAP  | MG/KG    | 240    | 230      |   | 1.0          | U              | :    | :      |                |   |
| SM15 ANTIMONY   | BY ICAP  | MG/KG    | 210    | 240      |   | 12           | U              | :    |        | :              |   |
| SM16 SELENIUM   | BY ICAP  | . MG/FG  | . 39   | 39       |   | .1.0         | U              | :    |        | :              |   |
| SM17 TITANIUM   | BY ICAP  | . MG/kG. | N/A C  | ) .N/A   | 0 | N/A          | o ¯            | :    |        | :              |   |
| SM18 THALLIUM   | BY ICAP  | .MG/K.G  | 39     | 37       |   | 2.0          | <del>-</del> - |      | :      | :              |   |
| SM19 VANADIUM   | BY ICAP  | .MG/KG   | 66     | :65      |   | :10          | υ              | :    |        | :              |   |
| SM20 ZINC       | BY ICAP  | MG/KG    | 190    | 190      |   | 4 0          | U              | :    | :      | :              |   |
| SM21 CALCIUM    | BY ICAP  | MG/K.G   | 190000 | : 180000 |   | 1000         | U              |      | :      | :              |   |
| SM22 MAGNESIUM  | BY ICAP  | MG/KG:   | 120000 | 120000   |   | 1000         | บ              | :    | :      | :              |   |
| SM23 SODIUM     | BY ICAP  | MG/KG    | 50     | 1000     | U | 1000         | U              | :    |        |                |   |
| SM24 POTASSIUM  | BY ICAP  | MG/KG    | 50     | 1000     | U | 1000         | U              | :    | :      | :              |   |
| WMO1 SILVER     | BY ICAP  | UG/L     | :      | :        |   | :            |                | :500 | 500    | : 10           | U |
| WMO2 ALUMINUM   | BY ICAP  | UG/L     |        | ·-:      |   | :            |                | 2000 | 2000   | 200            | U |

|                   | COMPOUND     | UNITS  | 91 <i>4</i> A    | 9140                     | 914 <b>M</b> | 915A    | 9150  | 915     | М |
|-------------------|--------------|--------|------------------|--------------------------|--------------|---------|-------|---------|---|
| WMO3 ARSENIC      | BY ICAP      | UG/L   | :                | :                        | :            | 47      | : 43  | : 10    | U |
| WMO4 BARIUM       | BY ICAP      | UG/L   | :                |                          | :            | 2000    | 2000  | : 200   | U |
| WMO5 BERYLLIUM    | BY ICAP      | UG/L   | :                |                          | :            | : 480   | :450  | 5.0     | U |
| WMO6 CADMIUM      | BY ICAP      | UG/L   | :                |                          |              | : 500   | . 500 | 5.0     | U |
| WMO7 COBALT       | BY ICAP      | ng/r   | :                |                          |              | 500     | :490  | :50     | U |
| WMO8 CHROMIUM     | BY ICAP      | UG/L   |                  |                          | :            | 510     | 480   | 10      | U |
| WMO9 COPPER       | BY ICAP      | UG/L   | :                | :                        |              | 520     | 490   | 25      | U |
| WM10 IRON         | BY ICAP      | UG/L   | :                | :                        | :            | 2000    | 1900  | 100     | U |
| WM11 MANGANESE    | BY ICAP      | UG/L   | :                | :                        | :            | : 500   | . 490 | :15     | U |
| WM12 MOLYBDENUM   | BY ICAP      | :UG/L  |                  | :                        | :            | : N/A 0 | : N/A | 0 :N/A  | 0 |
| WM13 NICKEL       | BY ICAP      | : UG/L | :                | :                        | :            | : 480   | : 460 | : 40    | U |
| WM14 LEAD         | BY ICAP      | UG/L   |                  | :                        | :            | : 4800  | 4900  | :3.0    | U |
| WM15 ANTIMONY     | BY ICAP      | .UG/L  |                  |                          |              | 980     | 950   | 60      | U |
| WM16 SELENIUM     | BY ICAP      | UG/L   | :                | :                        | :            | :53     | 49    | 5.0     | U |
| WM17 TITANIUM     | BY ICAP      | UG/L   | . <del>-</del> - | :                        |              | N/A 0   | . N/A | O : N/A | 0 |
| MW18 THVFFIAM     | BY ICAD      | UG/L   |                  | :                        |              | 97      | 100   | 10      | U |
| WM19 VANADIUM     | By ICAP      | : UG/L |                  | - <del>-</del> · · · · · |              | : 490   | : 480 | : 50    | Ū |
| WM20 ZINC         | BY ICAP      | UG/L   |                  | :                        |              | 3100    | 3100  | 20      | U |
| WM21 CALCIUM, TOT | AL BY ICAP   | : MG/L | :                | :                        | :            | 49      | :50   | 5.0     | U |
| WM22 MAGNESIUM, T | OTAL BY ICAP | MG/L   | :                | :                        | :            | 25      | 25    | 5.0     | U |
| WM23 SODIUM. TOTA | L BY ICAP    | MG/L   | :                | :                        |              | 50      | :50   | 5.0     | U |
| WM24 POTASSIUM, T | OTAL BY ICAP | MG/L   | :                |                          |              | 49      | 51    | 5.0     | U |
| ZZO1 SAMPLE NUMBE | R            | : NA   | .914             | 914                      | .914         | 915     | 915   | .915    |   |
| ZZO2 ACTIVITY COD | E            | : NA   | CSXCR            | CSXCR                    | CSXCR        | CSXCR   | CSXCR | CSXCR   |   |

|                    | COMPOUND       | UNITS            | 916A     | 9160   | 916 <b>M</b>                          | 917 <b>M</b> |    | 918A   | 9180    |   |
|--------------------|----------------|------------------|----------|--------|---------------------------------------|--------------|----|--------|---------|---|
| SMO1 SILVER        | BY ICAP        | MG/KG:           |          | -:     | :                                     | 2.0          | U  | 22     | 23      |   |
| SMO2 ALUMINUM      | BY ICAP        | MG/KG            |          | -:     | !                                     | 40           | U  | 330    | 320     |   |
| SMO3 ARSENIC       | BY ICAP        | MG/KG            |          | :      |                                       | 2.0          | U  | 920    | :810    |   |
| SMO4 BARIUM        | BY ICAP        | :MG/KG:          |          | :      |                                       | 40           | U  | 40 U   | 40      | U |
| SMO5 BERYLLIUM     | BY ICAP        | MG/KG:           |          | :      |                                       | 1.0          | U  | 19     | :18     |   |
| SMO6 CADMIUM       | BY ICAP        | : <b>M</b> G/KG: |          | :      |                                       | :1.0         | U  | 45     | 43      |   |
| SMO7 COBALT        | BY ICAP        | .MG/KG           |          |        |                                       | 10           | U  | 140    | 130     |   |
| SMO8 CHROMIUM      | BY ICAP        | .MG/KG           |          |        |                                       | 2.0          | U  | 100    | :94     |   |
| SMO9 COPPER        | BY ICAP        | MG/KG            |          |        |                                       | 5.0          | U  | 6900   | 6700    |   |
| SM10 IRON          | BY ICAP        | MG/KG:           |          |        |                                       | 20           | U  | 22000  | 20000   |   |
| SM11 MANGANESE     | BY ICAP        | MG/K.G.          |          |        |                                       | 3.0          | U  | 210    | 200     |   |
| SM12 MOLYBDENUM    | BY ICAP        | :MG/KG:          |          |        | :                                     | N/A          | 0  | N/A 0  | .N/A    | c |
| SM13 NICKEL        | BY ICAP        | MG/KG            |          |        |                                       | 8 0          | Ų. | 61     | :55     |   |
| SM14 LEAD          | BY ICAP        | MG/KG:           |          |        |                                       | 1.0          | U  | 240    | :220    |   |
| SM15 ANTIMONY      | BY ICAP        | MG/FG            | <u>-</u> | :      | :                                     | 12           | U  | .210   | :210    |   |
| SMIR SELENIUM      | BY ICAP        | MG/kG.           |          |        |                                       | 1.0          | U  | 39     | :41     |   |
| 3M17 TITANIUM      | BY ICAP        | MG/KG            |          | :      | · <del></del> -                       | N/A          | 0  | N/A O  | :N/A    | C |
| SM18 THALLIUM      | BY ICAP        | : MG/KG          |          |        | :                                     | 2.0          | U  | 39     | 39      |   |
| SM19 VANADIUM      | BY ICAP        | :MG/KG           |          | :      |                                       | 10           | U  | 66     | 67      |   |
| SM20 ZINC          | BY ICAP        | MG/KG            |          |        | :                                     | 4.0          | U  | 190    | 180     |   |
| SM21 CALCIUM       | BY ICAP        | MG/KG            |          |        | · · · · · · · · · · · · · · · · · · · | 1000         | U  | 200000 | 180000  |   |
| SM22 MAGNESIUM     | BY ICAP        | :MG/KG:          |          | :<br>: | :                                     | 1000         | U  | 120000 | :120000 |   |
| SM23 SODIUM        | BY ICAP        | MG/KG.           |          |        |                                       | 1000         | U  | 1000 U | 1000    | ι |
| SM24 POTASSIUM     | BY ICAP        | :MG/KG:          |          |        |                                       | 1000         | U  | 1000 U | : 1000  | ι |
| WM35 SILVER, DISSO | LVED BY ICAP   | UG/L 5           | 00       | 530    | : 10                                  | U            |    | :      | -       |   |
| WM36 ALUMINUM.DIS  | SOLVED BY ICAP | UG/L 2           | 000      | 2100   | 200                                   | U :          |    | :      |         |   |

| COMPO                      | DNU |      | UNITS | 916A  |               | 9160  | 916 <b>M</b> |          | 917 <b>M</b> | 918A          | 9180         |
|----------------------------|-----|------|-------|-------|---------------|-------|--------------|----------|--------------|---------------|--------------|
| WM37 ARSENIC.DISSOLVED     | BY  | ICAP | UG/L  | 47    | - <b>-</b> -: | 42    | :10          | U        | :            | :             | <del>:</del> |
| WM38 BARIUM, DISSOLVED     | ВҮ  | ICAP | UG/L  | 2000  | :             | 2100  | 200          | U        | :            | :             | :            |
| WM39 BERYLLIUM, DISSOLVED  | BY  | ICAP | UG/L  | 480   | :             | 470   | :5.0         | U        | :            | :             | :            |
| WM40 CADMIUM, DISSOLVED    | ВΥ  | ICAP | UG/L  | 500   | - <b></b> :   | 530   | :5.0         | U        | :            | :             | :            |
| WM41 COBALT.DISSOLVED      | ВΥ  | ICAP | UG/L  | 500   | :             | 520   | 50           | U        | :            | :             | :            |
| WM42 CHROMIUM, DISSOLVED   | ВУ  | ICAP | UG/L  | 510   |               | 510   | :10          | U        | :            | :             | :            |
| WM43 COPPER.DISSOLVED      | ВΥ  | ICAP | :UG/L | 520   |               | 530   | 25           | υ        | :            | :             | :            |
| WM44 IRON, DISSOLVED       | BY  | ICAP | :UG/L | 2000  |               | 2000  | 100          | U        | :            | :             | :            |
| WM45 MANGANESE, DISSOLVED  | В٧  | ICAP | :UG/L | 500   |               | 510   | :15          | U        | :            | :             |              |
| WM46 MOLYBDENUM, DISSOLVED | BY  | ICAP | :UG/L | :N/A  | 0             | N/A O | :N/A         | 0        | :            | <del></del> : | :            |
| WM47 NICKEL.DISSOLVED      | ВУ  | ICAP | :UG/L | :480  |               | 490   | 40           | U        | :            | :             | :            |
| WM48 LEAD.DISSOLVED        | BY  | ICAP | :UG/L | 98    |               | 95    | 3.0          | U        | :            |               | :            |
| WM49 ANTIMONY DISSOLVED    | BY  | ICAP | UG/L  | . 980 |               | 1000  | 60           | U        |              | :             |              |
| WM50 SELENIUM, DISSOLVED   | BY  | ICAP | :UG/L | :53   |               | 48    | :5 0         | U        |              | : <b></b>     |              |
| WM51 TITANIUM, DISSOLVED   | BY  | ICAP | UG/L  | N/A   | 0             | N/A 0 | N/A          | 0        |              |               | :            |
| WM62 THALLIUM, DISSOLVED   | ٤٧  | ICAP | .UG/L | .97   |               | : 93  | .10          | <b>-</b> |              |               |              |
| WMS3 VANADIUM, DISSOLVED   | Вч  | ILAP | .06/L | 490   |               | .510  | .50          | U        | :            |               | :            |
| WM54 ZINC.DISSOLVED        | BY  | ICAP | :UG/L | :3100 |               | 3200  | : 20         | U        | :            |               |              |
| WM55 CALCIUM.DISSOLVED     | BY  | ICAP | :MG/L | 49    |               | 52    | :5 0         | U        | :            | :             | :            |
| WM56 MAGNESIUM.DISSOLVED   | ВУ  | ICAP | MG/L  | 25    |               | 27    | 5.0          | υ        | :            | :             |              |
| WM57 SODIUM, DISSOLVED     | BY  | ICAP | MG/L  | 50    |               | 51    | 5.0          | υ        | :            | :             |              |
| WM58 POTASSIUM.DISSOLVED   | ВУ  | ICAP | .MG/L | 49    |               | : 53  | 5.0          | υ        |              | :             | · <b></b>    |
| ZZO1 SAMPLE NUMBER         |     |      | . NA  | 916   |               | . 916 | 916          |          | 917          | 918           | :918         |
| ZZO2 ACTIVITY CODE         |     | ~    | :NA   | CSXCR |               | CSXCR | CSXCR        |          | : CSXCR      | CSXCR         | . CSXCR      |

|                    | COMPOUND | UNITS   | 919A    | 919C    |   | 920 <b>M</b> |     |                     |    |        |
|--------------------|----------|---------|---------|---------|---|--------------|-----|---------------------|----|--------|
| SMO1 SILVER        | BY ICAP  | :MG/KG  | 22      | : 28    |   | : 2.0        | U : | <br>-:              | :  | :<br>: |
| SMO2 ALUMINUM      | BY ICAP  | MG/KG   | 330     | 310     |   | : 40         | U : | <br>-               | -: | :<br>: |
| SMO3 ARSENIC       | BY ICAP  | MG/KG   | 920     | 800     | J | 2.0          | U   | <br>- : <del></del> | :  | :      |
| SMO4 BARIUM        | BY ICAP  | MG/KG   | : 4 . 8 | 40      | Ų | :40          | U : | <br>:               | :  | :      |
| SMO5 BERYLLIUM     | BY ICAP  | MG/KG   | 19      | 18      |   | 1.0          | U : | <br>:               | :  | :      |
| SMO6 CADMIUM       | BY ICAP  | .MG/KG  | 45      | 44      | J | 1.0          | U : | <br>-:              | :  | :      |
| SMO7 COBALT        | BY ICAP  | MG/KG   | 140     | 130     | J | 10           | U   | <br>-:              | :  | :      |
| SMO8 CHROMIUM      | BY ICAP  | MG/KG   | 100     | 97      |   | 2.0          | U : | <br>-:              | :  | :      |
| SMO9 COPPER        | BY ICAP  | MG/KG   | 6900    | 6700    | J | 5.0          | U   | <br>:               | :  | :      |
| SM10 IRON          | BY ICAP  | MG/KG   | 22000   | 21000   |   | 20           | U : | <br>:               | -; | :      |
| SM11 MANGANESE     | BY ICAP  | . MG/KG | 210     | 210     |   | 3.0          | U : | <br>·               | :  |        |
| SM12 MOLYBDENUM    | BY ICAP  | :MG/KG  | : N/A ( | N/A     | 0 | N/A          | 0   | <br>:               | :  | :      |
| SM13 NICKEL        | BY ICAP  | . MG/KG | 61      | 59      |   | 8.0          | U   | <br>-:              | :  |        |
| SM14 LEAD          | BY ICAP  | MG/KG   | 240     | 230     |   | 1.0          | U : |                     | :  | :      |
| SM15 ANTIMONY      | BY ICAP  | MG/KG   | 210     | 220     |   | 12           | U . | <br>:               | :  |        |
| SM16 SELENTUM      | BY ICAP  | .MG/NG  | . 39    | 40      |   | : 1.0        | U : | <br>:               | :  |        |
| SM17 TITANIUM      | By ICAP  | MG/KG   | N/A     | D : N/A | 0 | . N/A        | Û:  | <br>                | :  | '      |
| SM18 THALLIUM      | BY ICAP  | MG/KG   | 39      | 46      |   | 2 0          | IJ  | <br>:               |    | :      |
| SM19 VANADIUM      | BY ICAP  | MG/KG   | :66     | 67      |   | 10           | U.  | <br>:               |    | :      |
| SM20 ZINC          | BY ICAP  | MG/KG   | 190     | 190     | J | 4 0          | U   |                     |    | :      |
| SM21 CALCIUM       | BY ICAP  | MG/KG   | 200000  | 180000  |   | 1000         | U . |                     | -  | :      |
| SM22 MAGNESIUM     | BY ICAP  | :MG/KG  | 120000  | 120000  |   | : 1000       | U . |                     |    | :      |
| SM23 SODIUM        | BY ICAP  | MG/KG   | .50     | 1000    | U | 1000         | U   |                     |    |        |
| SM24 POTASSIUM     | BY ICAP  | MG/KG   | :50     | 1000    | U | 1000         | U   | <br>                |    |        |
| ZZO1 SAMPLE NUMBER | ₹        | NA NA   | 919     | 919     |   | 920          |     | <br>                |    | :      |
| ZZO2 ACTIVITY CODE |          | NA NA   | CSXCR   | CSXCR   |   | CSXCR        | :   | <br>                | :  | :      |

| SAMPLE:                                                                                                                            | A                                       | В_ | PES                                     | D                                       | E                                       | FLD                                     | G                                       | HER | I                                       | MC                                      | BNC                                     | _Ł                                      | MET | N                                       | νc                                      | PES                                     | Q                                       | R                                       | BN                                      | T                                       | U                                       | VOA                                     | НС                                      | Х                                       | Υ                                       | TRK                                      | COMMENTS |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|----------|
| 001 LRS 0010 001 RS 0001 001 RS 0002 0003 0005 0006 0007 0008 0010 0011 0012 0013 0014 0015 0017 77 77 77 77 77 70 100 100 100 100 | 000000000000000000000000000000000000000 |    | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |     | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |     | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 2020202020202020202020202020202020202020 |          |

| SAMPLE:                                                                                                                                                                                                                                             | Α                                       | В                                       | PES                                     | D                                       | E                                       | FLD                                     | G                                       | HER                                     | I                                       | MC                                      | BNC                                     | L                                       | MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N                                       | VC                                      | PES                                     | Q                                       | R                                       | BN                                      | T                                       | U                                       | VOA                                     | нс                                      | X                                       | ٧                                       | TRK                                      | COMMENTS |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|----------|
| 113<br>1145<br>1166<br>1177<br>1188<br>1190<br>2001<br>2001<br>2007<br>2008<br>2008<br>2008<br>2008<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 4444444444888888884448868868844488888444884448844488444888444888444888444888444888444888444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488444884448844488448844884448844488448844488448844488444884488448844884488484 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 2020202020202020202020202020202020202020 |          |

| SAMPLE:                                                                                                                                      | Α                                       | В                                       | PES                                     | D                                       | E                                       | FLD | G                                       | HER                                     | I                                       | MC                                      | BNC                                     | L                                       | MET                                                                 | N                                       | VC                                      | PES                                     | Q                                       | R                                       | BN                                      | Т                                       | U                                       | VOA                                     | нс                                      | х                                       | Υ                                       | TRK                                    | COMMENTS |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|----------|
| 3034<br>3045<br>3056<br>3078<br>3099<br>3099<br>3099<br>31124<br>3156<br>3189<br>3190<br>3190<br>3190<br>3190<br>3190<br>3190<br>3190<br>319 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |     | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 88888884448888888888444884;†446688884444544454444444444444444444444 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | - 222222222222222222222222222222222222 |          |

| SAMPLE:                                                                                                    | Α                                       | В                                       | PES                                     | D                                       | Ε                                       | FLD                                     | G                                       | HER                                     | I                                       | MC                                      | BNC                                     | L                                       | MET                                    | N                                       | VC                                      | PES                                     | Q                                       | R                                       | BN                                      | T                                       | U                                       | VOA                                     | нс                                      | X                                       | Y                                       | TRK | COMMENTS |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----|----------|
| 417 418 420 L F L F L 4224 425 67 84312 4333 4434 4345 67 849 9011 2 423 433 433 433 433 433 433 433 433 4 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 44444445444444544544544544444444444444 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |     |          |

| SAMPLE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Α                                       | В                                       | PES                                     | D                                       | E                                       | FLD                                     | G                                       | HER                                     | I                                       | MC                                      | BNC                                     | L                                       | MET                                                                              | N                                       | VC                                      | PES                                     | Q                                       | R                                       | BN                                      | T                                       | U                                       | VOA                                     | нс                                      | X                                       | Υ                                       | TRK                                     | COMMENTS |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------|
| 907 C:<br>908 M:<br>909 C:<br>909 C:<br>911 C:<br>911 A:<br>911 A:<br>911 A:<br>911 A:<br>911 A:<br>911 A:<br>911 A:<br>911 A:<br>911 C:<br>911 C:<br>91 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 25<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 322222222222222222222222222222222222222 |          |
| DETERMI-:<br>NATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 123                                     | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 06                                      | 548                                                                              | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 517                                     |          |
| ANAL YSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C                                       | O                                       | 0                                       | Û                                       | Ċ                                       | 41                                      | O                                       | O                                       | 0                                       | 0                                       | 0                                       | 0                                       | 225                                                                              | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 0                                       | 225                                     |          |

ACTIVITY CSXCR BIG RIVER MINE TAILINGS

THE PROJECT LEADER SHOULD CIRCLE ONE - STORET, SAROAD, OR ARCHIVE.

CIRCLE ONE: STORET SAROAD ARCHIVE

DATA APPROVED BY LABO FOR TRANSMISSION TO PROJECT LEADER ON 10/04/90 15:39 22 BY

TITLE: BIG RIVER MINE TAILINGS

MATRIX: AIR

UNITS: UG/SMPL

LAB: SILVER

METHOD: CS0788A

CASE: 5558G DATE: 08/20/90

SAMPLE PREP: ANALYST/ENTRY: DEW REVIEWER: CONTROL OF THE PREPIRE OF T

| DATA FILE | : | AMC |
|-----------|---|-----|
|-----------|---|-----|

| SAMPLES    | CSXCR4 | 00 CS | CR402 | CSXCR | 403 ( | CSXCR4 | 104 |
|------------|--------|-------|-------|-------|-------|--------|-----|
| ALUMINUM   | 79     |       | 90    | 83    |       | 340    |     |
| ANTIMONY   | 12     | U     | 12 U  | 12    | U     | 12     | U   |
| ARSENIC    | 2.0    | U 2   | 2.0 U | 2.0   | U     | 3.5    |     |
| BARIUM     | 40     | U     | 40 U  | 40    | U     | 7.9    |     |
| BERYLLIUM  | 1.0    | U 1   | L.O U | 1.0   | U     | 1.0    | U   |
| CADMIUM    | 1.0    | Ŭ 1   | L.O U | 1.0   | U     | 6.1    |     |
| CALCIUM    | 1000   | 13    | 300   | 1000  | U     | 15000  |     |
| CHROMIUM   | 2.0    | U 2   | 2.0 U | 2.1   | U     | 1.8    | U   |
| COBALT     | 10     | U     | 10 U  | 10    | U     | 10     | U   |
| COPPER     | 97     | J     | 66 J  | 81    | J     | 44     | J   |
| IRON       | 140    | 1     | L70   | 120   |       | 2600   |     |
| LEAD       | 7.8    |       | 19    | 14    |       | 520    |     |
| MAGNESIUM  | 1000   | U 10  | 000 U | 1000  | U     | 7800   |     |
| MANGANESE  | 9.3    |       | 11    | 6.7   |       | 320    |     |
| MERCURY    | N/A    | O N/A | 0     | N/A   | 0     | N/A    | 0   |
| NICKEL     | 10     | U     | 10 U  | 10    | U     | 10     | U   |
| POTASSIUM  | 1000   | U 10  | U 000 | 1000  | U     | 1000   | U   |
| SELENIUM   | 1.2    | 1     | 1.6   | 1.5   |       | 1.0    | U   |
| SILVER     | 2.0    | U 2   | 2.0 U | 2.0   | U     | 2.0    | U   |
| SODIUM     | 1000   |       | 000 U | 1000  | U     | 1000   | U   |
| THALLIUM   | 2.0    | U 2   | 2.0 U | 2.0   | U     | 2.0    | U   |
| VANADIUM   |        | U     | 10 U  | 10    | U     | 10     | U   |
| ZINC       | 15     |       | 20    | 12    |       | 240    |     |
| CYANIDE    | N/A    | O N/A | 0     | N/A   | 0     | N/A    | 0   |
| MOLYBDENUM | N/A    | O N/A | 0     | N/A   | 0     | N/A    | 0   |
| TITANIUM   | N/A    | O N/A | 0     | N/A   | 0     | N/A    | 0   |

| SAMPLES    | CSXCR | 406 | CSXCR | 107 | CSXCR | 408 | CSXCR4 | 409 |
|------------|-------|-----|-------|-----|-------|-----|--------|-----|
| ALUMINUM   | 160   |     | 67    | U   | 40    | U   | 40     | U   |
| ANTIMONY   | 12    | U   | 12    | U   | 12    | U   | 12     | U   |
| ARSENIC    | 2.0   | Ū   | 2.0   | U   | 2.0   | U   | 2.0    | U   |
| BARIUM     | 40    | U   | 40    | U   | 40    | U   | 40     | U   |
| BERYLLIUM  | 1.0   | U   | 1.0   | U   | 1.0   | U   | 1.0    | U   |
| CADMIUM    | 2.3   |     | 1.0   | U   | 1.0   | U   | 1.1    |     |
| CALCIUM    | 1600  |     | 1000  | U   | 1000  | U   | 1500   |     |
| CHROMIUM   | 2.1   | U   | 2.0   | U   | 2.0   | U   | 2.0    | U   |
| COBALT     | 10    | U   | 10    | U   | 10    | U   | 10     | U   |
| COPPER     | 150   | J   | 140   | J   | 5.0   | U   | 110    | J   |
| IRON       | 250   |     | 120   |     | 22    |     | 230    |     |
| LEAD       | 62    |     | 8.0   |     | 1.0   | U   | 32     |     |
| MAGNESIUM  | 1000  | U   | 1000  | U   | 1000  | U   | 1900   |     |
| MANGANESE  | 15    |     | 7.0   |     | 3.0   | U   | 16     |     |
| MERCURY    | N/A   | 0   | N/A   | 0   | N/A   | 0   | N/A    | 0   |
| NICKEL     | 10    | U   | 10    | U   | 10    | U   | 10     | U   |
| POTASSIUM  | 1000  | U   | 1000  | U   | 1000  | U   | 1000   | U   |
| SELENIUM   | 1.0   | J   | 1.0   | U   | 1.0   | บ   | 1.6    |     |
| SILVER     | 2.0   | U   | 2.0   | U   | 2.0   | U   | 2.0    | U   |
| SODIUM     | 1000  | U   | 1000  | U   | 1000  | U   | 1000   | U   |
| THALLIUM   | 2.0   | U   | 2.0   | U   | 2.0   | U   | 2.0    | U   |
| VANADIUM   | 10    | U   | 10    | U   | 10    | U   | 10     | Ü   |
| ZINC       | 44    |     | 16    |     | 4.0   | U   | 27     |     |
| CYANIDE    | N/A   | 0   | N/A   | 0   | N/A   | 0   | N/A    | 0   |
| MOLYBDENUM | N/A   | 0   | N/A   | 0   | N/A   | 0   | N/A    | 0   |
| TITANIUM   | N/A   | 0   | N/A   | 0   | N/A   | 0   | N/A    | 0   |

TITLE: BIG RIVER MINE TAILINGS
LAB: SILVER
SAMPLE PREP:
REVIEW LEVEL: 2

MATRIX:AIR
METHOD: CS0788A
CASE: 5558G
DATE: 08/20/90

| SAMPLES    | CSXCR4 | 10′ | CSXCR4 |   | CSXCR | 412 ~ | CSXCR | 113 ′ |
|------------|--------|-----|--------|---|-------|-------|-------|-------|
| ALUMINUM   | 140    |     | 160    |   | 580   |       | 140   |       |
| ANTIMONY   | 12     | U   | 12     | U | 12    | U     | 12    | U     |
| ARSENIC    | 2.0    | U   | 2.0    | U | 2.0   | U     | 2.0   | U     |
| BARIUM     | 40     | U   | 40     | U | 40    | U     | 12    |       |
| BERYLLIUM  | 1.0    | U   | 1.0    | U | 1.0   | U     | 1.0   | U     |
| CADMIUM    | 1.0    | U   | 1.1    |   | 8.5   |       | 1.4   |       |
| CALCIUM    | 2200   |     | 2300   |   | 24000 |       | 1200  |       |
| CHROMIUM   | 2.0    | U   | 2.0    | U | 2.4   | U     | 2.0   | U     |
| COBALT     | 10     | U   | 10     | U | 6.5   |       | 10    | U     |
| COPPER     | 120    | J   | 83     | J | 67    | J     | 120   | J     |
| IRON       | 320    |     | 430    |   | 4300  |       | 310   |       |
| LEAD       | 47     | -   | 57     |   | 840   | •     | 58    |       |
| MAGNESIUM  | 3100   |     | 1900   |   | 12000 |       | 1000  | U     |
| MANGANESE  | 23     |     | 33     |   | 530   |       | 17    |       |
| MERCURY    | N/A    | 0   | N/A    | 0 | N/A   | 0     | N/A   | 0     |
| NICKEL     | 10     | U   | 10     | U | 10    | U     | 10    | U     |
| POTASSIUM  | 1000   | U   | 1000   | U | 1000  | U     | 1000  | U     |
| SELENIUM   | 1.2    |     | 1.4    |   | 1.0   | U     | 1.7   |       |
| SILVER     | 2.0    | U   | 2.0    | U | 2.0   | U     | 2.0   | U     |
| SODIUM     | 1000   | U   | 1000   | U | 230   |       | 1000  | U     |
| THALLIUM   | 2.0    | U   | 2.0    | U | 2.0   | U     | 2.0   | U     |
| VANADIUM   | 10     | U   | 10     | U | 2.1   |       | 10    | U     |
| ZINC       | 30     |     | 36     |   | 400   |       | 63    |       |
| CYANIDE    | N/A    | 0   | N/A    | 0 | N/A   | 0     | N/A   | 0     |
| MOLYBDENUM | N/A    | 0   | N/A    | 0 | N/A   | 0     | N/A   | 0     |
| TITANIUM   | N/A    | 0   | N/A    | 0 | N/A   | 0     | N/A   | 0     |

|            |          |          | /        |          |
|------------|----------|----------|----------|----------|
| SAMPLES    | CSXCR414 | CSXCR415 | CSXCR416 | CSXCR417 |
| ALUMINUM   | 120      | 58       | 40 U     | 200      |
| ANTIMONY   | 12 U     | 12 U     | 12 U     | 12 U     |
| ARSENIC    | 2.0 U    | 2.0 U    | 2.0 U    | 2.0 U    |
| BARIUM     | 3.2      | 40 U     | 40 U     | 40 U     |
| BERYLLIUM  | 1.0 U    | 1.0 U    | 1.0 U    | 1.0 U    |
| CADMIUM    | 1.5      | 1.0 U    | 1.0 U    | 1.5      |
| CALCIUM    | 1000 U   | 1000 U   | 1000 U   | 1200     |
| CHROMIUM   | 2.0 U    | 2.0 U    | 2.0 U    | 2.0 U    |
| COBALT     | 10 U     | 10 U     | 10 U     | 10 U     |
| COPPER     | 100 J    | 190 J    | 5.0 U    | 270      |
| IRON       | 190      | 130      | 20 U     | 330      |
| LEAD       | 28       | 21       | 1.1      | 14       |
| MAGNESIUM  | 260      | 1000 U   | 1000 U   | 1000 U   |
| MANGANESE  | 11       | 6.6      | 3.0 U    | 22       |
| MERCURY    | N/A O    | N/A O    | N/A O    | N/A O    |
| NICKEL     | 10 U     | 10 U     | 10 U     | 10 U     |
| POTASSIUM  | 190      | 1000 U   | 1000 U   | 1000 U   |
| SELENIUM   | 1.2      | 1.2      | 1.0 U    | 1.9      |
| SILVER     | 2.0 U    | 2.0 U    | 2.0 U    | 2.0 U    |
| SODIUM     | 250      | 1000 U   | 1000 U   | 1000     |
| THALLIUM   | 2.0 U    | 2.0 U    | 2.0 U    | 2.0 U    |
| VANADIUM   | 10 U     | 10 U     | 10 U     | 3.1      |
| ZINC       | 22       | 24       | 4.0 U    | 28       |
| CYANIDE    | N/A O    | N/A O    | N/A O    | N/A O    |
| MOLYBDENUM | N/A O    | N/A O    | N/A O    | N/A O    |
| TITANIUM   | N/A O    | N/A O    | N/A O    | N/A O    |

TITLE: BIG RIVER MINE TAILINGS
LAB: SILVER
SAMPLE PREP:
REVIEW LEVEL: 2

MATRIX:AIR
METHOD: CS0788A
CASE: 5558G
PATA FILE: AMC

UNITS: UG/SMPL
REVIEWER:
DATA FILE: AMC

| SAMPLES    | CSXCR | 418 - | CSXCR4 | 119 | / CSXCR | 120 | CSXCR | 421 |
|------------|-------|-------|--------|-----|---------|-----|-------|-----|
| ALUMINUM   | 230   |       | 220    |     | 930     |     | 150   |     |
| ANTIMONY   | 12    | U     | 12     | U   | 12      | U   | 12    | U   |
| ARSENIC    | 2.0   | U     | 2.0    | U   | 6.0     |     | 2.0   | U   |
| BARIUM     | 40    | U     | 40     | U   | 40      | Ŭ   | 40    | U   |
| BERYLLIUM  | 1.0   | U     | 1.0    | U   | 1.0     | U   | 1.0   | U   |
| CADMIUM    | 1.7   |       | 3.0    |     | 12      |     | 1.0   | U   |
| CALCIUM    | 1400  |       | 1900   |     | 37000   |     | 1600  |     |
| CHROMIUM   | 2.0   | U     | 2.1    |     | 2.9     |     | 2.0   | U   |
| COBALT     | 10    | U     | 10     | U   | 10      | U   | 10    | U   |
| COPPER     | 110   |       | 49     |     | 91      |     | 110   | J   |
| IRON       | 370   |       | 450    |     | 6800    |     | 360   |     |
| LEAD       | 26    |       | 46     |     | 1400    |     | 130   |     |
| MAGNESIUM  | 1000  |       | 1400   |     | 18000   |     | 1000  | U   |
| MANGANESE  | 25    |       | 30     |     | 790     |     | 24    |     |
| MERCURY    | N/A   | 0     | N/A    | 0   | N/A     | 0   | N/A   | 0   |
| NICKEL     | 10    | U     | 10     | U   | 10      |     | 10    | U   |
| POTASSIUM  | 1000  | U     | 1000   | U   | 1000    | U   | 1000  | U   |
| SELENIUM   | 2.2   |       | 2.5    |     | 3.5     | J   | 2.0   |     |
| SILVER     | 2.0   | U     | 2.0    | U   | 2.0     | U   | 2.0   | U   |
| SODIUM     | 1000  | U     | 1000   | U   | 1000    | U   | 1000  | U   |
| THALLIUM   | 2.0   | U     | 2.0    | U   | 2.0     | U   | 2.0   | U   |
| VANADIUM   | 10    | U     | 10     | U   | 10      | U   | 10    | U   |
| ZINC       | 27    |       | 37     |     | 660     |     | 33    |     |
| CYANIDE    | N/A   | 0     | N/A    | 0   | N/A     | 0   | N/A   | 0   |
| MOLYBDENUM | N/A   | 0     | N/A    | 0   | N/A     | 0   | N/A   | 0   |
| TITANIUM   | N/A   | 0     | N/A    | 0   | N/A     | 0   | N/A   | 0   |

TITLE: BIG RIVER MINE TAILINGS

LAB: SILVER

SAMPLE PREP:

REVIEW LEVEL: 2

MATRIX:AIR

METHOD: CS0788A

CASE: 5558G

DATE: 08/20/90

DATA FILE: AMC

|            |        |     |        |     | /     | /   | ,      | /   |
|------------|--------|-----|--------|-----|-------|-----|--------|-----|
| SAMPLES    | CSXCR4 | 22′ | CSXCR4 | 123 | CSXCR | 124 | CSXCR4 | 125 |
| ALUMINUM   | 190    |     | 110    |     | 40    | U   | 130    |     |
| ANTIMONY   | 12     | U   | 12     | U   | 12    | U   | 12     | U   |
| ARSENIC    | 2.0    | U   | 2.0    | U   | 2.0   | U   | 2.0    | U   |
| BARIUM     | 40     | U   | 40     | U   | 40    | U   | 40     | U   |
| BERYLLIUM  | 1.0    | U   | 1.0    | U   | 1.0   | U   | 1.0    | U   |
| CADMIUM    | 1.0    | U   | 1.0    | U   | 1.0   | U   | 1.2    |     |
| CALCIUM    | 1100   |     | 1000   | U   | 1000  | U   | 1500   |     |
| CHROMIUM   | 2.0    | U   | 2.0    | U   | 2.0   | U   | 2.0    | U   |
| COBALT     | 10     | U   | 10     | U   | 10    | U   | 10     | Ü   |
| COPPER     | 76     | J   | 220    | J   | 5.0   | U   | 300    | J   |
| IRON       | 310    |     | 180    |     | 20    | U   | 340    |     |
| LEAD       | 23     |     | 8.6    |     | 2.7   |     | 58     |     |
| MAGNESIUM  | 1000   | U   | 1000   | U   | 1000  | U   | 2300   |     |
| MANGANESE  | 18     |     | 10     |     | 3.0   | U   | 28     |     |
| MERCURY    | N/A    | 0   | N/A    | 0   | N/A   | 0   | N/A    | 0   |
| NICKEL     | 10     | U   | 10     | U   | 10    | U   | 10     | U   |
| POTASSIUM  | 1000   | U   | 1000   | U   | 1000  | U   | 1000   | U   |
| SELENIUM   | 2.1    |     | 2.0    |     | 1.0   | U   | 2.4    | J   |
| SILVER     |        | U   | 2.0    | U   | 2.0   | U   | 2.0    | U   |
| SODIUM     |        | U   | 1000   | U   | 1000  | U   | 1000   | U   |
| THALLIUM   |        | U   | 2.0    | U   | 2.0   | U   | 2.0    | U   |
| VANADIUM   |        | U   | 10     | U   | 10    | U   | 10     | U   |
| ZINC       | 22     |     | 36     |     | 4.0   | U   | 56     |     |
| CYANIDE    | •      | 0   | N/A    | 0   | N/A   | 0   | N/A    | 0   |
| MOLYBDENUM | ,      | 0   | N/A    | 0   | N/A   | 0   | N/A    | 0   |
| TITANIUM   | N/A    | 0   | N/A    | 0   | N/A   | 0   | N/A    | 0   |

| TITLE: BIG RIVER MINE TAILINGS  | MATRIX:AIR       | UNITS: UG/SMPL |
|---------------------------------|------------------|----------------|
|                                 | METHOD: CS0788A, | CASE: 5558G    |
| SAMPLE PREP: ANALYST/ENTRY: DEW | REVIEWER:        | DATE: 08/20/90 |
| REVIEW LEVEL: 2                 | DATA FILE : AMC  |                |

| SAMPLES    | CSXCR4 | 26 CSXC | R427 | CSXCR | 428 | CSXCR | 129 |
|------------|--------|---------|------|-------|-----|-------|-----|
| ALUMINUM   | 140    | 16      | 0    | 610   |     | 160   |     |
| ANTIMONY   | 12     | U 1     | 2 U  | 12    | U   | 12    | U   |
| ARSENIC    | 2.0    | Ŭ 2.    | 0 U  | 2.0   | U   | 2.0   | U   |
| BARIUM     | 40     | U 4     | 0 U  | 40    | U   | 40    | U   |
| BERYLLIUM  | 1.0    | U 1.    | 0 U  | 1.0   | U   | 1.0   | U   |
| CADMIUM    | 1.4    | 1.      | 3    | 9.2   |     | 1.0   | U   |
| CALCIUM    | 1400   | 250     | 0    | 28000 |     | 1100  |     |
| CHROMIUM   | 2.0    | U 2.    | 0 U  | 3.1   | U   | 2.0   | U   |
| COBALT     | 10     | U 1     | U 0  | 10    | U   | 10    | U   |
| COPPER     | 88 .   | J 6     | 3 J  | 66    | J   | 100   | J   |
| IRON       | 330    | 56      | 0    | 4800  |     | 400   |     |
| LEAD       | 70     | 7       | 9    | 1100  |     | 110   |     |
| MAGNESIUM  | 2000   | 130     | 0    | 14000 |     | 1000  | U   |
| MANGANESE  | 26     | 5       | 3    | 570   |     | 25    |     |
| MERCURY    | N/A    | O N/A   | 0    | N/A   | 0   | N/A   | 0   |
| NICKEL     | 10     | U 1     | 0 U  | 10    | U   | 10    | U   |
| POTASSIUM  | 1000   | U 100   | U O  | 1000  | U   | 1000  | U   |
| SELENIUM   | 1.9    | 2.      | 8    | 1.0   | U   | 2.5   |     |
| SILVER     | - · ·  | U 2.    | U O  | 2.0   | U   | 2.0   | U   |
| SODIUM     | 1000   | U 100   | 0 U  | 1000  | U   | 1000  | U   |
| THALLIUM   | 2.0    | U 2.    | U O  | 2.0   | U   | 2.0   | U   |
| VANADIUM   |        | U 1     |      | 10    | U   | 10    | U   |
| ZINC       | 50     | 5       | 3    | 480   |     | 56    |     |
| CYANIDE    | N/A    | O N/A   | 0    | N/A   | 0   | N/A   | 0   |
| MOLYBDENUM | N/A    | O N/A   | 0    | N/A   | 0   | N/A   | 0   |
| TITANIUM   | N/A    | O N/A   | 0    | N/A   | 0   | N/A   | 0   |

TITLE: BIG RIVER MINE TAILINGS UNITS: UG/SMPL MATRIX:AIR

CASE: 5558G DATE: 08/20/90 LAB: SILVER METHOD: CS0788A SAMPLE PREP: ANALYST/ENTRY: DEW REVIEWER: DATA FILE : AMC

| SAMPLES    | CSXCR4 | 130 | CSXCR4 | 31 1 | CSXCR4 | 132 ( | CSXCR | 433 |
|------------|--------|-----|--------|------|--------|-------|-------|-----|
| ALUMINUM   | 160    |     | 110    |      | 6.9    |       | 760   |     |
| ANTIMONY   | 12     | U   | 12     | U    | 12     | U     | 12    | U   |
| ARSENIC    | 2.0    | U   | 2.0    | U    | 2.0    | U     | 2.0   | U   |
| BARIUM     | 40     | U   | 40     | U    | 40     | U     | 40    | U   |
| BERYLLIUM  | 1.0    | U   | 1.0    | U    | 1.0    | U     | 1.0   | U   |
| CADMIUM    | 1.4    |     | 1.0    | U    | 1.0    | U     | 1.3   |     |
| CALCIUM    | 1000   | U   | 1000   | U    | 1000   | U     | 3700  |     |
| CHROMIUM   | 2.0    | U   | 2.0    | U    | 2.0    | U .   | 3.2   |     |
| COBALT     | 10     | U   | 10     | U    | 10     | U     | 10    | U   |
| COPPER     | 98     | J   | 260    | J    | 5.0    | U     | 170   |     |
| IRON       | 250    |     | 210    |      | 22     | U     | 920   |     |
| LEAD       | 38     |     | 14     |      | 1.0    | U     | 28    |     |
| MAGNESIUM  | 1000   | U   | 1000   | U    | 1000   | U     | 3100  |     |
| MANGANESE  | 14     |     | 10     |      | 3.0    | U     | 36    |     |
| MERCURY    | N/A    | 0   | N/A    | 0    | N/A    | 0     | N/A   | 0   |
| NICKEL     | 10     | U   | 10     | Ŭ    | 10     | U     | 10    | U   |
| POTASSIUM  | 1000   | U   | 1000   | U    | 1000   | U     | 1000  | U   |
| SELENIUM   | 2.3    |     | 1.6    |      | 1.0    | U     | 1.9   |     |
| SILVER     | 2.0    | U   | 2.0    | U    | 2.0    | U     | 2.0   | U   |
| SODIUM     | 1000   | U   | 1000   | U    | 1000   | U     | 1000  | U   |
| THALLIUM   | 2.0    | U   | 2.0    | U    | 2.0    | U     | 2.0   | U   |
| VANADIUM   | . 10   | U   | 10     | U    | 10     | U     | 36    |     |
| ZINC       | 27     |     | 29     |      | 4.0    | U     | 42    |     |
| CYANIDE    | N/A    | 0   | N/A    | 0    | N/A    | 0     | N/A   | 0   |
| MOLYBDENUM | N/A    | 0   | N/A    | 0    | N/A    | 0     | N/A   | 0   |
| TITANIUM   | N/A    | 0   | N/A    | 0    | N/A    | 0     | N/A   | 0   |

| SAMPLES    | CSXCR | 434 | CSXCR4 | 135 | CSXCR | 436 - | CSXCR | 137 ′ |
|------------|-------|-----|--------|-----|-------|-------|-------|-------|
| ALUMINUM   | 840   |     | 1000   |     | 930   |       | 680   |       |
| ANTIMONY   | 12    | U   |        | U   | 12    | U     | 12    | U     |
| ARSENIC    | 2.0   | U   | 2.7    |     | 2.0   | U     | 2.0   | U     |
| BARIUM     | 40    | U   | 40     | U   | 40    | U     | 40    | U     |
| BERYLLIUM  | 1.0   | U   | 1.0    | U   | 1.0   | U     | 1.0   | U     |
| CADMIUM    | 1.0   | U   | 4.7    |     | 5.0   |       | 1.0   |       |
| CALCIUM    | 3800  |     | 18000  |     | 13000 |       | 2500  |       |
| CHROMIUM   | 2.8   |     | 2.7    |     | 2.1   |       | 2.4   |       |
| COBALT     | 10    | U   | 10     | U   | 10    | U     | 10    | U     |
| COPPER     | 140   |     | 130    |     | 40    |       | 110   |       |
| IRON       | 950   |     | 3.9    |     | 2600  |       | 950   |       |
| LEAD       | 24    |     | 290    |     | 440   |       | 56    |       |
| MAGNESIUM  | 3200  |     | 8900   |     | 6600  |       | 1100  |       |
| MANGANESE  | 36    |     | 400    |     | 260   |       | 39    |       |
| MERCURY    | N/A   | 0   | N/A    | 0   | N/A   | 0     | N/A   | 0     |
| NICKEL     | 10    | U   | 9.3    |     | 10    | U     | 10    | U     |
| POTASSIUM  | 1000  | U   | 540    |     | 1000  | U     | 1000  | U     |
| SELENIUM   | 3.0   | J   | 3.4    | J   | 1.7   | J     | 1.8   |       |
| SILVER     | 2.0   | U   | 2.0    | U   | 2.0   | U     | 2.0   | U     |
| SODIUM     | 1000  | U   | 1000   | U   | 1000  | U     | 1000  | U     |
| THALLIUM   | 2.0   | U   | 2.0    | U   | 2.0   | U     | 2.0   | ប     |
| VANADIUM   | 37    |     | 38     |     | 10    | U     | 10    | U     |
| ZINC       | 38    |     | 170    |     | 240   |       | 530   |       |
| CYANIDE    | N/A   | 0   | N/A    | 0   | N/A   | 0     | N/A   | 0     |
| MOLYBDENUM | N/A   | 0   | N/A    | 0   | N/A   | 0     | N/A   | 0     |
| TITANIUM   | N/A   | 0   | N/A    | 0   | N/A   | 0     | N/A   | 0     |

| SAMPLES    | CSXCR4 | 138 | , cs: | XCR4 | 139 / | CSXCR | 440 | CSXCR4 | 441 |
|------------|--------|-----|-------|------|-------|-------|-----|--------|-----|
| ALUMINUM   | 720    |     | •     | 740  |       | 40    | U   | 670    |     |
| ANTIMONY   | 12     | U   |       | 12   | U     | 12    | U   | 12     | U   |
| ARSENIC    | 2.0    | U   |       | 2.0  | U     | 2.0   | U   | 2.0    | U   |
| BARIUM     | 40     | U   |       | 40   | U     | 40    | U   | 40     | U   |
| BERYLLIUM  | 1.0    | U   |       | 1.0  | U     | 1.0   | U   | 1.0    | U   |
| CADMIUM    | 1.0    | U   | •     | 1.0  | U     | 1.0   | Ų   | 1.0    | U   |
| CALCIUM    | 1200   |     | 10    | 000  | U     | 1000  | U   | 1500   |     |
| CHROMIUM   | 2.0    | U   | ;     | 2.0  | U     | 2.0   | U   | 2.0    | U   |
| COBALT     | 10     | U   |       | 10   | U     | 10    | U   | 10     | U   |
| COPPER     | 88     |     | ;     | 240  |       | 5.0   | U   | 250    |     |
| IRON       | 820    |     | •     | 760  |       | 20    | U   | 830    |     |
| LEAD       | 24     |     |       | 17   |       | 0.76  |     | 29     |     |
| MAGNESIUM  | 440    |     | 10    | 000  | U     | 1000  | U   | 1000   | U   |
| MANGANESE  | 23     |     |       | 19   |       | 3.0   | U   | 30     |     |
| MERCURY    | N/A    | 0   | N/A   |      | 0     | N/A   | 0   | N/A    | 0   |
| NICKEL     | 10     | U   |       | 10   | U     | 10    | U   | 10     | U   |
| POTASSIUM  | 1000   | U   | 10    | 000  | U     | 1000  | U   | 1000   | U   |
| SELENIUM   | 1.9    |     |       | 1.1  |       | 1.0   | U   | 1.7    |     |
| SILVER     | 2.0    | U   |       | 2.0  | U     | 2.0   | U   | 2.0    | U   |
| SODIUM     | 1000   | U   | 1     | 000  | U     | 1000  | U   | 1000   | U   |
| THALLIUM   | 2.0    | U   |       | 2.0  | U     | 2.0   | U   | 2.0    | U   |
| VANADIUM   | 10     | U   |       | 10   | U     | 10    | U   | 10     | U   |
| ZINC       | 27     |     |       | 31   |       | 4.0   | U   | 30     |     |
| CYANIDE    | N/A    | 0   | N/A   |      | 0     | N/A   | 0   | N/A    | 0   |
| MOLYBDENUM | N/A    | 0   | N/A   |      | 0     | N/A   | 0   | N/A    | 0   |
| TITANIUM   | N/A    | 0   | N/A   |      | 0     | N/A   | 0   | N/A    | 0   |

| SAMPLES    | CSXCR4 | 442 / | CSXCR4 | 43 / | CSXCR | 144 | CSXCR4 | 45 ′ |
|------------|--------|-------|--------|------|-------|-----|--------|------|
| ALUMINUM   | 760    |       | 720    |      | 780   |     | 900    |      |
| ANTIMONY   | 12     | U     | 12     | U    | 12    | U   | 12     | U    |
| ARSENIC    | 2.0    | U     | 2.0    | U    | 2.1   |     | 2.0    | U    |
| BARIUM     | 40     | U     | 40     | U    | 40    | U   | 40     | U    |
| BERYLLIUM  | 1.0    | U     | 1.0    | U    | 1.0   | U   | 1.0    | U .  |
| CADMIUM    | 1.0    | U     | 1.0    | U    | 1.0   | U   | 1.0    |      |
| CALCIUM    | 1500   |       | 2200   |      | 3500  |     | 2300   |      |
| CHROMIUM   | 2.5    |       | 2.0    | U    | 3.1   |     | 2.2    |      |
| COBALT     | 10     | U     | 10     | U    | 10    | U   | 10     | U    |
| COPPER     | 56     |       | 81     |      | 43    |     | 86     |      |
| IRON       | 890    |       | 980    |      | 1200  |     | 1200   |      |
| LEAD       | 15     |       | 24     |      | 170   |     | 59     |      |
| MAGNESIUM  | 1000   | U     | 1000   | U    | 1500  |     | 1000   | Ŭ    |
| MANGANESE  | 30     |       | 49     |      | 67    |     | 49     |      |
| MERCURY    | N/A    | 0     | N/A    | 0    | N/A   | 0   | N/A    | 0    |
| NICKEL     | 10     | U     | 10     | U    | 10    | U   | 10     | U    |
| POTASSIUM  | 1000   | U     | 1000   | U    | 1000  | U   | 1000   | บ    |
| SELENIUM   | 2.2    |       | 2.2    |      | 2.0   |     | 1.9    |      |
| SILVER     | 2.0    | U     | 2.0    | U    | 2.0   | U   | 2.0    | Ū    |
| SODIUM     | 1000   | U     | 1000   | U    | 1000  | U   | 1000   | U    |
| THALLIUM   | 2.0    | U     | 2.0    | U    | 2.0   | U   | 2.0    | U    |
| VANADIUM   | 10     | U     | 10     | U    | 10    | U   | 10     | U    |
| ZINC       | 23     |       | 27     |      | 50    |     | 64     |      |
| CYANIDE    | N/A    | 0     | N/A    | 0    | N/A   | 0   | N/A    | 0    |
| MOLYBDENUM | N/A    | 0     | N/A    | 0    |       | . 0 | N/A    | 0    |
| TITANIUM   | N/A    | 0     | N/A    | 0    | N/A   | 0   | N/A    | 0    |

| SAMPLES    | CSXCR4 | 46 / CS | CR448 | CSXCR | 149 | / |
|------------|--------|---------|-------|-------|-----|---|
| ALUMINUM   | 760    | 8       | 320   | 40    | U   |   |
| ANTIMONY   | 12     | U       | 12 U  | 12    | U   |   |
| ARSENIC    | 2.0    | U 2     | 2.4   | 2.0   | U   |   |
| BARIUM     | 11     |         | 40 U  | 40    | U   |   |
| BERYLLIUM  | 1.0    | U :     | L.O U | 1.0   | U   |   |
| CADMIUM    | 1.0    | บ 7     | 7.3   | 1.0   | U   |   |
| CALCIUM    | 1500   | 15      | 500   | 1000  | U   |   |
| CHROMIUM   | 2.1    | 2       | 2.3   | 2.0   | U   |   |
| COBALT     | 10     | U       | 10 U  | 10    | U   |   |
| COPPER     | 64     | -       | 140   | 5.0   | U   |   |
| IRON       | 890    | ġ       | 950   | 40    |     |   |
| LEAD       | 34     |         | 76    | 1.4   |     |   |
| MAGNESIUM  | 1000   | U 10    | 000 U | 1000  | U   |   |
| MANGANESE  | 32     |         | 32    | 3.0   | U   |   |
| MERCURY    | N/A    | O N/A   | 0     | N/A   | 0   |   |
| NICKEL     | 10     | U       | 10 U  | 10    | U   |   |
| POTASSIUM  | 1000   | U 10    | 000 U | 1000  | U   |   |
| SELENIUM   | 1.5    | :       | 1.8   | 1.0   | U   |   |
| SILVER     | 2.0    | U 2     | 2.0 U | 2.0   | U   |   |
| SODIUM     | 1000   | U 10    | 000 U | 1000  | U   |   |
| THALLIUM   | 2.0    | U 2     | 2.0 U | 2.0   | U   |   |
| VANADIUM   | 10     | U       | 10 U  | 10    | U   |   |
| ZINC       | 25     |         | 62    | 4.0   | U   |   |
| CYANIDE    | N/A    | O N/A   | 0     | N/A   | 0   |   |
| MOLYBDENUM | N/A    | O N/A   | 0     | N/A   | 0   |   |
| TITANIUM   | N/A    | O N/A   | 0     | N/A   | 0   |   |
|            |        |         |       |       |     |   |

| SAMPLES    | CSXCR | 403L | CS  | SXCR4 | 08L | CSXCR | 422L | CSXCR | 433L |
|------------|-------|------|-----|-------|-----|-------|------|-------|------|
| ALUMINUM   | 81    |      | N/A |       | 0   | 180   |      | 740   |      |
| ANTIMONY   | 12    | U    | N/A |       | 0   | 12    | U    | 12    | U    |
| ARSENIC    | N/A   | 0    | •   | 2.0   | U   | 2.0   | U    | 2.0   | U    |
| BARIUM     | 40    | U    | N/A |       | 0   | 40    | U    | 40    | U    |
| BERYLLIUM  | 1.0   | U    | N/A |       | 0   | 1.0   | ប    | 1.0   | U    |
| CADMIUM    | 1.0   | U    | N/A |       | 0   | 1.0   | U    | 1.1   |      |
| CALCIUM    | 1000  | U    | N/A |       | 0   | 1100  |      | 3600  |      |
| CHROMIUM   | 2.0   | U    | N/A |       | 0   | 2.0   | U    | 3.5   |      |
| COBALT     | 10    | U    | N/A |       | 0   | 10    | U    | 10    | U    |
| COPPER     | 80    |      | N/A |       | 0   | 75    |      | 160   |      |
| IRON       | 120   |      | N/A |       | 0   | 310   |      | 900   |      |
| LEAD       | 16    |      |     | 1.0   |     | 31    |      | 34    |      |
| MAGNESIUM  | 1000  | U    | N/A |       | 0   | 1000  | U    | 3000  |      |
| MANGANESE  | 6.0   |      | N/A |       | 0   | 18    |      | 35    |      |
| MERCURY    | N/A   | 0    | N/A |       | 0   | N/A   | 0    | N/A   | 0    |
| NICKEL     | 10    | U    | N/A |       | 0   | 10    | U    | 10    | Ü    |
| POTASSIUM  | 1000  | U    | N/A |       | 0   | 1000  | U    | 1000  | U    |
| SELENIUM   | N/A   | 0    |     | 1.0   | U   | 2.1   |      | 1.9   |      |
| SILVER     | 2.0   | U    | N/A |       | 0   | 2.0   | U    | 2.0   | U    |
| SODIUM     | 1000  | U    | N/A |       | 0   | 1000  | U    | 1000  | Ŭ    |
| THALLIUM   | N/A   | 0    |     | 2.0   | U   | N/A   | 0    | 2.0   | U    |
| VANADIUM   | 10    | U    | N/A |       | 0   | 10    | U    | 34    |      |
| ZINC       | 12    |      | N/A |       | 0   | 21    |      | 41    |      |
| CYANIDE    | N/A   | 0    | N/A |       | 0   | N/A   | 0    | N/A   | 0    |
| MOLYBDENUM | N/A   | 0    | N/A |       | 0   | N/A   | 0    | N/A   | 0    |
| TITANIUM   | N/A   | 0    | N/A |       | 0   | N/A   | 0    | N/A   | 0    |

TITLE: BIG RIVER MINE TAILINGS

LAB: SILVER
SAMPLE PREP:
REVIEW LEVEL: 2

MATRIX:AIR
METHOD: CS0788A
REVIEWER:
DATA FILE: AMC

MATRIX:AIR
METHOD: CS0788A
CASE: 5558G
DATE: 08/20/90

| SAMPLES    | CSXCR  | 070 |
|------------|--------|-----|
| ALUMINUM   | 310    |     |
| ANTIMONY   | 230    |     |
| ARSENIC    | 1000   |     |
| BARIUM     | 40     | U   |
| BERYLLIUM  | 18     |     |
| CADMIUM    | 46     |     |
| CALCIUM    | 190000 |     |
| CHROMIUM   | 100    |     |
| COBALT     | 130    |     |
| COPPER     | 6800   |     |
| IRON       | 210    |     |
| LEAD       | 230    |     |
| MAGNESIUM  | 120000 |     |
| MANGANESE  | 210    |     |
| MERCURY    | N/A    | 0   |
| NICKEL     | 55     |     |
| POTASSIUM  | 1000   | U   |
| SELENIUM   | 45     |     |
| SILVER     | 27     |     |
| SODIUM     | 1000   | Ū   |
| THALLIUM   | 39     |     |
| VANADIUM   | 67     |     |
| ZINC       | 190    |     |
| CYANIDE    | N/A    | 0   |
| MOLYBDENUM | N/A    | 0   |
| TITANIUM   | N/A    | 0   |

| SAMPLES    | CSXCR | оом | CSXCR | 901R | CS  | XCR901 | LS CSXCR | 902A |
|------------|-------|-----|-------|------|-----|--------|----------|------|
| ALUMINUM   | 40    | U   | N/A   | 0    | N/A | 0      | 320      |      |
| ANTIMONY   | 12    | U   | 100   | )    | ·   | 95     | 210      |      |
| ARSENIC    | 2.0   | U   | 8.0   | )    |     | 7.8    | 920      |      |
| BARIUM     | 40    | U   | 400   | ١    |     | 420    | 4.8      |      |
| BERYLLIUM  | 1.0   | U   | 10    | )    |     | 9.9    | 19       | •    |
| CADMIUM    | 1.0   | U   | 10    | )    |     | 11     | 45       |      |
| CALCIUM    | 1000  | U   | N/A   | 0    | N/A | 0      | 200000   |      |
| CHROMIUM   | 2.0   | U   | 40    | )    | ·   | 44     | 100      |      |
| COBALT     | 10    | U   | 100   | )    |     | 110    | 140      |      |
| COPPER     | 5.0   | U   | 50    | )    |     | 56     | 6900     |      |
| IRON       | 20    | U   | N/A   | 0    | N/A | 0      | 22000    |      |
| LEAD       | 1.0   | U   | 100   | )    | •   | 110    | 240      |      |
| MAGNESIUM  | 1000  | U   | N/A   | 0    | N/A | 0      | 120000   |      |
| MANGANESE  | 3.0   | U   | 100   | )    | •   | 110    | 210      |      |
| MERCURY    | N/A   | 0   | N/A   | 0    | N/A | 0      | N/A      | 0    |
| NICKEL     | 10    | U   | 100   | )    | •   | 110    | . 61     |      |
| POTASSIUM  | 1000  | U   | N/A   | 0    | N/A | 0      | 50000    |      |
| SELENIUM   | 1.0   | U   | 2.0   | )    | •   | 2.1    | 39       |      |
| SILVER     | 2.0   | U   | 10    |      |     | 11     | 22       |      |
| SODIUM     | 1000  | U   | N/A   | 0    | N/A | 0      | 50000    |      |
| THALLIUM   | 2.0   | U   | 10    | )    | •   | 12     | 39       |      |
| VANADIUM   | 10    | U   | 100   | )    |     | 110    | 66       |      |
| ZINC       | 4.0   | U   | 100   | )    |     | 110    | 190      |      |
| CYANIDE    | N/A   | 0   | N/A   | 0    | N/A | 0      | N/A      | 0    |
| MOLYBDENUM | N/A   | 0   | N/A   | 0    | N/A | 0      | N/A      | 0    |
| TITANIUM   | N/A   | 0   | N/A   | 0    | N/A | 0      | N/A      | 0    |

TITLE: BIG RIVER MINE TAILINGS
LAB: SILVER
SAMPLE PREP:
REVIEW LEVEL: 2

MATRIX:AIR
METHOD: CS0788A
CASE: 5558G
DATE: 08/20/90
DATA FILE: AMC

| SAMPLES    | CSXCR | 902C ′ | CSXCR | 903 <b>M</b> | CS  | SXCR | 904R | CS  | SXCR | 904S |
|------------|-------|--------|-------|--------------|-----|------|------|-----|------|------|
| ALUMINUM   | 310   |        | 40    | U            | N/A |      | 0    | N/A |      | 0    |
| ANTIMONY   | 230   |        | 12    | U            | ·   | 100  |      | •   | 100  |      |
| ARSENIC    | 1000  |        | 2.0   | U            |     | 8.0  |      |     | 8.2  |      |
| BARIUM     | 40    | U      | 40    | U            |     | 400  |      |     | 420  |      |
| BERYLLIUM  | 18    |        | 1.0   | U            |     | 10   |      |     | 9.6  |      |
| CADMIUM    | 47    |        | 1.0   | U            |     | 10   |      |     | 12   |      |
| CALCIUM    | 180   |        | 1000  | U            | N/A |      | 0    | N/A |      | 0    |
| CHROMIUM   | 95    |        | 2.0   | U            | •   | 40   |      | •   | 42   |      |
| COBALT     | 130   |        | 10    | U            |     | 100  |      |     | 100  |      |
| COPPER     | 6700  |        | 5.0   | U            |     | 50   |      |     | 58   |      |
| IRON       | 210   |        | 20    | U            | N/A |      | 0    | N/A |      | 0    |
| LEAD       | 240   |        | 1.0   | Ū            | ·   | 100  |      | •   | 110  |      |
| MAGNESIUM  | 120   |        | 1000  | U            | N/A |      | 0    | N/A |      | 0    |
| MANGANESE  | 200   |        | 3.0   | U            | ·   | 100  |      | •   | 100  |      |
| MERCURY    | N/A   | 0 1    | A/V   | 0            | N/A |      | 0    | N/A |      | 0    |
| NICKEL     | 60    |        | 10    | U            | •   | 100  |      | •   | 100  |      |
| POTASSIUM  | 1000  | U      | 1000  | U            | N/A |      | 0    | N/A |      | 0    |
| SELENIUM   | 41    |        | 1.0   | U            | •   | 2.0  |      | •   | 2.4  |      |
| SILVER     | 27    |        | 2.0   | Ū            |     | 10   |      |     | 11   |      |
| SODIUM     | 1000  | U      | 1000  | U            | N/A |      | 0    | N/A |      | 0    |
| THALLIUM   | 48    |        | 2.0   | U            | ·   | 10   |      | •   | 9.8  |      |
| VANADIUM   | 66    |        | 10    | U            |     | 100  |      |     | 100  |      |
| ZINC       | 190   |        | 4.0   | U            |     | 100  |      |     | 100  |      |
| CYANIDE    | N/A   | 0 1    | N/A   | 0            | N/A |      | 0    | N/A |      | 0    |
| MOLYBDENUM | N/A   |        | i/A   | 0            | N/A |      | 0    | N/A |      | 0    |
| TITANIUM   | N/A   |        | N/A   | 0            | N/A |      | 0    | N/A |      | 0    |

TITLE: BIG RIVER MINE TAILINGS

WER MINE TAILINGS MATRIX:AIR UNITS: UG/SMPL METHOD: CS0788A CASE: 5558G DATE: 08/20/90 LAB: SILVER

SAMPLE PREP: REVIEW LEVEL: 2 DATA FILE : AMC

| SAMPLES    | CSXCR  | 905A | CSXCR  | 905C | CSXCR | 906M | CSXCF  | 8907A        |
|------------|--------|------|--------|------|-------|------|--------|--------------|
| ALUMINUM   | 320    |      | 300    |      | 40    | U    | 320    | )            |
| ANTIMONY   | 210    |      | 220    |      | 12    | U    | 210    | )            |
| ARSENIC    | 920    |      | 1100   |      | 2.0   | U    | 920    | )            |
| BARIUM     | 4.8    |      | 40     | U    | 40    | U    | 4.8    | }            |
| BERYLLIUM  | 19     |      | 17     |      | 1.0   | U    | 19     | •            |
| CADMIUM    | 45     |      | 45     |      | 1.0   | U    | 4.5    | 5            |
| CALCIUM    | 200000 |      | 180000 |      | 1000  | U    | 200000 | )            |
| CHROMIUM   | 100    |      | 93     |      | 2.0   | U    | 100    | )            |
| COBALT     | 140    |      | 130    |      | 10    | U    | 140    | )            |
| COPPER     | 6900   |      | 6600   |      | 5.0   | U    | 6.9    | )            |
| IRON       | 22000  |      | 21000  |      | 20    | U    | 22     | ?            |
| LEAD       | 240    |      | 220    |      | 1.0   | U    | 240    | )            |
| MAGNESIUM  | 120000 |      | 120000 |      | 1000  | บ    | 120000 | )            |
| MANGANESE  | 210    |      | 200    |      | 3.0   | U    | 210    | )            |
| MERCURY    | N/A    | 0    | N/A    | 0    | 0.10  | U    | N/A    | 0            |
| NICKEL     | 61     |      | 60     |      | 10    | U    | 61     | •            |
| POTASSIUM  | 50000  |      | 1000   | U    | 1000  | U    | 50     | )            |
| SELENIUM   | 39     |      | 32     |      | 1.0   | U    | 39     | )            |
| SILVER     | 22     |      | 26     |      | 2.0   | U    | 22     | ?            |
| SODIUM     | 50000  |      | 1000   | U    | 1000  | U    | 50     | )            |
| THALLIUM   | 39     |      | 45     |      | 2.0   | U    | 39     | <del>)</del> |
| VANADIUM   | 66     |      | 64     |      | 10    | U    | 66     | 5            |
| ZINC       | 190    |      | 190    |      | 4.0   | U    | 190    | )            |
| CYANIDE    | N/A    | 0    | N/A    | 0    | N/A   | 0    | N/A    | 0            |
| MOLYBDENUM | N/A    | 0    | N/A    | 0    | N/A   | 0    | N/A    | 0            |
| TITANIUM   | N/A    | 0    | N/A    | 0    | N/A   | 0    | N/A    | 0            |

TERLO SHEET

U.S. TAVERDMENTAL PROTECTION AGENCY, REGION VII

UNDERVICES DIV. 25 HUNSTON RD. KANSAS CITY, KS 56145 Y: /3 ACTYO: COXCP SAMNO: COZ RCC: MEDIA: SOIL PL: S P = D AUTIVITY 198: TIG RIVER MINE FAILINGS DOATION: 0-SEGGE MO PROJECT NUM: A37 PT: LONGITUDE: JAMPLE COS: DEG RIVER MINE TAILINGS SITE(SCIL) DATE TIME, FROM REF PT COSATION: DESERGE MD 8EG: 07/27/90 15:10 EAST: LASE/DATCH/SMC: \_\_\_\_/\_ LAS: \_\_\_\_\_ END: \_\_/\_/ \_\_\_: \_\_\_\_NORTH: \_\_\_\_\_\_ . VALYSIS PERUESTED: CONTAINER COLUR PRESERVATIVE MGP NAME LLASS WHITE ICED SM METALS Sample Location of Z on map.

LAMPLE COLLECTED BY : Raporta Silva

| ENVIRON                                            | C.S. ENVIRONME<br>MENTAL SERVICES                   | NTAL PROTECTION<br>DIV. 25 FUNSTO            | AGENCY, REGIDA<br>CO RARNES CO NO    | N VII<br>ITY, KS 36115                 | ;        |
|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------|----------|
| 'Y: 30 20T                                         | 10: 05XCA 34MN0                                     | : 003 100: _ MEE                             | IA: SOIL PL:                         | 3 P F 0                                | ,        |
| CTIVITY C                                          | SS: SIG RIVER M<br>DESLUGE                          | INE TAILINGS<br>Mo Project                   | REF<br>NUM: A33 PT:                  | LATITUDE:<br>LONGITUDE:                |          |
| AMPLE DES<br>LOCATION:<br>LAS EXPATCH<br>TORET/SAR | : BIG RIVER MIN<br>DISLAGE<br>/SMC:/_/_<br>DAD NO:/ | MO PROJECT<br>E TAILINGS SITE(<br>MO<br>LAB: | SDIL) 0ATS<br>36G: 07/2//<br>5NO:/_/ | TIME: FROM<br>90 <u>15:20</u> EAST<br> | 1 REF PT |
| -HALYSIS R<br>DINTAINER                            | EQUESTED:                                           | PRESERVATIVE                                 |                                      |                                        |          |
| ,23MENT5:                                          | Tailings                                            | Sample st eage                               | callected                            | se long                                | . /      |
|                                                    | 5007A OV                                            | From a                                       | leep qui                             | lings p                                | ile      |
|                                                    | Sample                                              | from a<br>Location                           | 1 DO3                                | on m                                   | ap.      |

CAMPLE COLLECTED OF : Roberts / Silva

M/

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J.C. :NVIRCNM                     | ENTAL PROTECTION 3 DIV. 25 FUNSTO            |                        |                   |                        | 5                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------|------------------------|-------------------|------------------------|---------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | C: <u>304 w</u> CC: _ MEE                    |                        |                   |                        |                                 |
| SE YTIVITS SE STORE S | IS: BIG RIVER<br>BESLOGE          | MINE TAILINGS MO PROJECT                     | NUM: A                 | REF L<br>33 PT: L | ATITUDE:<br>DYGITUDE:_ |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | NE TAILINGS SITE( MO LAB:                    |                        | 25                |                        |                                 |
| WALYSIS RE<br>CONTAINER<br>LASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COLOR                             | PRESERVATIVE<br>ICED                         | MGP<br>SM              | NAME<br>METALS    |                        |                                 |
| JOHMENT 5 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tailings  Loge of  Food ed  on ta | sample colle  Langingi  Je of por  Lingi, Sa | pile,<br>id of<br>uple | wa-               | North                  | west<br>20 ft<br>fending<br>fpf |

TAMPLE COLLECTED BY: Silva / Robertý

| HNVIPEN                                              |                                                   | NTAL PROTECTION<br>DIV. 35 FUNST                |                                   |                                | 5 <b>11</b> 5                  |
|------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|-----------------------------------|--------------------------------|--------------------------------|
| -Y: 40 ACT                                           | NC: CSXCP SAMNO                                   | : <u>205                                   </u> | DIA: SOIL                         | PL: 3 P F D                    |                                |
| CTIVITY C.                                           | ES: JIG RIVER M<br>GBSLGGG                        | INE TAILINGS<br>MO PROJEC                       | T NUM: A33                        | REF LATITUDE<br>PT: LONGITUD   | :<br>5:                        |
| AMPLE DIS<br>LUCATION:<br>LASE/EATCH/<br>LTORET/SAR( | : BIG RIVER MIN<br>DESLOGE<br>/SMC:/_/<br>CAD NO: | MO PROJECT<br>E TAILINGS SITE<br>MO<br>LAB:     | (SOIL) 0<br>2EG: 07/<br>END: _/   | ATE TIME<br>21/90 <u>15:50</u> | FROM REF PT<br>EAST:<br>NORTH: |
| LAS3                                                 | COLOR<br>WHITE                                    | PRESERVATIVE ICED                               | SM MET                            | ALS                            | ./                             |
| JOMMENTS:                                            | tailings s eage of of road                        | ample ac<br>tailing s                           | offected a<br>offer a<br>of north | a ong ho<br>150 foet<br>and 14 | east pilo.                     |
|                                                      | Sample loc                                        | a-lien pp5                                      | ou ma                             | P.                             | ,                              |

BAMPLE COLLECTED ET: Roberts / 5:1/a

1.1

| U.S.<br>BHVIRDNMENTA                                             | ENVIRONMENT<br>L JERVICES ( | TAU PROTECTIONS             | IN AGENCY,<br>Ston Rd. X4 | ITV NGIĐER<br>"YTID ZAZNI        | (<br>KS >6115                                     |
|------------------------------------------------------------------|-----------------------------|-----------------------------|---------------------------|----------------------------------|---------------------------------------------------|
| Y: 1) 40TYD: 0                                                   | SXCR SAMME:                 | <u>006</u> (88: _ '         | 1EDIA: SOIL               | . PL: 5 P                        | F O                                               |
| ACTIVITY DES: A<br>LOCATION: DESLO                               | IG RIVER MIX<br>GE          | 4E TAILINGS<br>Mo PROUS     | ECT NUM: 40               | PEF LATI                         | GITUDE:                                           |
| LISS: PER BANKA<br>CLESS: PROTENCES<br>PROTENCES NO<br>CACRESSES | RIVER MINE                  | TAILINGS (50)<br>40<br>LAB: | (L)<br>3EG:<br>END:       | 07/24/20 //<br>07/24/20 //<br>// | ME FROM REF PT<br>:00 EAST:<br>: NORTH:<br>: O-6" |
| INALYSIS REQUES<br>TUNTATNER<br>.LASS                            | CCLOR<br>WHITE              | PRESERVATIVE<br>ICED        | Е Ч <b>G</b> Р<br>SM      | NAME<br>METALS                   |                                                   |
| 15/14_NTS: Tail  4:-1                                            | lings samp                  | ule colle<br>sampler        | reted a                   | along                            | west of<br>northeast<br>courting                  |
| mavg.<br>Øø6                                                     | in of li                    | ed map,                     | pile.                     | Sample                           | Cocution                                          |

SAMPLE COLLECTED IT: Silvaf Roborts

| J.S. INVIRONMENTAL PROTECTION AGENCY. R<br>ENVIRONMENTAL LERVICES DIV. 25 FUNSTON RO. KANS                           |                                                                                |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Y: 90 ACTNO: CSXCR SAMNO: 007 GCC: _ MEDIA: SOIL                                                                     | PL: S P F D                                                                    |
| CONTIVITY CAS: SIG RIVER MINE TAILINGS  LOCATION: DIGCOLOGIE ON PROJECT NUM: A33                                     | REF LATITUDE:                                                                  |
| AMPLE DRS: RIG RIVER MINE TAILINGS (SOIL)  DRATION: DESERGE MO BEG: 07  DASE/PATCH/SMC:/_ LAB:END:  TORET/SARDAD ND: | 024: TIME, FROM REF PT<br>1271:00 16:25 EAST:<br>1 1 == NORTH: 1<br>00WN: 0-6" |
| HALYSIS REQUESTED:<br>LONTAINER COLOR PRESERVATIVE MGP NA<br>FLASS WHITE ICED SM ME                                  | ETALS                                                                          |
| ETITETES: Tailings sample collected                                                                                  | along east                                                                     |
| Marsin of pile, along bu                                                                                             | ase of washed-out                                                              |
| area. Sample location pop                                                                                            | 57.                                                                            |

| d.3<br>≘NVIR3NMENT                | S. ENVIRONME<br>SERVICES | MTAL PROTECTION DIV. 25 FUNCTO | AGENCY,<br>N RD. KAN | REGION V               | /II<br>/, KS 56113      | 5                       |
|-----------------------------------|--------------------------|--------------------------------|----------------------|------------------------|-------------------------|-------------------------|
| -Y: 00 ACTMO:                     | CSXCR SAMNO              | : <u>))4</u> 100: _ MED        | IA: SOIL             | PL: S                  | P F D                   |                         |
| STIVITY SHS:<br>.SCATION: DESL    | TIG RIVER M<br>.003      | INE TAILINGS<br>MD PROJECT     | NUM: 433             | REF LA                 | ATITUDE:<br>NGITUDE:    |                         |
| .acation: past                    | .033<br>C:/_/_           | E TAILINGS(SDIL) MD LA3:       | 956: C<br>5ND: _     | 344<br>717/170<br>1_1_ | TIME · FROM  16:25 EAST | r:<br>FH: _ <del></del> |
| HALYSIS REQUE<br>ONTAINER<br>LASS | COLUR                    | PRESERVATIVE<br>ICED           |                      | AME<br>ETALS           |                         |                         |

CAMENTS:

Duplicate of \$67.

AMPLE COLLECTED BY: 5/1/0/ Roberts

D.S. INVIRONMENTAL PROTECTION AGENCY/ REGION VII ENVIRONMENTAL DERVICED DIV. 25 FUNSTON RO. KANSAS CITY/ KS 56115 CTIVITY DES: BIS RIVER MINE TAILINGS PER LATITUDE: AMPLE DES: 819 RIVER MINE TAILINGS (SOIL)

AMPLE DES: 819 RIVER MINE TAILINGS (SOIL)

DOATE TIME FROM REF PT

DOCATION: DESLOGE MO BEG: C7/27/90 16:40 EAST:

LASE/BATCH/SMG: // LAB: END: // SOUN: D-6 TORET/SARDAD NO: .NALYSIS REQUESTED: ROJES PERIATRS. PRESERVATIVE MGP NAME HHITE SM METALS LASS Tailinger sample collected near central "neck" of the tailings pile, Sample location opy on field map. n 100 feet east of me-corpognal

TAMPLE COLLECTED IN: Roberts / 50 /va

| 7451                                          | J.S. INVISO                              | CHELP<br>ETOSS LATINEMI                    | CTION AGE       | NCY> REG            | ION VII                    |                                      |      |
|-----------------------------------------------|------------------------------------------|--------------------------------------------|-----------------|---------------------|----------------------------|--------------------------------------|------|
| BRVIRD<br>Herender                            | NMENTAL SERVI                            | CES DIV. 25                                | FUNSTON R       | D. KANSAS           | CITY, KS 5                 | 6115                                 |      |
| Y: 40 AC                                      | THO: CSXCR SA                            | MNC: 213 706:                              | _ MEDIA:        | SOIL P              | L: S P F D                 |                                      |      |
| YTIVITO:<br>:MEITADL.                         | DES: KIG RIVE<br>DESLOGE                 | P VINE TAILIN<br>MO P                      | GS<br>ROJECT NU | R<br>M: A33 P       | EF LATITUDE<br>T; LONGITUE | E:                                   |      |
| AMPLI DE<br>.BCATIUM:<br>ASF/BATC<br>TERRI/SA | S: -I3 XIVRR<br>  125L 15E<br>  NO NO :/ | MING TAILINGS MAN LA                       | (SCIL)          | TEG: 07/2<br>END:/_ | 7190 17:20                 | FROM REL<br>EAST:<br>NORTH:<br>DOWN: | F PT |
| SEPTATMES                                     |                                          | A V SE SERV<br>A V A - N C I T A M R D R N | *               |                     |                            |                                      |      |
| 3MM54T3:                                      | Tailings                                 | sample sample                              | op'le           | cted                | FV GOU                     | theus                                | f    |
|                                               | Section                                  | of Ta                                      | Lings           | pole                | 5224                       | 0 2                                  |      |
|                                               | loca tio                                 | n did                                      | <i>()</i> • (   | FIELD               | 1212J                      |                                      |      |
|                                               |                                          |                                            | K               | in Geow             | PM                         |                                      |      |

LANDLE SOLLESTED IN: W. ME Pill Roberty

J.S. INVIPONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL DERVICES DIV. 25 FUNSTON RD. KANSAS CITY/ KS 65115 CTIVITY DES: PIG RIVER MINE TAILINGS .CCATION: DESLOGE MO PROJECT NUM: 433 PT: LONGITUDE: MALYSIS FEGUESTES: COLOR PRESERVATIVE MGP LASS WHITE ICED SM NAME SM METALS Sampler # 4 - 75 Peet north of the Land fill office.

| •          |     |            |      |       |         |       |               |         |    |        |
|------------|-----|------------|------|-------|---------|-------|---------------|---------|----|--------|
| پ ل        | J   | RAVIRBAMEN | ITAL | PROTE | CTION A | SENCY | <b>,</b> 2561 | ION VII |    |        |
| PANTEDNMEN | TAL | SERVICES   | DIV. | ? 5   | FUNSTON | 3D.   | KANSAS        | CITY,   | ΚS | o 6115 |

| 17AT 27D MG 241 #                                                        | r sexarces /       | )                         | KO. KAN.            | 242 CTIIN K2 2               | 00110                                          |
|--------------------------------------------------------------------------|--------------------|---------------------------|---------------------|------------------------------|------------------------------------------------|
| ·Y: 2) 40TYS: 6                                                          | SXCR SAMME:        | 512 200: _ MEDI           | A: SOIL             | PL: S P F D                  |                                                |
| GTIVITY SES: 3<br>LICATION: DESUC                                        | IS FIVER MIS<br>GE | NE TAILINGS<br>MO PROJECT | NUM: 433            | REF LATITUDE<br>PT; LONGITUD | :                                              |
| LAMPLE DES: 3IG<br>LOCATION: DESEU<br>CASEZATORISMO:<br>MICACARACATEROTE | RIVER MINE         | TAILINGS(SOIL)  MO LA3:   | 35G: 01<br>5ND:     | 025E" TIME<br>7124190 14:05  | FROM REF PT<br>FAST:<br>NORTH: -<br>JCWN: 0-6" |
|                                                                          | Celar              | PRESERVATIVE ICED         |                     | AME<br>Etals                 |                                                |
| CHMENTS: Ba<br>Fi-16<br>proper<br>Field                                  | ry. So<br>maps.    | soil sie<br>tion ppy      | mple<br>on<br>loca- | collecte.<br>The Le          | e Glore<br>2 on                                |

ELMPLE COLLECTED DI: Roberds | Silva

|                                                               |                                       | NTAL PROTECTION<br>DIV. 25 FUNS |                         |                               |                                                      |     |
|---------------------------------------------------------------|---------------------------------------|---------------------------------|-------------------------|-------------------------------|------------------------------------------------------|-----|
| Y: +A ACTMO:                                                  | CSXCR SAMNE                           | : @13 VCC: _ M:                 | EDIA: SOIL              | PL: 5 P                       | F )                                                  |     |
| CTIVITY DES:<br>.CCATION: DES                                 | JID RIVER M<br>(LOGE                  | INE TAILINGS<br>MJ PROJEI       | CT NUM: A33             | REF LATI                      | TUD#:                                                |     |
| E :SEC LIMPA<br>ESC :NCITADO.<br>MANHOTARASA.<br>GAGAARNTERGT | IG PIVER MIN<br>BLUGE<br>D:/<br>  AJ: | AD PROJECT TAILINGS (SDI)       | 8EG: 01<br>END:         | JATE TI<br>7127190 14<br>1_1_ | ME FROM REF I<br>:39 EAST:<br>: NORTH: V<br>cown: O- | • T |
| LASS                                                          | GBEBR<br>WHITE                        | PRESERVATIVE<br>ICED            | M M2                    | ETALS                         |                                                      |     |
| 2001-10 25                                                    | Soil son<br>on AMP                    | south of                        | lected<br>propo<br>P Hi | æt<br>voty.<br>- Vol          | Hi-Vol<br>Collected<br>unit                          | 1   |

AMPLE COLLECTED BY: Roberts / Silva

| THVIRDNM                                               | U.S. ENVIRO<br>ENTAL SERVI | NMENTAL PROT<br>CES DIV. 25 | ECTION AGE<br>EUNSTON R | NCY, PEGIO<br>D. KANSAS O                   | DH VII<br>DITY, KS m  | 6115                                         |                |
|--------------------------------------------------------|----------------------------|-----------------------------|-------------------------|---------------------------------------------|-----------------------|----------------------------------------------|----------------|
| Y: PI ACTY                                             | D: CIXCR SA                | MNC: <u>014</u> 200         | : _ MEDIA:              | SOIL PL:                                    | SPFO                  |                                              | _              |
| CTIVITY IT                                             | S: DIG RIVE                | NO TAILS                    | NGS<br>PROJECT NU       | REF<br>M: 433 PT:                           | LATITUD:              | :                                            | -<br>-         |
| AMPLE DES:<br>LUCATION: 5<br>LASE/BATCH/<br>TORET/SARO | SMO:/                      | MINE TAILING                | (301L)<br>.A8:          | 225<br>227<br>369: 27 <i>12</i> 4<br>3ND:// | TIME:<br>15:10<br>':_ | FROM REF P<br>FAST:<br>NORTH: .<br>DOWN: 0-6 | T<br>-<br>inch |
| NALYSIS RE<br>JUNTAINER                                | QUESTED:<br>COLOR<br>WHITE | PRESERV                     | 'ATIVE M                | GP NAME                                     | _                     |                                              |                |
| OMMENTS:                                               | 5011                       | sample.                     | collect                 | ted a:                                      | + Hi                  | -16/                                         |                |
| Samp                                                   | ler loca                   | etion leaded                | HMP 5,                  | - Callaña<br>Benese                         | n più                 | 11 2 1                                       | ,              |
| ivest                                                  | the of                     | semple<br>etion<br>Hected   | Hi-Vo                   | / unit                                      | 1,                    | * 66-                                        |                |

TAMPLE COLLECTED SY: Silva Robot-4

M

J.S. INVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 06115 TY: PO ACTING: COXOR SAMMO: 015 RCC: \_ MEDIA: SOIL PL: S P F 0 AMPLE DES: DIS RIVER MINE TAILINGS (SCIL)

DATE TIME. FROM REF PT

DOCATION: DESLOSE

MD SEG: C7/27/90 /5:35 EAST:

LASE/BATCH/SMO: \_\_\_\_/\_ LAB: \_\_\_ END: \_\_/\_ := NORTH: \_\_\_\_\_\_ -NALYSIS - EQUISTED: DNTAINER COLOR PRESCRVATIVE MGP NAME LASS WHITE ICED SM META SM METALS CHMENTS: Sol Simple collected at Hi- Val Sumplers locations AMOI & AMOZ, He wood property. Sample collected a 30 feet west of

AMPLE COLLECTES LY: McColl Silva

Hi- Vol Samplers.

 $\frac{3}{\text{reasons.}}$  page/pages has/have been removed for confidentiality

| ENVIRGNA                                              | NEUTAL SERVICE                                   | ENTAL PROTECTION<br>S DIV. 25 FUNST | GN RD. KA               | REGION<br>INSAS CIT  | VII<br>Y, KS 56115                 |        |
|-------------------------------------------------------|--------------------------------------------------|-------------------------------------|-------------------------|----------------------|------------------------------------|--------|
| 7: 40 ACT:                                            | 10: CSXCR SAMN                                   | 0: <u>019 400:</u> ME               | DIA: SOIL               | PL: 3                | o e j                              |        |
| こうじゅう かいはき し                                          | 7 # <b>5 L</b> U 0 #                             | MINE TAILINGS<br>MO PROJEC          | T NUM: A                | 33 PT: L             | CNGITUDE:                          |        |
| AMPLE DES:<br>JCATION: J<br>JASE/SATCH/<br>TORET/SARC | : 3IG DIVER MI<br>7586035<br>7580:/_/<br>DAD NO: | LEAS SEAS                           | )<br>3 E G :<br>E N D : | 025E<br>07127190<br> | TIME, EROM 16:25 EAST: NORTH DOWN: | REF PT |
| NALYSIS RA<br>DNTAINER<br>LASS                        |                                                  | PRESERVATIVE<br>ICED                |                         | NAME<br>METALS       |                                    |        |
| COMMENTS:                                             | Duplica.                                         | te of c                             | b19.                    |                      |                                    |        |

SAMPLE COLLECTED SY: 51/14 MECUL

page/pages has/have been removed for confidentiality reasons.

U.C. PAVIRONMENTAL PROTECTION AGENCY, REGION VII EMVIRONMENTAL SERVICES DIV. 25 FUNCTON RD. KANSAS CITY, KS 66115 Y: F) ACTMO: COXOR SAMNO: 021 CC: \_ MEDIA: SOIL ACTIVITY DES: DIG PIVER MINE TAILINGS REF LATITUDE: MO PROJECT NUM: A33 PT: LENGITUDE:\_ AMPLE DES: BIG RIVER MINE TAILINGS (SOIL) BEG: 27/27/70 17:00 EAST: END: \_\_/\_\_/\_ 1415 hours 0-3 -MALYSIS REQUESTED: IDNTAINER COLOR PRESERVATIVE MGP NAME LASS STIHW 5 M METALS Leachate Seep area South of landfill and well 06-3

SAMPLE COLLECTES EY: Martin Mos

 $\frac{5}{\text{reasons.}}$  page/pages has/have been removed for confidentiality

# FIELD SHEET U.S. ERVIRONMENTAL PROTECTION AGENCY, REGION VII

| ENVIRONMENTAL SERVICES DIV.                        | <del>-</del> |                       |
|----------------------------------------------------|--------------|-----------------------|
| Y: +3 ACTMC: CSYSR SAMMC: 327                      |              |                       |
| CTIVITY DES: SIG RIVER MINE FA<br>DCATION: DESLOGE | AILINGS      | REF LATITUDE:         |
| AMPLE DES: AIG RIVER MINE TAIL                     |              | DATE TIME FROM REF PT |

LOCATION: DESLOGE MO SEG: 07/27/90 19:00 EAST:

LAST/BATCH/SMC: // LAB: ENO: \_/\_/ SOUNT: S-6ft

DOWN: S-6ft

.NALYSIS FERUESTED:

Calar LINTAINER PRESERVATIVE MGP NAME AHITE ICED LASS SM METALS

. 2 THE MMC.

On site boring collected near mot station from 5-6 ft depth

LAMPLE COLLECTED IY: Williams + Overtelt

RAFT

FIELD SHEET

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ERVIRGNMENTAL SERVICES DIV. IS BUNSTON RO. KANSAS CITY, KS 56115 -Y: 70 ACTNO: CEXER SAMNE: 028 GCC: MEDIA: SOIL COTIVITY DES: DIG RIVER MINE TAILINGS REF LATITUDE: .JCATION: DESLOGE MO PROJECT NUM: 433 PT: LONGITUDE: TAMPLE DES: SI, RIVER MINE TAILINGS (SOIL)

DATE TIME FROM REF PT

LASE/EATCH/SMO: // LAS: END: // : NORTH: INALYSIS REQUESTED: CELER IDNTATHER PRESERVATIVE MGP NAME HHITE ICED SM METALS L453 On site V collected near met station TOMMENTS: Token from 10-11 ft depth

LAMPLE COLLECTED OF: Overfelt & Williams

| ENVIRONME    | MTAL DERVICE                              | S DIV. 25 FUNSTO            | N RD. K      | ANSAS CITY,            | KS 26115                          |
|--------------|-------------------------------------------|-----------------------------|--------------|------------------------|-----------------------------------|
| TY: PO ACTNO |                                           | G: 029 CG: _ MED            | IA: SOI      | L PL: S P              | 7 D                               |
| STIVITY DES  | : FIS RIVER                               | YINE TAILINGS<br>MD PROJECT |              |                        |                                   |
| AMPLE DES:   | 213 RIVER MI<br>SLOSE<br>MC:/_/<br>3 MG:/ | NE TAILINGS(SOIL) MO LAB:   | 3EG:<br>END: | OATE II<br>C7/27/90 [C | MED FROM REF PT<br>0:30 EIST:<br> |
|              | COLOR                                     | PRESERVATIVE<br>ICED        | MGP<br>SM    |                        |                                   |

COMMENTS:

In side boring collected near met station from 15 to 16 toot depth

METALS

TAMPLE COLLECTER IX: William, + Overtalt

page/pages has/have been removed for confidentiality reasons.

90

| INVIRON     |                            | NTAL PROTECTION DIV. 25 FUNSTO |         |                               | o6115 |
|-------------|----------------------------|--------------------------------|---------|-------------------------------|-------|
| Y: 70 4CT)  | 43: DEXCR SAMNO            | : 190 TCC: _ MED               | IC2 :AI | L FL: S P F :                 |       |
|             | ES: BIB RIVER V<br>BRELDGE | INE TAILINGS MO PROJECT        |         | REF LATITU!<br>33 PT: LONGIT! |       |
| .DCATION: 3 | TESLOGE                    | E TAILINGS SITE(<br>MO<br>LAB: | 3EG:    | 07/27/90 10:00                | EAST: |
|             | COLOR                      | PRESERVATIVE<br>ICED           |         | NAME<br>METALS                |       |

COMMENTS:

Most upgradient, near Irondale

|                                                       | -                                                     | ENTAL PROTECTION<br>S DIV. 23 FUNSTO |                         |                                | 20115                            |
|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------|-------------------------|--------------------------------|----------------------------------|
| Y: 30 ACT                                             | O: CSXCR SAMNO                                        | 3: 101 300: _ MED                    | IG: 3DI                 | L PL: S P F                    | 0                                |
| SC YTIVITO<br>L: NGITAGE                              | ES: SIG RIVER (<br>JESLOGE                            | INE TAILINGS MO PROJECT              | NUM: 2                  | REF LATITU<br>33 PT: LINGIT    | De:                              |
| AMPLE DES:<br>COATION: C<br>CASE/BATCH/<br>TORET/SARC | BIG RIVER MI <br>  PESLOGE<br>  SMO:/_/<br>  SAD NO:/ | NE TAILINGS SITE( MD LA8:            | SEDIMEN<br>SEG:<br>END: | 17) Dige TIME<br>07/2/193 /3:/ | FROM REF PT  STAST: NORTH: DOWN: |
|                                                       | 8 5 <b>L</b> 6 R                                      | PRESERVATIVE<br>ICED                 |                         | NAME<br>METALS                 |                                  |

: STHEHTS:

Collected Approx 3/4 mile downgrendrent of Hwy 8 bridge on Big River.

DAMPLE COLLECTED IX: Williams + Martin

|                                                   |                                             | NTAL PRITECTION DIV. 25 FUNST |                                |                                       | S 56115                                  |
|---------------------------------------------------|---------------------------------------------|-------------------------------|--------------------------------|---------------------------------------|------------------------------------------|
| Y: /3 AST                                         | NO: OSXOR SAMNO                             | : 102 RCC: _ ME               | DIA: SUIL                      | PL: 3 P F                             | 3                                        |
| C YTIVITO:<br>::KCITADE:                          | GS: DIG RIVER N<br>Deslage                  | INE TAILINGS<br>DELGAS CM     | T NUM: 433                     | REF LATIT<br>PT: LONGI                | UDE:                                     |
| AMPLE DES<br>LUCATION:<br>LASE/SATCH<br>TORET/SAR | : 215 RIVER MIN<br>5801280<br>//_<br>10M2:/ | MD LAB:                       | (SEDIMENT)<br>3EG: 0<br>END: _ | 0443   TIM<br>27124190   <u>[</u> \$: | E FROM REF PT  95 EAST: NORTH: DOWN: 0-3 |
|                                                   | SCLOR                                       | PRESERVATIVE<br>ICED          |                                |                                       |                                          |
| .эммайт <b>с</b> :                                |                                             | ted from tany to Blog         |                                |                                       | ings pile                                |

ectes in : Overfelt

| ENVIR                                     | U.S.<br>Cnmenta                          | PAVIF  | SNMEN  | TAL PS      | CTECT        | . אבד | AGENC<br>N RD.    | Y,<br>KAN            | REGI<br>SAS  | ON '                 | VII<br>Ya Ki   | S 22         | 115                 |     |    |
|-------------------------------------------|------------------------------------------|--------|--------|-------------|--------------|-------|-------------------|----------------------|--------------|----------------------|----------------|--------------|---------------------|-----|----|
| Y: 111 a                                  | CTNO: C                                  | SXCR   | SAMNC: | 103         | .cc: _       | MED   | IA: 5             | OIL                  | PL           | : 3                  | PF             | ט            |                     |     |    |
| CTIVITY<br>CCATION                        | 175: °                                   | IG RIV | /ER MI | NE TAI      | LINGS<br>PRO | JECT  | NUM:              | 433                  | R E<br>7 C   | F L.                 | ATITU<br>BNGIT | 105:<br>100: | :                   |     |    |
| AMPLE S<br>COATION<br>CASE/EAT<br>TORET/S | ES: 513<br>: 385L0<br>CH/SMC:<br>ARGAD N | RIVER  | /_/    | TAILI<br>MO | INGS S       | ITE(  | SEDIM<br>BE<br>EN | ENT)<br>G: (<br>D: _ | 0A4<br>27/27 | <b>3</b><br>/90<br>/ | 16:            | 20 F         | ROM<br>AST:<br>CRTH | REF | PT |
| NALYSIS<br>CNTAINE<br>LASS                | F                                        | COLUE  |        |             |              |       |                   |                      |              | s                    |                |              |                     |     |    |
| DIMENTS                                   | :                                        | '_Gl   | leci   | t ed        | ، ی          | n     | Bi                | 5 !                  | liv e        | er                   | A              | pp           | r 0}                | , } | 2  |

isollected on Big River Approx & mile downgradient of the Leadwood iccess

PAMPLE COLLECTED SY: Williams + Enos

| :                | E N !      | ۷I         | <b>R</b> ( | M C      |        |             |   |       |          |         |     |                |                  |     |   |     |         |     |          |     |     |          |    | N<br>TO |    |   |              |       |    |   |        |    |     |            |            |    | <b>.</b> . | 00      | 11. | <b>5</b> |   |      |    |
|------------------|------------|------------|------------|----------|--------|-------------|---|-------|----------|---------|-----|----------------|------------------|-----|---|-----|---------|-----|----------|-----|-----|----------|----|---------|----|---|--------------|-------|----|---|--------|----|-----|------------|------------|----|------------|---------|-----|----------|---|------|----|
| Y:               | <i>y</i> : | )          | A (        | . T      | 'J.    | :<br>:      |   | <br>0 | X        | ر<br>ان | ?   | S              | 14               | N C | : | 1   | <br>-)4 |     | ၃ င      | C : | :   | <u>-</u> | М  | E D     | IA | : | S            | ΞI    | L  |   | P      | L: |     | - <b>-</b> | P          | F  | D          |         |     |          |   |      |    |
| CT<br>107        | ( V )      | . T<br>I D | Y          | _<br>    | ž<br>C | S :         | L | . I   |          | ;       | ï   | ν <del>-</del> | -<br>-<br>-<br>R | y   | I | N E | 1       | 4   | I L      | I   | 4 G | S<br>0 J | ΙĒ | CT      |    | U | 4:           | <br>ک | 3; | 3 | R<br>o | EF | : 1 | LA         | T I<br>N G | TU | ום<br>טו   | :<br>:: | :_  | <br>     | _ | <br> |    |
| 4MI<br>00.<br>4S | . ;<br>. / | 3 A        | T (        | :<br>: H | 1      | :: 3<br>S.H | C | :     | ت ر<br>_ |         |     | _ '            | <i>'</i> _       | /_  |   |     |         | - 1 | <i>.</i> |     |     |          |    |         |    |   | <b>~</b> - 1 |       |    |   | /-     | ~, | •   | 1          | $\sim$     |    | 26.        | E<br>N  | 41  | TH       |   |      | 11 |
| Г 7<br>ДИ.       | ۲ ٦        | ΙN         | Ξ.         | ς.       |        |             |   |       | Ç        | 21      | ڌ ـ |                |                  |     |   |     |         |     |          |     |     | I۷       | ΙĒ |         |    |   | G P          |       |    |   | _      |    | ;   |            |            |    |            |         |     |          |   |      |    |

COMMENTS:

Big River; 1st sample downstream of law water bridge on west side of site.

LAMPLE COLLECTED IY: Williams/Enos

| RAFT | FIELD SHEET  J.S. FAVIRONMENTAL PROTECTION AGENCY, REGION VII                                                 |
|------|---------------------------------------------------------------------------------------------------------------|
|      | MENTAL BERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115 MG: GSKCR SAMNG: 105 DCC: _ MEDIA: SDIL PL: S P F D |
|      | US: DIG RIVER MINE TAILINGS REF LATITUDE: DISLOGE MO PROJECT NUM: A33 PT: LONGITUDE:                          |

AMPLE DES: BIG RIVER MINE TAILINGS SITE(SEDIMENT) DATE 24 TIME. FROM REF PT DCATION: DESLEGE MO BEG: C7/2/790 10:00 EAST:

DASE/BATCH/SMC: // LAB: END: // DCAN: 0-6

-MALYSIS REQUESTIO:

CONTAINER COLOR PRESERVATIVE MGP NAME CLASS WHITE ICED SM METALS

.JMMENTS:

Big River, 2 vol sample downstream of low water bridge on west side of site.

TRAFT

FIELD SHEET

| INVIRONM     | J.S. ENVIRONM<br>EMTAL SERVICE | ENTAL PROTECTION S DIV. 25 FUNSTO | AGENCY,<br>On RD. KA | REGION VII<br>ANSAS CITY, KS       | o o 115 |
|--------------|--------------------------------|-----------------------------------|----------------------|------------------------------------|---------|
| TY: 90 ACTNO | C: CSXCR SAMN                  | C: 106 400: _ MEE                 | DIA: SUIL            | PL: 5 P F                          | 3       |
| CTIVITY IN   | S: DIG RIVER  <br>ESLOGE       | PINE TAILINGS MO PROJECT          | T NUM: A3            | REF LATITU:<br>33 PT: LONGIT       | DE:     |
|              | :36035<br>SMO:/_/              | NE TAILINGS SITE( MD LAB:         | 356.                 | - こフ <i>!ユラナ</i> のハー/ <b>ル・</b> 耳/ | M Pice. |
|              |                                | PRESERVATIVE<br>ICED              |                      | NAME<br>METALS                     |         |

ICHMENTS:

Big River; swimming area west side of site.

JAMPLE COLLECTED 34 : Williams / Enes

DART

| , ,                        | ( )                  |          |                       |                                               |                                         |                |                   |                |        |   |    |         |    |     |     | _            |            | _    | 2,       |   |     |     |     |           |          |     |   |            |    |    |     |       |          |         |                         |    |     |       |   |
|----------------------------|----------------------|----------|-----------------------|-----------------------------------------------|-----------------------------------------|----------------|-------------------|----------------|--------|---|----|---------|----|-----|-----|--------------|------------|------|----------|---|-----|-----|-----|-----------|----------|-----|---|------------|----|----|-----|-------|----------|---------|-------------------------|----|-----|-------|---|
|                            | Ξ `v                 | V I      | RO                    |                                               |                                         |                |                   |                |        |   |    |         |    |     |     |              |            |      |          |   |     |     |     |           |          |     |   | GI<br>S    |    |    |     |       |          | 61      | 15                      |    |     |       |   |
| Y:                         |                      | 3        | <u>.</u> (            | T'                                            | <br>N 3                                 | :              | <u> </u>          | <b></b><br>S X | C 7    | ? | SA | <br>M M | €: | . 1 | 10  | <b></b><br>7 | 2 C        | C :  | _        |   | ME  | DI  | A:  | <b></b> s | ر<br>د د | L.  |   | ٩L         | :  | S  | , 2 | F     | D        |         |                         |    |     |       |   |
| 3T<br>3C                   | IV<br>AT             | II.      | Γ <b>Υ</b><br>) Ν :   | :<br>:                                        | <br>: :                                 | :<br>\$L       | :<br>:            | IG<br>3E       |        |   |    |         |    |     |     | M            | C          | 2    | 980      | J | EC. | T   | NU  | M:        | 2        | 33  | 3 | R E<br>P T | :  | LO | T.  | ITU   | ם<br>פטו | :       |                         |    |     |       |   |
| AM<br>OC<br>24<br>24<br>CT | PL<br>AT<br>E/<br>RE | 5<br>187 | 0 (<br>1 ( )<br>1 ( ) | = 3<br>= 2<br>= 2<br>= 2<br>= 3<br>= 4<br>= 8 | : 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 31<br>31<br>MC | [ G<br>_ U<br>] : | 2<br>GE        | :\<br> | Æ | 7  | HI      | NE | ፤ ` | TA  | ΙĻ           | IN         | GS   | <b>S</b> | I | TE  | ( 2 | ED  | IM        | EN       | IT) | ] |            | Ę, |    | 7.2 | I M ( | 15       | F A O O | OM<br>ST:<br>RTH<br>WN: | RE | F F | 7<br> | J |
| N A                        |                      |          |                       |                                               |                                         |                |                   |                |        |   | _  |         |    |     | ר ח | r.           | <b>-</b> 0 | \d / |          |   | c   |     | ۸.4 | - n       |          |     |   |            |    |    |     |       |          |         |                         |    |     |       |   |

JOHNENTS:

Cocation #7 onfieldmap

AIPLE COLLECTED OY: Overtelt + Williams

TART

FIELD SHEET

|                                                             |                                           | ENTAL PROTECTION<br>5 DIV. 25 FUNSTO |                                |                        | 56 <b>11</b> 5                                 |
|-------------------------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------|------------------------|------------------------------------------------|
| v: 30 ACTNS                                                 | : GSXCR SAMNE                             | : 108 lcc: _ MED                     | DIA: SOIL                      | PL: S P F J            |                                                |
| CTIVITY DES<br>E : NCITADE                                  | SL 0 38                                   | INE TAILINGS MO PROJECT              | NUM: 433                       | PT: LCNGITU            | 8:<br>0::                                      |
| AMPLE DES:<br>.3C4TION: DE<br>.4SE/PATCH/S.<br>.TDRET/SAFOA | RIG RIVER MIN<br>SLOGE<br>MO:/_/<br>D NO: | TAILINGS SITE<br>ON<br>LAB:          | (SEDIMENT)<br>SEG: 0<br>END: _ | 7157190 19:00<br>-1-1- | FROM REF PT<br>PEAST:<br>NORTH:<br>DOWN: Q=G_" |
|                                                             | COLOR                                     | PRESERVATIVE                         |                                |                        |                                                |

COMMENTS:

Location # 8 on field map

DAMPLE COLLECTED DY: Overfelt & Williams

CAFT

FIELD SHEET

U.S. ENVIRONMENTAL PROTECTION AGENCY/ REGION VII ENVIRONMENTAL CERVICES DIV. 25 FUNCTON RD. KANSAS CITY, KS 56115 ACTIVITY DES: BIG RIVER MINE TAILINGS REF LATITUDE: .DCATION: DESLUGE MO PROJECT NUM: 433 PT: LONGITUDE: AMPLE DES: BIG RIVER MINE TAILINGS SITE(SEDIMENT) DATE TIME FROM REF PT .UCATION: DESLOGE MD BEG: 07/27/90 12:45 EAST:

ASE/BATCH/SMB: \_\_\_/\_ LAB: \_\_\_ END: \_/\_ :\_\_ NORTH: \_\_\_\_\_ TORET/SARDAD NO: ANALYSIS REQUESTED: PRESERVATIVE MGP CONTAINER COLOR MAME AHITE ICED SM METALS LASS

COMMENTS:

Location # 9 on freld map

Overtelf + Williams

ICED

| ΞN                      |                            |                                    |          | TAL PROTEC<br>DIV. 25 F     |             |                         |                                |                       | 2115                                   |      |
|-------------------------|----------------------------|------------------------------------|----------|-----------------------------|-------------|-------------------------|--------------------------------|-----------------------|----------------------------------------|------|
| : Y: 3                  | 3 ACTH                     | a: csxc                            | R SAMNE: | 166<br>1 <del>93</del> 200: | _ MEDI      | A: SOIL                 | °L:                            | SPFO                  |                                        |      |
| VITO.<br>TADE.          | ITY EE                     | 01c :2<br>25032                    | PIVER MI | NE TAILING<br>40 PR         | S<br>BOJECT | NUM: 43                 | REF<br>33 PT:                  | LATITUDE<br>LONGITUS  | E:<br>DE:                              |      |
| JAMPL<br>JOCAT<br>JASE/ | E DES:<br>ION: D<br>AATCH/ | DIG RI<br>ESLOGE<br>SMC:<br>AD NO: | ver mine | TAILINGS<br>MO<br>LAB       | SITE(S      | EDIMEN'<br>BEG:<br>END: | r) 0ATS<br>07/ <del>27</del> 7 | 74 TIME 2<br>00 13:15 | FROM REI<br>TAST:<br>NORTH:<br>COWN: 7 | F PT |
| NALY                    | SIS RE                     | QUESTED                            | :        | PRESTRVAT                   |             |                         |                                |                       | COMME                                  | 2-3" |

COMMENTS:

STINW

LASS

Owl Creek, north of abandoned RR bed

METALS

TAMPLE COLLECTED BY: Martin/Enos

|        |      |        |       |                |         | _        |      |       |            |         |       |      |       |     |         |         |      |      |     |          |
|--------|------|--------|-------|----------------|---------|----------|------|-------|------------|---------|-------|------|-------|-----|---------|---------|------|------|-----|----------|
|        |      |        |       |                |         |          |      |       |            | A G E N |       |      |       |     |         |         |      |      |     |          |
| ENV    | IRCN | IMENT  | 4 F   | 3              | ICES    | 0 I V    |      | 5 FU  | NSTO       | N RD    | . K   | ANSA | S C   | ITY | , K.    | c 2     | 6115 |      |     |          |
| .A: 50 | 401  | `43:   | CSX   | בייכ           | AMNC    | : 11     | 1 10 | C: _  | MED        | IA:     | 30 II | L    | PL:   | S   | p F     | ن<br>ن  |      |      |     |          |
| CTIVI  | TY   | : S :  | 316   | RIV            | ER M    | <br>Ine  | TAIL | INGS  |            |         |       |      | 8 E E | LΔ  | TIT     | UDE     | :    |      |     |          |
| LOCATI | :NC  | DESL   | ೦३∉   |                |         |          | CK:  | ьsС   | JECT       | NUM     | : 4   | 33   | PT:   | LO  | NGI     | TUD     | E:   |      |     |          |
| TAMPLE |      | • pr   |       | T <b>V</b> E R | <br>MIN | <br>- τΔ | TIIN | 165 S | ITF(       | SEDI    | MENI  |      | ΔT E  | 124 | Z T T M | <br>- , | FROM | 255  |     |          |
| LUCATI | ON:  | DESL   | 3 G E |                |         |          | 40   |       |            | 6       | ĒĞ:   | 07/  | 271   | 90  | 14:     | 15      | E4ST | :    |     |          |
| 1438/3 | ATCH | 17.5MC | :     |                | /_/_    |          | _    | LAS:  |            | , E.    | : CN  | /    | /     |     | :       |         | NORT | н: 🗓 |     | 4        |
| TORET  |      |        |       |                |         |          |      |       |            |         |       |      |       |     |         |         | DEMN |      | 2-5 | <u> </u> |
| HALYS  | 13   | FRUE   | STE   | 3:             |         |          |      |       |            |         |       |      |       |     |         |         |      | ,    | 0-3 |          |
| CNTAI  |      |        |       |                |         | PR       | ESER | TAVE  | <b>v</b> E | MG      | ρ     | NAM  | E     |     |         |         |      |      | ×   | מיניון   |

METALS

5 M

COMMENTS:

. L 4 S S

WHITE

Oul Creek, x 30' upstream of mouth Collected W/ Spoon

|                                                         |                                               | NTAL PROTECTION 301V. 25 FUNST |                         |                            | 56115                                       |
|---------------------------------------------------------|-----------------------------------------------|--------------------------------|-------------------------|----------------------------|---------------------------------------------|
| Y: 70 ACTY                                              | D: CSXCR SAMNO                                | : 112 3CC: _ ME                | DIA: SOIL               | PL: S P F D                |                                             |
| ECTIVITY DE<br>C :NOITADO.                              | IS: BIG RIVER N<br>DESLOGE                    | INE TAILINGS MO PROJEC         | T NUM: 433              | REF LATITUD<br>PT: LONGITU | :<br>Df:                                    |
| AMPLE DES:<br>.GCATION: D<br>.ASE/BATCH/<br>.TORET/SARO | BIG RIVER MIN<br>ESLUGE<br>SMO:/_/<br>DAD NO: | E TAILINGS SITE  MO LAB:       | (SEDIMENT) aeg: 07 end: | DATE IS IS INC.            | FROM REF PT<br>FAST:<br>NORTH:<br>DOWN: 0-2 |
| 1 4 5 5                                                 | COLOR                                         | PRESERVATIVE<br>ICED           | сы ма                   | TALC                       | l oce Hon                                   |
| COMMENTS: $oldsymbol{\mathcal{G}}$                      | lig River I                                   | location: North a<br>on Field  | Map                     | veation #                  | 12                                          |

SAMPLE COLLECTED BY: Martin Williams

SAMPLE COLLECTED BY: Martin Williams

| =                            | NVI              | เลบ              |          |                       |                           |              |     |       | MEN<br>Es |     |           |               |            |          |       |     |                   |     |            |          |     |          |              | ် ခံ       | ó <b>11</b> 5                |           |     |       |
|------------------------------|------------------|------------------|----------|-----------------------|---------------------------|--------------|-----|-------|-----------|-----|-----------|---------------|------------|----------|-------|-----|-------------------|-----|------------|----------|-----|----------|--------------|------------|------------------------------|-----------|-----|-------|
| `Y:                          | <b>)</b> 0       | ΑC               | TN       | 0:                    | C S                       | 5 <b>X</b> C | 2   | 3 A M | NC:       | 11  | 3         | CC            | : _        | Α.       | EDI   | A:  | SC                | IL  |            | PL       | : ? | ρ        | F            | ם          |                              |           |     | _     |
| -CTI                         | VIT              | Y<br>3N:         | <br>     | 3:<br>ES              | 31<br>LO:                 | [ <b>G</b>   | RI' | /ER   | MI        | NE  | TAI<br>Mi | LI            | NGS<br>PRI | JE       | СТ    | וטא | v :               | A 3 | 3          | RE<br>PT | ۶ L | AT<br>CN | ITU          | DE<br>UD   | :<br>::                      |           | -   | _     |
| 74MP<br>200A<br>1458<br>170F | LE<br>TIO<br>/94 | DE<br>DN:<br>ATC | S:<br>H/ | 3<br>5<br>5<br>4<br>0 | IG<br>L D (<br>G :<br>N ( | R I<br>3€    | V E | R M   | INE<br>/  | T A | ILI<br>ME | ING<br>I<br>L | S 5        | SIT<br>: | E ( S | ED: | EMS<br>BEG<br>ENC | NT: | ) (<br>G7) | DAT.     |     |          | IME          | 3 <u>0</u> | FROM<br>FAST<br>NORT<br>DOWN | R E<br>H: | 5 P | T<br> |
| INAL<br>JONT<br>JLAS         | AIN              | I E R            | !        |                       |                           | ۵ ۵          | LJ  |       |           |     |           |               |            |          |       |     |                   |     |            |          | s   | Ma       | <i>ו</i> אַ: |            |                              |           |     |       |
| ) ÇIAM                       | ENT              | [S:              | U        | 9                     | KiU                       | ex           | 1   |       | ~0)       | 0)  | UI,       | , С           | ,          | و م      | ه د   | لسر | tio               | n   | #          | L        | 3   |          | ′            |            |                              |           |     |       |

SAMPLE COLLECTED BY : Martin Williams

U.S. ENVIRONMENTAL PROTECTION AGENCY/ REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115

-Y: PO ACTNO: COXCR SAMNO: 114 DCC: \_ MEDIA: SDIL -

ACTIVITY MES: MIG RIVER MINE TAILINGS

REF LATITUDE:

.acation: Desloge — Mo Project Num: A33 Pt: Longitude: \_\_\_\_

TORET/SARDAD NO:

INALYSIS REQUESTED:

DONTAINER COLOR PRESERVATIVE MGP SLASS WHITE ICED SM SM METALS

COMMENTS:

Location # 14 on field map

|                                                         |                                                    | NTAL PROTECTION DIV. 25 FUNSTO |                            |                       | <b>66115</b> |
|---------------------------------------------------------|----------------------------------------------------|--------------------------------|----------------------------|-----------------------|--------------|
| :Y: 90 ACT                                              | 10: CSXCR SAMNE                                    | : 115 \CC: _ MED               | IA: SCIL                   | PL: S P F             | 0            |
|                                                         | ES: SIG RIVER M<br>Desloge                         | INE TAILINGS<br>MO PROJECT     |                            |                       | DF:          |
| JAMPLE DES:<br>LOCATION: D<br>JASE/BATCH/<br>TORET/SARC | : BIG RIVER MIN<br>DESLOGE<br>/SMC:/_/_<br>DAD NO: | E TAILINGS SITE( MO LAB:       | SEDIMENT<br>BEG: (<br>END: | 07/2/195 <u>  0:0</u> | FROM REF PT  |
|                                                         | CGLOR                                              | PRESERVATIVE<br>ICEO           |                            |                       |              |
| TOMMENTS.                                               |                                                    |                                | <u> </u>                   | <i>γ</i> 2 .          | Cook         |

COMMEDIS:

Collected from that River Creek. Location # 15 on field map.

LAMPLE COLLECTED SY: Williams & Ens

|            |     | E N        | ٧      | IR            | a<br>E |          | _           | _        |        |            |        |    |     |                |          |          | -  |     |    |    |     | _   |    |            |     |     |     |    |    |         |    | -  |        |     | 15       |                | -          | _  | _ | K S       |         | 56       | 11         | 5         |      |            |          |    |
|------------|-----|------------|--------|---------------|--------|----------|-------------|----------|--------|------------|--------|----|-----|----------------|----------|----------|----|-----|----|----|-----|-----|----|------------|-----|-----|-----|----|----|---------|----|----|--------|-----|----------|----------------|------------|----|---|-----------|---------|----------|------------|-----------|------|------------|----------|----|
| : Y        | :   | ş          | Ü      |               | Ç      | T %      | 13          | :        | (      | : 5        | X      | CF |     | SI             | М        | N (      | :  | 1   | 11 | 6  | :   | 20  | C  | :          | _   | γ.  | 15! | ום | Α: | :       | SC | Ι  | L      |     | PI       | - <del>-</del> | <br>S      |    | , | F         | D       |          |            |           |      |            |          |    |
| : C        | T : | IV<br>AT   | I      | T Y           | :      |          | : S<br>) :: | :<br>S!  | <br>   | I<br>G     | G<br>E | F  | ï   | v :            | R        | <b>N</b> | ľ  | N å | Ē. | Τ, | 43  | [L  | I! | Y G        | 80  | J   | C   | T  | NU | M       | :  | А  | 33     |     | R I      | :<br>:         | L          | AT | I | TU<br>IT  | Ji<br>U | ē:<br>DE |            |           | <br> |            | <br>-=   |    |
| . A        | M I | P L<br>A T | ī      | ם<br>מ<br>א נ | :<br>: | ۔<br>: ذ | :<br>:      | 3)<br>3) | I d    | -<br>-<br> | ₹.     | ΙV | i ä | ន              | М        | 1 1      | ιĒ | 1   | ΓA | I  | - i | I N | G  | s <b>(</b> | S   | E C | I   | ME | N1 | 7)<br>3 | 50 | ;  | -<br>- | 7   | 2        |                | <b>7</b> 0 | Ţ  | Į | ME<br>: 3 | 0       | F        | R O<br>A S | M<br>T:   | R    | F          | PT       |    |
| ) <u>1</u> | (S) | E /<br>R = | e<br>T | 4 T<br>/ S    | C      | H /      | ' S<br>) A  | 3 (<br>0 | :<br>' | 13         | :      |    |     | - <sup>1</sup> | ' -<br>- | /_<br>_  | -  |     |    | -  |     |     | Ł, | 4 8        | 3 : | -   |     | -  |    | Ē       | NE | ): | -      | _ ' | <b>'</b> | _ ′            |            | -  | - | :_        | -       | N<br>D   | CR<br>OW   | ТН<br>: И | :    | <u>0</u> - | <u>.</u> | /1 |

ANALYSIS PEQUESTED:

IUNTAINER LASS

COLOR WHITE

PRESERVATIVE

MGP NAME METALS SM

IDMMENTS:

Collected on Big River approx. 5 miles longradiant of the site. Location #16 on field map

2 A E T

FIELD SHEET

| KAFI        |                 | LIEFO DUECI        |         |                |             |
|-------------|-----------------|--------------------|---------|----------------|-------------|
|             | J.S. ENVIRONM   | ENTAL PROTECTION   | 4GENCY, | REGION VII     |             |
| ENVIRONM    | ENTAL SERVICE   | S DIV. 25 FUNSTO   | N 20. K | ANSAS CITY, KS | 56115       |
| PY: 70 ACTN | G: CSXCR SAMN   | C: 117 4CC: _ MED  | IA: 501 | L PL: S > F    | ٥           |
| -CTIVITY DE | S: dig RIVER    | MINE TAILINGS      |         | REF LATITU     | De:         |
| LUCATION: 0 | #S <b>L</b> 098 | MO PROJECT         | NUM: A  | 33 PT: LENGIT  | UOE:        |
| JAMPLE DES: | aig River Mi    | NE TAILINGS (SEDIM | ENT)    | DATE TIME      | FROM REF PT |
|             |                 | MO                 |         |                |             |
| TASE/BATCH/ | SA0:/_/         | LAB:               | END:    | // ==:         | NORTH:      |
|             | AD 40:          |                    |         |                | DOWN: DE    |
| ANALYSIS RE | QUESTED:        |                    |         |                | 0-3         |
|             |                 | PRESERVATIVE       | MGP     | NAME           | SAM         |
|             | WHITE           |                    |         | METALS         | 3,          |

COMMENTS:

Turkey Preek, a 30' from vd.

DAMPLE COLLECTED BY : Ends

COMMENTS:

Location 18 on field map

TAMPLE COLLECTED BY: Williams A Ovarfelt

U.S. "NVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115 TY: PO ACTNO: CSXCR SAMNO: 119 QCC: \_ MEDIA: SOIL | PL: S P F D ACTIVITY DES: BIG RIVER MINE TAILINGS REF LATITUDE: LOCATION: DESLOGE MO PROJECT NUM: A33 PT: LONGITUDE:\_\_\_ \_

DAMPLE DES: BIG RIVER HINE TAILINGS (SEDIMENT)

DOSE TIME FROM REF PT

DOCATION: DESLIGE

AD

BEG: 07/2//90 /5:20 EAST:

DASE/BATCH/SMD:

DOWN: 0-6

-NALYSIS REQUESTED:

COLOR COLOR SLASS WHITE

PRESERVATIVE MGP ICED

NAME SM METALS

COMMENTS:

( ocation # 19 on field map

TAMPLE COLLECTED OY: Williams + Durtelt

|                          | :                    | N          | / I                    | R (           | 3 N           |             |              |                            |                    |     |        |            |               |         |          |    |     | _          |     |    |         |      |            |     |             | A<br>O N<br>O O |    |               |            |    |   |          |            |        |     |    |            | s                | 5 <b>6</b> | 11  | 5               |     |   |    |   |  |
|--------------------------|----------------------|------------|------------------------|---------------|---------------|-------------|--------------|----------------------------|--------------------|-----|--------|------------|---------------|---------|----------|----|-----|------------|-----|----|---------|------|------------|-----|-------------|-----------------|----|---------------|------------|----|---|----------|------------|--------|-----|----|------------|------------------|------------|-----|-----------------|-----|---|----|---|--|
| : Y                      | :<br>:               | <b>3</b> ( | )                      | Δ (           | CT            |             | o:           | :                          | 3 :                | s x | C      | ₹          | <u>.</u><br>د | 4 M     | N C      | :  | 1   | 20         | )   | 10 | C       | :    |            | `   | 15          | DΙ              | Α: |               | 50         | IL |   |          | PL         | :      | S   | Ρ  | F          | ם                |            |     |                 |     |   |    |   |  |
| ت.<br>ان ـ               | TI                   | V ;        | . T                    | Y             | 5<br>:        | =<br>=<br>0 | S :          | i<br>i<br>i<br>i           | 3 )<br>(3 (        | I Ĝ | _      | 21         | ٧             | <br>{   | •        | Ţ  | N E |            | T A | 11 | .I      | N(P) | G S<br>R J | JE  | C           | T               | NL | JM ;          | :          | 43 | 3 |          | R S<br>P T | F<br>: | L í | T. | IT<br>GI   | U D<br>T U       | 2:<br>0E   | :_  |                 |     |   |    | • |  |
| 14:<br>14:<br>14:<br>17: | AP<br>CA<br>SE<br>SR | L: /:      | 2<br>[ 0<br>3 A<br>[ / | DI<br>N<br>T( | ES<br>:<br>Ch | : 0 / 0     | I S<br>S i A | )<br>}<br>}<br>!<br>!<br>! | G<br>G<br>()<br>() | 35  | I<br>- | <b>y</b> : | R             | M<br>/_ | IN<br>/_ | 16 | T   | A :        | IL. | IN | IG<br>L | S    | (S<br>3:   | E C | )I          | M E             | NT | )<br>35<br>61 | E G<br>N D | :  | 0 | D, 7/,   |            | £ 13   | 00  |    | I M<br>?:, | €,<br><b>\ \</b> | - E N D    | R C | M<br>ST:<br>RTH | R ( | F | PT |   |  |
| 1 N I<br>1 J L I         | ٧T                   | 4          | I N                    | E i           | R             |             |              |                            |                    | Ç   | 3      | LC         |               |         |          |    |     |            |     |    |         |      |            |     |             |                 |    |               |            |    |   | AM<br>ET |            | s      |     |    |            |                  |            |     |                 |     |   |    |   |  |
| 10)                      | 4M                   | 151        | 1T                     | S             | :             |             |              |                            |                    | L   | /<br>  | _ '        | o             | ۷       | a        | .+ | 1   | <b>'</b> ' | ۷ ( | ~  |         |      | 4          | H   | <b>&gt;</b> | •               | 2  | . (           | )          |    | ć | , 1      | ~          |        | 1   |    | ì          | e /              | d          | /   | Y               | h   | ٩ | P  |   |  |

SAMPLE COLLECTED DY: Williams + Enos

RAFT

FIELD SHEET

| į                            | IN <b>V</b> | IR         | 4 O    |           |              |              |         |     |       |     |     |                   |         |    |            |            |   |     |     |     | 4 G E |      |                   |    |    |    |   |   |        |            | ; s | 61       | 15  |                 |            |     |
|------------------------------|-------------|------------|--------|-----------|--------------|--------------|---------|-----|-------|-----|-----|-------------------|---------|----|------------|------------|---|-----|-----|-----|-------|------|-------------------|----|----|----|---|---|--------|------------|-----|----------|-----|-----------------|------------|-----|
| Y:                           | 7 <u>ņ</u>  | <br>L      | C T    | NO        | · <b>-</b> - | . <b>-</b> . | 5 X     | С 2 | <br>3 | A   | y N | - <b>-</b><br>C : | <b></b> | 00 |            | <b>-</b> - | : | -   | м ( | EC: | I A : | W    | <b>—</b> —<br>Д Т | ER |    | PL | : | S | P<br>P | F          | 0   |          |     |                 | <br>       |     |
| CTI<br>.ac/                  |             |            |        |           |              |              |         |     |       |     |     |                   |         |    |            |            |   |     |     |     |       |      |                   |    |    |    |   |   |        |            |     |          |     |                 |            |     |
| 3MA.<br>200.<br>201.<br>101. | EVS<br>ZII  | N C<br>T A | :<br>C | زز<br>1/5 | :31<br>:M:   | . a          | 3Ξ<br>- |     |       | ./. | _/_ |                   |         |    | МЭ         |            |   |     |     |     |       | 3 E  | ; ;               | G  | 7/ | 27 | 7 | Û | 10     | : <u>6</u> | 0   | EA<br>NO | ST: | :<br>+ <u>:</u> | <br>рт<br> | re. |
| NAU<br>ONI                   |             |            |        |           |              |              |         |     |       |     |     |                   | P       | RE | <b>S</b> E | R <b>V</b> | Α | ΓIV | 15  |     | ħ,    | IG P |                   | N  | Αľ | ΙĒ |   |   |        |            |     |          |     |                 |            |     |

TUBI WHITE 5 ML HND5 WM METALS + DZ PLASTIC GREY FILTER, HND3 HO7 IH DISSOLVED METALS

IDMMENTS:

Most approdient sangle, near Frondale

PH 6.96. Cond -170 umhos.

SAMPLE COLLECTED BY : Williams / Enos

| U.S.          | ENVIRONMEN | TAL  | PROTE | CTION 4 | GENC | YA REGI | IIV NCI |    |       |
|---------------|------------|------|-------|---------|------|---------|---------|----|-------|
| ENVIPONMENTAL | SERVICES   | DIV. | 5.5   | FUNSTON | RD.  | KANSAS  | CITY    | ΚS | 56115 |

|                             | : 1 | ٧٧  | IF       | 01  | N M<br>    | E1 | YT. | 41              | L<br> | 51 | ER<br> | V : | I ( | E 9 | <u> </u> | 01 | ۷.      | •       |         | 2 5 |         | Fl<br>     | IN: | S 1 | 101   | 4   | R C | •   | _ K       | A   | N S        | A       | s<br> | C : | T   | Y 4 | ,      | K:  | 2  | <b>5</b> ( | 61 | 15              |    |      | _ |     |
|-----------------------------|-----|-----|----------|-----|------------|----|-----|-----------------|-------|----|--------|-----|-----|-----|----------|----|---------|---------|---------|-----|---------|------------|-----|-----|-------|-----|-----|-----|-----------|-----|------------|---------|-------|-----|-----|-----|--------|-----|----|------------|----|-----------------|----|------|---|-----|
| - Y :                       |     | 9.G | — —<br>Д | C   | T IV       | 3: | :   | <u>.</u><br>د ت | SX    | 01 | · ·    | S   | 3 M | N   | :        |    | ر.<br>د | 1       | . (     | 00  | :       |            |     | М 8 | E D I | [ A | :   | W   | 4 T       | · = | <br>R      |         | ٦     | :   | - S |     | -<br>- | F   |    |            |    |                 |    |      |   |     |
| 46 T<br>160                 |     |     |          |     |            |    |     |                 |       |    |        |     |     |     |          |    |         |         |         |     |         |            |     |     |       |     |     |     |           |     |            |         |       |     |     |     |        |     |    |            |    |                 |    |      |   |     |
| 2A00<br>2A00<br>2A00<br>3T0 | ξ.  | / 3 | 4 1      | , C | <b>H</b> / | 3. | 4 0 | :               | _     |    |        | _ 4 | _   | 1_  | v E      |    | A       | IL<br>M | II<br>I | N G | S<br>.A | ( 9<br>E : | SU  | R F | = A ( | . E | : k | A T | T 5<br>G: | R   | )<br>07    | 0 / / · | H.    | デジノ | 90  | 2   | 3      | M ( | 15 | 1          | NO | OM<br>ST<br>RTI | H: | E.F. |   | P T |
| . NA:                       | ŧΤ  | 4 I | N F      | £   |            |    |     |                 | C     | 01 | _0     |     |     |     |          |    |         |         |         |     |         |            |     |     |       |     |     |     |           |     | N A<br>M E |         |       | s   |     |     |        |     |    |            |    |                 |    |      |   |     |

. 32 PLASTIC 32E**Y** FILTER, HND3 W07 IH DISSOLVED METALS

COMMENTS:

Collected Approx. 3/4 mile downgradient of Hwy 8 bridge on Big Kirer

pH-78.23. and - 5m 170 makes. Temp - 27°C.

TAMPLE COLLECTED EY: Williams & Mantin

|                          | <u>.</u> | N.       | ۷I  | R | O N |     |     |    |   |        |    |     |     |    |    |     |   |   |   |     | 28(   |            |            |          |     |     |    |    |            |            |            |   |          |     |          |                  |       |          |                 | ζς     | _ 5 | 61  | 119                            | 5   |       |      |
|--------------------------|----------|----------|-----|---|-----|-----|-----|----|---|--------|----|-----|-----|----|----|-----|---|---|---|-----|-------|------------|------------|----------|-----|-----|----|----|------------|------------|------------|---|----------|-----|----------|------------------|-------|----------|-----------------|--------|-----|-----|--------------------------------|-----|-------|------|
| : Y                      | :        | <b>3</b> | )   | Δ | C 1 | - N | C : | :  | C | 5)<br> | (C | : ন | S   | Δ  | MN | 1 C | : | 2 | 0 | 2   | J)    |            | :          |          |     | ME  | D. | ΙΑ | :          | W          | 4 T        | Ε | 2        |     | L        | :                | Ś     | P        | - F             | :<br>: | D   |     |                                |     |       | <br> |
|                          |          |          |     |   |     |     |     |    |   |        |    |     |     |    |    |     |   |   |   |     |       |            |            |          |     |     |    |    |            |            |            |   |          |     |          |                  |       |          |                 |        |     |     |                                |     |       |      |
| , 4<br>, C<br>, A<br>, T | ءَ دَ    | 1        | 3 4 | T | C t | 1/  | 5   | 10 | : |        |    |     |     | ./ | _/ | ′ _ | É | T | Д | I L | I i   | N C        | 2 :<br>. A | (s<br>e: | i U | R F | Α( | ΞΕ | <b>1</b> 6 | IAT        | 7 =<br>3 : | R | )<br>C 7 | 0// | <b>刻</b> | ;<br>;<br>;<br>; | C<br> | <u>Z</u> | I<br><b>S</b> : | ٠ - أ  | _   | N ( | ROM<br>1 S 1<br>1 R 1<br>1 W 1 | ГН: | ? E F | P T  |
| и.<br>С С                |          |          |     |   |     |     |     |    |   |        |    |     | 0 R |    |    |     |   | P | 2 | 3 5 | 5 E i | R <b>V</b> | / A        | T 1      | V   | E   |    |    | 40         | ; <i>p</i> |            | 1 | N A      | M   | <b>:</b> |                  |       |          |                 |        |     |     |                                |     |       |      |

W07 IH DISSOLVED METALS

COMMENTS:

Collected from Leadwood tailings pile Tributary to Big River

pH-7.20. Temp 26°C. and - 550 jumbes ' FIGLO SHEET

|                      | Ē | ΝV          | Ί  | P. C    | N |        |     |          |   |         |          |   |     |     |    |     |       |    |     |    |     |          |          |                 |    |     |    |             |                | ( )<br>( ) |                |            |     |            |     |        |     | k S |    | 6        | 11                   | 5  |   |        |      |
|----------------------|---|-------------|----|---------|---|--------|-----|----------|---|---------|----------|---|-----|-----|----|-----|-------|----|-----|----|-----|----------|----------|-----------------|----|-----|----|-------------|----------------|------------|----------------|------------|-----|------------|-----|--------|-----|-----|----|----------|----------------------|----|---|--------|------|
| : Y :                | _ | <b>3</b> () | )  | À (     | T | - N    | C : | :        | C | 5 )<br> | ((       | R | _   | E A | Mi | 10  | :     | 2  | 03  |    | . c | C :      |          | <b>-</b> -      | ME | D : | ΙA |             | WA             | A T E      | <b>ए</b>       |            | PL  | . <b>.</b> | 3   | מ      | ,   | F   | ٥  | -        |                      |    |   |        |      |
| , C 1                | I | v :<br>T :  | T  | Y<br>N: | 5 | =<br>E | S : | :<br>S L | 3 | I (     |          | ₹ | I١  | / E | R  | M   | IN    | 13 | 7   | 4  | IL  | IN       | IG<br>PR | ร<br>อ <b>บ</b> | ΕC | T   | N  | UM          | :              | 43         | 33             |            | R E | F          | L   | T A    | IG  | TU  | DE | :<br>) E | <br>:_               |    |   | -<br>- | <br> |
| 145<br>100<br>145    | Ē | <b>/</b> [  | A  | TC      | H | /      | S:  | 10       | : | _       |          |   |     | _/  | _' | ′ _ | E<br> | T  | A I | L. | I N | GS<br>LA | 3        | su<br>:         | λF | A   | CE | ₩<br>8<br>8 | AT<br>EC<br>No | rar<br>3:  | <b>?)</b><br>G | 7 /<br>7 / | 2   | £, /.      | 7C  | 7<br>4 | 6   | M E | 0  | N        | RO<br>AS<br>OR<br>OW | TH | : | F<br>  | PT   |
| . NA<br>. ON<br>. UE | T | ΑI          | 14 | Ē F     |   |        |     |          |   | (       | :<br>  H | L | T S | -   |    |     |       | 5  | ŀ.  | L  | Ч   | NO       | 13       |                 |    |     |    | W M         |                |            |                | Ē T        | AL  |            | s a | LV     | ' E | C   | ME | : T      | ΑL                   | s  |   |        |      |
| 4.                   |   | .:: A       |    | ۲.      |   |        |     |          |   |         |          |   |     |     |    |     |       |    |     |    |     |          |          |                 |    |     |    | Λ           |                |            |                |            |     |            |     |        |     |     |    |          | ١.                   |    |   |        | • /  |

JUMMENTS:

Collected on Big River Approx. 12 mile downgradient of the Leadwood access

pH-7.48.

Temp-25°C'

Cond-200, umhos'

TAMPLE COLLECTED EY: Williams + Enos

| U.S.          | ENVIRONMENTAL | PROTECTION  | AGENCY | . REGION  | VII    |       |
|---------------|---------------|-------------|--------|-----------|--------|-------|
| FNVIRONMENTAL | SERVICES DIV. | . 25 FUNSTO | IN RD. | KANSAS CI | TY, KS | 56115 |

|            |                  | • •          | .,       |    |          | , ,                 | -       |       | •   |          | •   |    | •   |          | •   | <b>U</b> 111 |      |       |            | ***       |            |              |    | . ,   |    | 30         |                     |     |    |   |
|------------|------------------|--------------|----------|----|----------|---------------------|---------|-------|-----|----------|-----|----|-----|----------|-----|--------------|------|-------|------------|-----------|------------|--------------|----|-------|----|------------|---------------------|-----|----|---|
| : Y:       | <del></del><br>ः | )<br>        | 40       | TI | :0:      | <del>ت .</del><br>د | 5 X     | C R   | 5 A | MN       | G : | 2  | 04  | 30       | C : | ^            | 1ED: | I A : | W          | 4 T E     | R          | PL:          | 5  | P     | F  |            |                     |     |    |   |
| .CT        |                  |              |          |    |          |                     |         |       |     |          |     |    |     |          |     |              | ЕСТ  | พบ    | IM:        | 43        | 3          | REF<br>PT:   | L  | T T I | TU | )5:<br>JD: | :                   |     |    |   |
| 20.<br>20. | PL<br>AT<br>E/   | E<br>ID<br>A | DE<br>N: | S: | ES<br>SM | IG<br>LO            | 9:3<br> | I V E | R   | MI<br>_/ | NE  | Τ. | AIL | IN<br>NO | GS( | su:          | RFA  | CE    | WAT<br>SEC | TER<br>G: | ) :<br>07: | DATE<br>12#7 | 90 | 01    | ME | 2 E N      | ROM<br>AST:<br>CRTH | REF | PT | • |

.NALYSIS REQUESTED:

TONTAINER COLOR PRESERVATIVE MGP NAME
UUBI WHITE 5 ML HNO3 WM METALS
OZ PLASTIC GREY FILTER/HNO3 WO7 IH DISSOLVED METALS

COMMENTS:

Big River; 1st sample downstream of low water bridge on west side of site.

 $\rho H = 7.27$ .

con 0 = 290.

To = 23°c.

|     | \ <u>.</u> | ΝV         | 1   | R O     | N. |     |           |    |          |          |    |     |            |    |     |     |      |       |                |     | NC<br>STO |     |            |       |     |        |             |          |            |                            | <b>)</b> ( | 115                |    |          |               |   |
|-----|------------|------------|-----|---------|----|-----|-----------|----|----------|----------|----|-----|------------|----|-----|-----|------|-------|----------------|-----|-----------|-----|------------|-------|-----|--------|-------------|----------|------------|----------------------------|------------|--------------------|----|----------|---------------|---|
| · Y | :          | <b>)</b> ( | ì   | 7 C     | 7  | 4 C | <br>:<br> | C: | S X      | Cγ       | 5  | ٦ ñ | INC        | :  | 21  | )5  | Ç    | CC    | : _            |     | MEC       | IA: | W          | A T   | Ŕ   | P      | L:          | S        | ρ          | F :                        | )          |                    |    |          |               |   |
| . c | TI         | VI         | T   | Y<br>N: | ο. | 5 S | :<br>SL   | 3) | IG<br>Gë | <b>a</b> | ΙV | E 5 | 3 %        | Ιñ | 1 E | T   | 11 I | . [ ] | 465<br>280     | J   | ECT       | NU  | M:         | A.    | 3 3 | R<br>P | E F<br>T:   | L i      | ATI<br>DNG | TU                         | DE :       |                    | -  |          |               |   |
| ĴÀ  | \$ 3       | 15         | 4 ر | TC      | Η, | /s  | ЭΒ        | :  | _        |          |    | /_  | 1IN<br>_/_ |    | Τ,  | AII | . IN | IG:   | S ( S<br>A B : | S U | RFA       | C 5 | WA1<br>8E( | T E F | C 7 | DA /   | TE<br>7-/ ° | 90'<br>— | T I /0     | ₩ <u>□</u><br>: <u>0</u> ( | P 5        | ROM<br>AST<br>IGRT | R: | <u> </u> | PT<br><br>Fac | e |

.NALYSIS REQUESTED:

CONTAINER COLOR PRESERVATIVE MGP NAME

1001 WHITE 5 ML AND3 WM METALS

1 02 PLASTIC GREY FILTER, HNG3 WO7 IH DISSOLVED METALS

JUMMENTS:

Big River, 2nd saugle downstream of low water bridge on west side of site.

pH = 7.63 con = 280  $T^{o} = 220 230C$ 

PAFT

| RAFT                 |     |      |      |     |        |    |         |       |     |      |   |     | F)     | EL        | ن         | SH | EΞ | T  |            |          |                 |     |                    |       |     |             |     |              |                      |                         |     |       |        |    |
|----------------------|-----|------|------|-----|--------|----|---------|-------|-----|------|---|-----|--------|-----------|-----------|----|----|----|------------|----------|-----------------|-----|--------------------|-------|-----|-------------|-----|--------------|----------------------|-------------------------|-----|-------|--------|----|
| ΞN                   | VI  | F. C |      |     |        |    |         |       |     |      |   |     |        |           |           |    |    |    | AGE<br>N 2 |          |                 |     |                    |       |     |             |     | S d          | 61                   | 15                      |     |       |        |    |
| Y: }                 | 0   | AC   | T "4 | J:  | o<br>O | SX | <br>ც გ | <br>S | Air | INC  | : | 21  | )<br>5 | <b>40</b> | C:        | _= | M  | ED | I A :      | W        | AT              | ER  |                    | ) L : | : S | P           | F   | נו           |                      |                         |     |       |        |    |
| VITO<br>TADE         | IJ  | N :  | J    | 53  | LI     | ĞΞ |         |       |     |      |   |     | ŀ      | 10        | b         | RJ | JΞ | CT | NU         | iM:      | 4               | 33  | ı                  | P T : | : L | OŅ          | GΙ  | TUE          | ) E :                |                         |     |       |        |    |
| AMPL<br>OCAT<br>ASE/ | SA. | TC   | H/   | S M | 3:     |    |         |       | ./_ | ./ _ |   | T : | AII    | IN<br>10  | IGS<br>LĀ | (s |    | FA | CE         | WA<br>BE | T E<br>G:<br>B: | R ) | 0/<br>7 <b>/</b> - | A T ; | 90  | <b>1</b> 2- | I M | €′<br>30<br> | FR<br>EA<br>NO<br>DO | OM<br>ST:<br>RTH<br>WN: | R 6 | F<br> | PT<br> | رو |
| MALY                 | IN  | Ēβ   |      |     |        | C  | ΟL      | c k   |     |      |   | PF  | ₹ E S  | SER       | V A       | ŢI | VΕ |    | •.         | IG P     |                 | N   | Δ M :              | E     |     |             |     |              |                      |                         |     |       |        |    |

JUBI WHITE 5 ML HN03 WM METALS • OZ PLASTIC GREY FILTER/HN03 W07 IH DISSOLVED METALS

COMMENTS:

Big River; swimming area west side of site

PH = 7.42. To = 25°C' cond = 260.

U.S. ENVIRONMENTAL PROTECTION AGENCY/ REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY/ KS 56115

|                          | €NV        | IR       | 5 N M      | MEN:         | TAI | L<br>   | SER  | ₹ 🗸 🕽    | [ C : | ∃ S | 10 | ٧. |                         | 25    | =   | UNS | וסדנ | ۷ ?<br> | D.  | _ K | ANS | 3 A S | C  | IT    | Y,    | K . | S .      | o 61         | 115                |         |      |    |
|--------------------------|------------|----------|------------|--------------|-----|---------|------|----------|-------|-----|----|----|-------------------------|-------|-----|-----|------|---------|-----|-----|-----|-------|----|-------|-------|-----|----------|--------------|--------------------|---------|------|----|
| Υ:                       | <b>4</b> 0 | A        | CTN        | 10:          | C!  | SX      | () २ | S !      | MM    | ۱C: | 2  | 77 | 10                      | : C : | :   | . N | ED   | I A :   | W   | AT  | E R | Р     | L: | <br>5 | <br>- | £   | D        |              |                    |         |      |    |
| 101<br>_ 30              |            |          |            |              |     | _       | -    |          |       |     |    |    | AIL<br>MO               |       |     | -   | CT   |         |     |     |     |       | -  | _     |       | _   |          |              |                    |         | <br> |    |
| JAM<br>JO<br>JAS<br>JTO  | I T A      | ON<br>AT | : 3<br>CH/ | 1251<br>1821 | L3: | j ⋶<br> |      | /        |       |     |    |    | ΝO                      |       |     |     |      |         | 3 E | G:  | 07  | 12    | 71 | 36    |       |     | <b>"</b> | N C          | ROM<br>ST:<br>DRTI | :<br>1: | E F  | PI |
| AN:<br>NC:<br>BU:<br>C : | TAI<br>I   | ΝE       | R          |              |     | M I     | )LC  | <b>E</b> |       |     | 5  | M  | \$3.8<br> L ==<br> T= R | IN C  | 3 3 |     |      |         |     |     | ME  |       | LS |       | LV    | €C  | М;       | <b>= T</b> ( | a L S              |         |      |    |

JOMMENTS:

Cocation # 7 on the field map

pH - 6,73 7.33.

Temp - 28°C'

Cond - 380 um hrs.

SAMPLE COLLECTED BY: Williams + Overlet

TAAFT

FIELD SHEET

| • •       |      |          |        |      | J      |        |        |         |    |       |
|-----------|------|----------|--------|------|--------|--------|--------|---------|----|-------|
| U         | 1.5. | ENVIRONM | ENTAL  | PROT | SCTION | AGENCY | f. REG | IIV NCI | [  |       |
| ENVIRONME | NTAL | SERVICE  | s biv. | 25   | FUNSTO | N RD.  | KANSAS | CITY,   | ΚS | ე6115 |

|                   |   |          |        |                       | _               |     |                            |            |             |        |     |    |          |           | _   |          |     |   |          |     |      |     |          |       |     |    |            |     |    |                |     |        |    |    |       |       |                  |           |    |        | _ |
|-------------------|---|----------|--------|-----------------------|-----------------|-----|----------------------------|------------|-------------|--------|-----|----|----------|-----------|-----|----------|-----|---|----------|-----|------|-----|----------|-------|-----|----|------------|-----|----|----------------|-----|--------|----|----|-------|-------|------------------|-----------|----|--------|---|
|                   | - |          |        |                       |                 |     |                            |            |             |        |     |    |          |           |     |          |     |   |          |     |      | _   |          |       |     |    |            |     |    |                | PL  |        |    |    |       |       |                  |           |    |        |   |
| ۱0                | T | IV<br>AT | /I     | T Y<br>V U            | :               | 2 E | S:<br>ES                   | i<br>L     | ij          | હ<br>લ | 3   | ΙV | Ē        | <br>२<br> | , א | <br>[    | E   | T | A I      | [L  | I N  | I G | S<br>C J | 150   | ; T | NL | JM:        | ; ; | 43 | 3              | R E | :<br>: | LA | T. | I T ( | U D S | :<br>)           |           |    | _<br>_ |   |
| . A<br>. C<br>. C | M | PL<br>Al | E<br>I | D<br>D<br>N<br>D<br>T | E S<br>:<br>C F | 5:5 | 3<br>3<br>3<br>5<br>8<br>8 | I 6<br>L 0 | ;<br>;<br>; | P.I    | · V | ER | - ;<br>• | чI<br>/   | N S | <u> </u> | T 2 | I | 다.<br>보기 | EN: | <br> | . ( | <br>S U  | 1 R F | A C | Ξ. | W A<br>B E | T G | ER | <b>)</b><br>C7 | DAD |        | •j | Z  | [M!   | 00    | FR<br>5,2<br>0,0 | OM<br>ST: | RE | F<br>  | P |
|                   |   |          |        |                       |                 |     | CA                         |            |             |        |     |    |          |           |     |          |     | _ |          |     |      |     | •        |       |     |    |            |     |    |                |     | • · -  |    |    |       |       |                  | WN:       |    |        |   |

INALYSIS PEQUESTED:

COURTAINER COLOR PRESERVATIVE MGP NAME
1031 WHITE 5 ML HN03 WM METALS
1 DZ PLASTIC GREY FILTER, HN03 W07 IH DISSULVED METALS

COMMENTS:

Location # 8 on Freld map

pH - 7.44. cond - 360 Temp - 29°C

EAMPLE COLLECTED BY: Williams + Drewfelt

FIGLO SHEET

| •             |            | •    |       | J. ( ~ - ( |        |        |         |    |       |
|---------------|------------|------|-------|------------|--------|--------|---------|----|-------|
| U.S.          | ENVIRONMEN | ITAL | PROTE | CTION      | AGENCY | PEG:   | IIV NDI |    |       |
| ENVIRONMENTAL | SERVICES   | GIV. | 25    | FUNSTO     | N RD.  | KANSAS | CITY,   | ΚS | 56115 |

|     |            |           |           |            |          |     |    |     |            |           |           |               |    |     |      |   | PL:        |          |              |            |               | <br> |
|-----|------------|-----------|-----------|------------|----------|-----|----|-----|------------|-----------|-----------|---------------|----|-----|------|---|------------|----------|--------------|------------|---------------|------|
| .CT | IVI<br>ATI | YT<br>:NC | 255<br>36 | : ÷<br>SL3 | IG<br>GE | RIV | ΞR | MIN | E <b>T</b> | AIL<br>MO | ING<br>PR | 80 <b>J</b> 8 | СТ | NUM | : 43 | 3 | REF<br>PT: | LA<br>LO | TITU<br>NGIT | בסנ<br>וטפ | :             | <br> |
|     |            |           |           |            |          |     |    |     |            |           |           |               |    |     |      |   | -          |          |              |            | FROM<br>EAST: |      |

TASE/BATCH/SMC: \_\_\_\_/\_\_ LAB: \_\_\_ END: \_\_/\_\_\_ NORTH: STORET/SARGAD NO: \_\_\_\_\_

INALYSIS REQUESTED: JONTAINER COLOR
JUBI WHITE
GZ PLASTIC GREY PRESERVATIVE MGP NAME

5 ML HNG3 WM METALS FILTER, HNG3 WO7 IH DISSOLVED METALS

TOMMENTS:

iscation # 9 on frold map

PH - 7.45. Cond - 370 jumbos...

TAMPLE COLLECTED BY: Overfett Williams

PAFT

FTELD SHEET

|       | •      |     |        |         |         |     |     |       |     |            |               |       |     | -      |        | _          | ,          |          | - •       |    |      |       |     |         |             |         |     |     |     |             |         |         |            |      |          |         |     |
|-------|--------|-----|--------|---------|---------|-----|-----|-------|-----|------------|---------------|-------|-----|--------|--------|------------|------------|----------|-----------|----|------|-------|-----|---------|-------------|---------|-----|-----|-----|-------------|---------|---------|------------|------|----------|---------|-----|
|       | ENV    | IRU |        |         |         |     |     |       |     | NM!<br>Ce: |               |       |     |        |        |            |            |          |           |    |      |       |     |         |             |         |     |     |     |             | S       | 56°     | 115        |      |          |         |     |
|       |        |     |        | <b></b> |         |     |     |       | -   |            |               |       |     |        |        | - ~        |            |          |           |    |      |       |     |         |             |         |     |     |     |             |         |         |            |      |          |         |     |
| Υ:    | <br>50 | A ( | ) T 14 | G:      | _ C     | 2 X | C R | S<br> | A   | MN         | ::            | _ Z   | 110 | )      | ) C (  | C:         | _=         | .y<br>   | 1 E (     | I. | A:   | ₩.    | AT  | ER      |             | PL      | :   | S   | ם   | F           | σ<br>   |         |            |      |          |         |     |
| CT    | IVI    | TY  | D 6    | 3:      | <br>ذ   | 16  | - F | ΙV    | E   | 7 - 1      | ٧I            | NE    | 1   | Γ4 )   | L      | ΙN         | <br>G3     |          |           |    |      |       |     |         |             | RE      | F   | LA  | AT: | <br>I T (   | ם<br>טע | :<br>E: |            |      |          | _       |     |
| JC.   | ITA    | ON: | i.     | 33      | LO      | 55  |     |       |     |            |               |       |     | MO     | }      | Þ          | RO         | JE       | : C1      | r  | NU   | M :   | A.  | 33      |             | PT      | :   | LÇ  | M   | GI.         | TU      | ĐΕ      | :          |      |          |         |     |
| · A M | 91 =   | חר  | : c •  |         | <b></b> |     |     | P     | -   |            | - <del></del> | <br>T | Δ1  | <br>[] | · ···· | - <b>-</b> | <br>(;     | 110      | <br>? = / |    |      | — — · | T E | <br>D ) | <del></del> | <br>Λ Τ | =   | 73  | 7   | TM          | <br>= • |         | ROM<br>AST | <br> |          | <br>D T |     |
| . nc. | ATI    | ON: | . 0    | 33      | LÜ      | GE  | - ' |       | . , | 1.46.7     | •             | •     | _   | М      | }      | • •        | ``         | <b>U</b> | ` ' '     |    | _    | 3 E   | G : | O.      | 7           | 27      | K   | 9.0 | 13  | <b>5</b> :/ | 15      | E.      | TZA        | :    | •        |         |     |
| . 2 S | E / B  | ATO | H/     | SH      | C:      |     |     |       | 1   | _/_        |               |       |     | -      | 1      | LA         | <b>H</b> : | -        |           | -  |      | ٩N    | 0:  |         | _/          |         | ./_ |     | _   | _ : .       |         |         |            |      |          | rfa     |     |
| TO    | ? ≘ ₹  | 154 | IRO    | CA      | Ν       | 0:  | _   |       |     |            |               |       |     |        |        |            |            |          |           |    |      |       |     |         |             |         |     |     |     |             |         | D       | NWC        | :    | <u> </u> | r Ta    | م ، |
| .NAI  |        |     |        |         |         |     |     |       |     |            |               |       |     |        |        |            |            |          |           |    |      |       |     |         |             |         |     |     |     |             |         |         |            |      |          |         |     |
| GN.   | TAI    | NEF | ì      |         |         | C   | OL  | GR    |     |            |               | þ     | 25  | : 3 :  | R      | VΑ         | TI         | ٧٤       | =         |    | M    | GP    |     | N       | A M         | E       |     |     |     |             |         |         |            |      |          |         |     |
| 116   | Ť      |     |        |         |         | 1.3 | u T | TE    |     |            |               | 5     |     | A E    | 14 8   | N n        | 7          |          |           |    | La J | м     |     | M       | ET          | 3.1     | ς   |     |     |             |         |         |            |      |          |         |     |

TUBI WHITE 5 ML HNG3 WM METALS - DZ PLASTIC GREY FILTER, HNG3 WO7 IH DISSOLVED METALS

COMMENTS:

owl creek; nowth of abandoned RI bed

$$pH = 7.33$$
.

cond = 550.

 $T^0 = 18.5^{\circ}C$ .

JAMPLE COLLECTED BY : Martin/Enos

|            | < #        |     | ı              |       |     |         |              |                |   |                 |     |            |                |    |     |     |          |     |       |          |     | _       | 5 5 |     |       |     |     |           |      |       |             |     |    |          |        |                         |     |            |           |          |            |          |     |            |   |
|------------|------------|-----|----------------|-------|-----|---------|--------------|----------------|---|-----------------|-----|------------|----------------|----|-----|-----|----------|-----|-------|----------|-----|---------|-----|-----|-------|-----|-----|-----------|------|-------|-------------|-----|----|----------|--------|-------------------------|-----|------------|-----------|----------|------------|----------|-----|------------|---|
|            |            |     |                |       |     |         | IJ           | <b>.</b> S     |   |                 | : N | <b>y</b> 3 | [ R            | 31 | М   | ٤١  | ŧΤ       | ΑL  |       | ב כ      | J.  | T E     | CI  | I   | CN    | A   | GS  | NC        | Υ.   | ,     | 8           | EG  | IC | IN       | ٧      | ΙI                      |     |            |           |          |            |          |     |            |   |
|            |            | ÷.  | <b>4 A</b>     | IR    | O.  | N N     | E            | NT             | A | L               | ŝ   | Ξí         | ٧              | 10 | Ë   | ŝ   | D        | ΙV  | -     |          | 2:  | Ŝ       | ř٤  | JN  | ST    | O N | 1 8 | D.        | ì    | ćΑ    | N S         | AS  | C  | II       | Υ      | ,                       | K S | 6          | 51        | 15       |            |          |     |            |   |
| : 1        | Y :        |     | )<br>)         | <br>د | C   | TN      | 10           | :              | C | 5)              | C   | ₹          | ĵ              | ΑN | 1N  | 0:  | <b>-</b> | 21  | 1     |          | - C | <br>C:  |     | -   | M E ! | DΙ  | Α:  | \<br>\    | A.   | <br>T | R           | P   | L: | :        | <br>}  | <b></b><br>Р            |     | <b>Э</b>   |           |          |            |          |     |            |   |
|            |            |     |                |       |     |         |              |                |   |                 |     |            |                |    |     |     |          |     |       |          |     |         |     |     |       |     |     |           |      |       |             |     |    |          |        |                         |     |            |           |          |            |          |     |            |   |
| • •<br>• • | 4.9<br>3.0 | IP! | <br>L =<br>T T | <br>0 | Ē   | <br>3 : | • <b>-</b>   | <br>3 I<br>5 I | G | • • •<br>;<br>; | I   | <b>-</b> - | : <del>-</del> | •  | 1 I | ۸ ۶ | -        | T A | . I 1 | LI<br>Mo | in. | <br>3 S | ( 9 | บ   | RF    | A C | Έ   | WA<br>A F | T    | ER    | <br>)<br>07 | 9AC | T  | 24       | ·<br>• | <br>T I<br><i>I 4</i> f | ME  | 5          | FR<br>= A | OM<br>ST | R          | <br>EF   | 21  |            |   |
| ,          | <b>J</b> 3 | E   | / 3<br>E T     | A 1   | . С | H/      | <b>'</b> \$1 | 10             | : | _               | _   |            |                | /_ | _/  |     |          |     | _     |          | ı   | LA      | 3:  | : . |       | -   |     | 5.        | : מו | •     |             | /_  | _' | <u> </u> | -      | <u></u>                 | -   | . <u> </u> | NO        | RTI      | <b>+</b> : | <u> </u> | 4V/ | )<br># < 1 | ح |
|            | 4.5        | L.  | Y S            | ΙS    | •   | R 5     | Q            | UE             | s | T :             | D   | :          |                |    |     |     |          |     |       |          |     |         |     |     |       |     |     |           |      |       |             |     |    |          |        |                         |     |            |           |          |            |          |     |            |   |
| 7          | 31         | T   | 4 I            | Né    | ŝ   |         |              |                |   | (               | G   | Lú         | R              |    |     |     |          | PF  | 2 5   | S E      | P   | V A     | T   | V   | Ξ     |     | i   | IGF       | )    |       | NA          | ME  |    |          |        |                         |     |            |           |          |            |          |     |            |   |
| : ,        | <u>3</u> ر | Ι   |                |       |     |         |              |                |   | 4               | H   | I          | Ξ              |    |     |     |          | 5   | M     | L        | Н   | 40      | 3   |     |       |     | W   | M         |      |       | ΜE          | TA  | LS | 5        |        |                         |     |            |           |          |            |          |     |            |   |
| ٠          | Ç          | Z   | þ              | LA    | 5   | Τ.      | C            |                |   | Ų,              | ; ₹ | Εì         | 1              |    |     |     |          | FI  | L     | T 3      | ₹.  | , H     | NC  | 3   |       |     | 4   | 107       | •    |       | ΙH          |     | 15 | 5 5 3    | L      | ع ۷                     | C   | 14 E       | TA        | LS       |            |          |     |            |   |
|            |            |     |                |       |     |         |              |                |   |                 |     |            |                |    |     |     |          |     |       |          |     |         |     |     |       |     |     |           |      |       |             |     |    |          |        |                         |     |            |           |          |            |          |     |            |   |

: STMEMMEL

Owl creek 230' upstream of mouth

$$cond = 245$$
;  
 $pH = 7.60$ ;  
 $T^0 = 26^{\circ}C$ ;

SAMPLE COLLECTED BY : Martin/Enos

|                                                                   |                     | FIELD SHEET TAL PROTECTION DIV. 25 FUNSTO |                              |                                   | o 6115                         |
|-------------------------------------------------------------------|---------------------|-------------------------------------------|------------------------------|-----------------------------------|--------------------------------|
| Y: 90 ACTNO:                                                      | CSXCR SAMNO:        | 212 RCC: _ MED                            | IA: WATER                    | PL: 3 P F 0                       |                                |
| CTIVITY DES:                                                      | RIG RIVER MI<br>OGE | NE TAILINGS<br>MO PROJECT                 | NUM: A33                     | REF LATITUD<br>PT: LONGITU        | E:                             |
| AMPLE DES: 816<br>JUGATION: DESL<br>ASE/BATCH/SMC<br>TORET/SAROAD | oga<br>:/_/         | TAILINGS(SURFA                            | CE WATER)<br>BEG: 07<br>END: | DATE TIME<br>/27/90 /5:30<br>/_/_ | FROM REF PT<br>FAST:<br>NCRTH: |
| TEU.                                                              | COLUR<br>White      | PRESERVATIVE<br>5 ML HNO3<br>FILTER/HNO3  | WM ME                        | TALS                              | ETALS,                         |
| LOMMENTS: Big                                                     | River               | Location: No                              | rth of St                    | Joe knope<br>tom #12              | rty Location on field Maj      |
| (ond.                                                             | 290<br>7.29<br>25°  | •                                         |                              |                                   |                                |
| ph                                                                | 250                 | $\mathcal{C}$                             |                              |                                   |                                |
| tem                                                               | <i>)</i> ••••       |                                           |                              |                                   |                                |

DAMPLE COLLECTED TY: Martin Williams

| ENVIRON<br>FY: 90 ACT                              | INC: C  | SXCR                  | SAMNC: | 120            | cc:_               | MEDI   | A: WA       | TER         | PL:            | S P          | F D                  |                 |                     |
|----------------------------------------------------|---------|-----------------------|--------|----------------|--------------------|--------|-------------|-------------|----------------|--------------|----------------------|-----------------|---------------------|
| CTIVITY (                                          |         |                       |        |                |                    | IECT ! | NUM:        | A 3 3       | REF            | LATI<br>LONG | TUDE:<br>BCUTI       | :               |                     |
| JAMPLE DES<br>CCATION:<br>JASE/EATCH<br>JTGRET/SAF | DESLOC  | 3 É                   | _/_/   | Μť             | LAB:               |        | SEG<br>End: | : 97/<br>:/ | \$\\ 79\<br>/_ | o 1 <u>5</u> | : <u>39</u> E<br>: N | AST:<br>ORTH:   |                     |
| TORET/SAF<br>-NALYSIS F<br>-ONTAINER<br>- OZ PLAST | REQUEST | TED:<br>COLG:<br>GREY | ₹      | PRESS<br>FILTE | FRVATIV<br>ER,HNO3 | Ę      | MGP<br>WO7  | NAM<br>IH   | # 7<br>0155    | <b>L</b> A   | MET                  | <b>?</b><br>AL3 |                     |
| JUMMENTS:                                          | Big R   | iver.                 | No     | rth o          | fSt.               | Joe    | Pro         | per         | ty             | 10.          | uplica               | ite) l          | ocation<br>ofield W |

TAMPLE COLLECTED BY : Martin | Williams

| RAFT                                                |                                                   | FIRLD SHEET                   |                          |                                    |                                |       |
|-----------------------------------------------------|---------------------------------------------------|-------------------------------|--------------------------|------------------------------------|--------------------------------|-------|
| ENVIRON                                             | U.S. ENVIRONMENT<br>MENTAL SERVICES !             |                               |                          |                                    |                                |       |
| -Y: 75 46T                                          | NO: COXCE SAMMO:                                  | 213 RCC: _ MED                | IA: WATE                 | R PL: S                            | PFD                            |       |
|                                                     | ES: BIG RIVER MIN<br>DESLUGE                      |                               | NUM: A3                  | REF LAT<br>3 PT: LC                |                                |       |
| TAMPLE DES<br>.JCATION:<br>.ASE/BATCH<br>.TORET/SAR | : SIG RIVER MINE<br>DESLOSE<br>/SMO:/_<br>CAD NO: | TAILINGS (SURFA<br>MO<br>LA3: | CE WATER<br>BEG:<br>END: | ) DATE & CO  <br>07/2/990  <br>//_ | FROM R 6:30 EAST: NORTH: DOWN: | EF PT |
|                                                     | COLOR<br>WHITE<br>TC GREY                         |                               |                          |                                    |                                |       |
| COMMENTS:                                           | Big River Eas                                     | t of Site,                    | Location                 | n fild                             | Map                            |       |
| Con                                                 | d. 290.                                           | ۷                             | rocoti                   | on#13                              | }                              |       |
| ρl                                                  | d. 290.<br>1 7.55.                                |                               |                          |                                    |                                |       |
| ter                                                 | np. 26°.                                          |                               |                          |                                    |                                |       |
|                                                     | 1                                                 |                               |                          |                                    |                                |       |

TAMPLE COLLECTED OY: Williams Martin

| U.S.          | ENVIRONMEN | ITAL | PROTECT | TION A | GENCY | , REGI | IIV ND | [  |       |
|---------------|------------|------|---------|--------|-------|--------|--------|----|-------|
| ENVIRONMENTAL | . SERVICES | OIV. | . 25 Ft | NOTON  | RC.   | KANSAS | CITY,  | ΚS | 56115 |

|                | = 14 | ·  | r. U | F 1 - M |    | 4 I | 4 L<br> |     | · - · | K V | 1 U : | : )<br> | . U | . V : | •                |     | )<br>- — . | - U I | <b>4</b> 3 | 100 | ( K |       | ^  |     | 121   | 47    |            | - 1        |   | N 3   | ) :<br>  | 011:                 | ,<br> | <br>   |
|----------------|------|----|------|---------|----|-----|---------|-----|-------|-----|-------|---------|-----|-------|------------------|-----|------------|-------|------------|-----|-----|-------|----|-----|-------|-------|------------|------------|---|-------|----------|----------------------|-------|--------|
| 7 Y :          | 9    | 9  | AC   | T 'V    | C: | :   | C 3     | X   | ; २   | S   | A MI  | N 0     | :   | ?1    | 4                | ;c( | :          |       | М          | EDI | Α:  | W     | ΑT | F 5 | ≀     | Ρŧ    | . :        | S          | P | F     | b        |                      |       | <br>   |
| 1 C T<br>_ 3 C |      |    |      |         |    |     |         |     |       |     |       |         |     |       |                  |     |            |       |            |     |     |       |    |     |       |       |            |            |   |       |          | : _                  | -     | <br>   |
| _ 46           | A T  | ΙG | N:   |         | Ε. | 5 L | ق نا    | Ľ   |       |     |       |         |     |       | , M              | 3   |            |       |            |     |     | づせ    | 6: | Ĺ   | 17    | انغرا |            | <i>•</i> 0 | 9 |       | <b>~</b> | FROM<br>EAST<br>NORT | :     | <br>P1 |
| 110            |      |    |      |         |    |     |         |     |       |     |       | <br>_   |     |       | -                | ·   |            | ~ •   | _          |     |     |       |    | •   |       |       | <b>-</b> - |            |   | - • - |          | COMV                 |       | <br>   |
| IMΔ            | LY   | SI | S    | 5 5     | ા  | J F | S T     | 35  | :     |     |       |         |     |       |                  |     |            |       |            |     |     |       |    |     |       |       |            |            |   |       |          |                      |       |        |
| IBN            | TA   | IN | EΑ   |         |    |     |         | CC  | L     | G F |       |         | į   | P g   | <del>.</del> 5 . | äR۱ | / A        | TI    | V E        |     | j   | IGP   | ı  | ħ   | i A i | ٩Ë    |            |            |   |       |          |                      |       |        |
| เบล            | 1    |    |      |         |    |     |         | ₩ t | ۱ï    | TΞ  |       |         |     | 5 1   | ٩L               | HM  | ١Ü         | 3     |            |     | W   | М     |    | M   | 4E    | TAI   | <b>.</b> S |            |   |       |          |                      |       |        |
| _              | _    |    |      |         | _  |     |         |     |       |     |       |         |     |       |                  |     |            |       | -          |     |     | . ^ = |    |     |       |       |            |            |   |       |          |                      |       |        |

- DI PLASTIC っそミY FILTER, HNG3 IH DISSCLVED METALS W07

COMMENTS:

Location # 14 on field map.

pH - 7.31(and - 350 mmhos Temp - 23°C

Williams + Enos

| <b>⊍.</b> S.  | ENVIRONMENTAL | PROTECTION AGENCY, | REGION VII          |
|---------------|---------------|--------------------|---------------------|
| ENVIRONMENTAL | SERVICES DIV. | 25 FUNSTON RD. K   | ANSAS CITYA KS 5611 |

|                  |            | _           |          |                  |               |            |   | _      |      |          |     |          |                | _ | _      | _ | •      | _      |     | _ ` | •   |   |   |     |     |        |             |          | _   |       |               |     |     |     |   | _ | _ | _ |   |       | •   |        | _ |   |     |   |   |        |    | _ | <u>.</u> |     | _ |        |   | ; ;<br> |               |     |     | <br> |
|------------------|------------|-------------|----------|------------------|---------------|------------|---|--------|------|----------|-----|----------|----------------|---|--------|---|--------|--------|-----|-----|-----|---|---|-----|-----|--------|-------------|----------|-----|-------|---------------|-----|-----|-----|---|---|---|---|---|-------|-----|--------|---|---|-----|---|---|--------|----|---|----------|-----|---|--------|---|---------|---------------|-----|-----|------|
| : Y:             | :          | _           | ] ^      | )                | į             |            | T | -<br>N | 3    | - ·<br>: | į   | 3        | X              | C | F:     | _ | _<br>S | Α.     | 41  | 4   | ] ; | : | 3 | 21  | 1 5 | -<br>- |             | . (      | 2 ( | <br>: | :             |     | -   | M   | E | ם | I | A | : | <br>1 | 4 A | T      | Ξ | R |     | Ģ | L | :      | 5  | _ | p        | F   | _ | о<br>Э |   |         |               |     |     | <br> |
| 101              | 7          | 4           | Τ.       |                  | 1 (           | ١:         |   | Ü      | 3    | SI       | _ ( | ે ઉ      | , <del>-</del> |   |        |   |        |        |     |     |     |   |   |     |     | į.     | 10          | )        |     | 1     | <b>&gt;</b> t | 3 ( | J   | ΙĒ  | C | Ŧ |   | ٧ | U | 4 ;   | :   | А      | 3 | 3 |     | P | T | :      | L  | C | И(       | 5 I | T | UD     | E | :_      |               |     |     | _    |
| AM<br>LOC<br>LAS | <b>S</b> : | ۹<br>4<br>5 | Li<br>Ti | :<br>I ()<br>E # | נ<br>ונ<br>ונ | ) <u>:</u> | S | : 5/   | 20 0 | 5 I      | I ( | ;<br>) ( | 2              | I | v<br>- | E | 2      | _<br>/ | M : | I:  | N E | = | 1 | 7.2 | 1 1 | 1.     | _ ]<br>4 () | 1 1<br>2 | N ( | د     | 5 (           | ( 5 | š L | 1 2 | F | A | C | ε |   | 4 A   | 4 T | :<br>: | R | 0 | 7 / |   | 3 | -<br>- | 90 |   | T 10     | M : | 5 | -      | F | ۹ O     | М<br>Т:<br>Тн | R ! | 5 F | <br> |

.NALYSIS FEQUESTED:

DONTAINER COLOR PRESERVATIVE MGP NAME DUBL WHITE 5 ML HND3 WM METALS

COL PLASTIC GREY FILTER, HNO3 WG7 IH DISSOLVED METALS

COMMENTS:

Collected from Flat River Creek upgradient of Bry River confluence. Location # 15 on field map.

plf - 8.0'
Cond - 550 mmhss'
Temp - 23°C'

DAMPLE COLLECTED DY: Williams & Enos

| <b>⊍</b> ₌S.  | THVIRGNMEN | VT4L | PROTECT | TION A | GENCY | ✓ REGI | ON VII |    |       |
|---------------|------------|------|---------|--------|-------|--------|--------|----|-------|
| ENVIRONMENTAL | SERVICES   | DIV. | 25 F    | UNSTON | RD.   | KANSAS | CITY,  | ΚS | 05115 |

|            | INV.       | 7 12 17   | 6 M 6             | . 77.1  | 4 L        | υζεV<br>   | 165 | 3 D | . V . | <u> </u>   |            | N 2 I U I | 4 KU  | • N |     | 42 C       | 111 | ·           | 2 0        | 0110                            |   |  |
|------------|------------|-----------|-------------------|---------|------------|------------|-----|-----|-------|------------|------------|-----------|-------|-----|-----|------------|-----|-------------|------------|---------------------------------|---|--|
| -γ:        | 30         | ΑC        | TNO               | :       | C S X      | ี รอ       | AMM | C:  | 216   | 400        | : _        | MED:      | I A : | WAT | E R | PL:        | S   | P F         | )<br>      |                                 |   |  |
| . 30       | IVI<br>ATI | YY<br>:NC | 0 ii S<br>2 ii S  | :<br>SL | 316<br>332 | SIA        | Ξ R | MIN | 5 T   | AILI<br>HJ | NGS<br>PRO | JECT      | NUM   | : A | 33  | REF<br>PT: | L:  | TIT<br>HGI  | UDE<br>TUD | :                               |   |  |
| .00        | ATI        | 3 N C     | ⊖<br>H <b>/</b> S | SL      | 003<br>:   |            | /_/ |     |       | 40         |            |           | 8     | EG: | Û 7 | 1217       | 90  | <i>LL</i> : | <u></u>    | FROM<br>EAST:<br>NORTH<br>DOWN: | : |  |
| ANA<br>JUN | LYS:       | IS<br>Ner | <b>с</b> Е (      | iue     | S T E :    | j:<br>JLUR | !   |     | PRI   | SEPV       | /ATI       | V E       | MG    | P   | NA  | ME         |     |             |            |                                 |   |  |

DUNTAINER COLUR PRESERVATIVE MGP NAME
DUBI WHITE 5 ML HNO3 WM METALS
TO PLASTIC GREY FILTER, HNO3 WO7 IH DISSOLVED METALS

:STMEMMEL

Collected on Big River approx. 5 miles downgradient of the site. Location #16 oh field map.

ph-7.26; Cond-348 jumbus; Temp-27°C;

TAMPLE COLLECTED BY: William + Martin

PAFT

FIELD SHEET

|     | ΗГ    | 1          |   |            |   |           |     |        |    |     |        |     |         |   |                 |   |   | •   | r                  | `~ L |     | •          | 3 1 1 | L :-    | - 1      |    |     |          |     |     |    |     |            |              |     |     |       |   |          |    |           |      |   |          |     |   |
|-----|-------|------------|---|------------|---|-----------|-----|--------|----|-----|--------|-----|---------|---|-----------------|---|---|-----|--------------------|------|-----|------------|-------|---------|----------|----|-----|----------|-----|-----|----|-----|------------|--------------|-----|-----|-------|---|----------|----|-----------|------|---|----------|-----|---|
|     | -     | ΝV         | 1 | <b>२</b> ু |   |           |     |        |    |     |        |     |         |   |                 |   |   |     |                    |      |     |            |       |         | N<br>STO |    |     |          |     |     |    |     |            |              |     |     |       | S | <b>o</b> | 61 | 15        |      |   |          |     |   |
| : Y | <br>: | <br>-}:    | ) | à C        | T | ų (       | ):  | <br>(  | 3  | X ( | C R    | _   | S 4     | M | N C             | : | 2 | 17  | , <del></del><br>, | 10   | C   | <br>:      | _     | -<br> / | 150      | SI | A : |          | ŧΑ  | T E | R  |     | <b>Р</b> L | :            | S   | P   | <br>F |   | )        |    |           |      |   |          |     |   |
|     |       |            |   |            |   |           |     |        |    |     |        |     |         |   |                 |   |   |     |                    |      |     |            |       |         | C 1      |    |     |          |     |     |    |     |            |              |     |     |       |   |          |    |           | <br> |   |          | i   |   |
|     |       |            |   |            |   |           |     |        |    |     |        |     |         |   |                 |   |   |     |                    |      |     |            |       |         |          |    |     |          |     |     |    |     |            |              |     |     |       |   |          |    | OM<br>ST: |      |   |          |     |   |
| `T  | ūΚ    | <i>E</i> T | , | 3 2        | R | , .<br>)! | פנ  | ,<br>, | 10 | :   | -<br>- | _   | - ′<br> |   | <b>' -</b><br>- |   |   |     | -                  |      | _   | <b>~</b> L | •     | -       |          | -  |     | <i>4</i> | • • | •   |    | -′  |            | · <b>'</b> - |     | -   | _ •   |   | -        | 00 | WN:       | :    | 2 | <u> </u> | fue | و |
| ٠,٧ | A L   | Y 9        | I | S          | 5 | Ξ (       | ູ່ປ | E 9    | T  | 3   | ):     |     |         |   |                 |   |   |     |                    |      |     |            |       |         |          |    |     |          |     |     |    |     |            |              |     |     |       |   |          |    |           |      |   |          |     |   |
| 33  | '1 T  | ΑI         | N | ٤٤         |   |           |     |        |    | C   | 2 L    | O i | ₹       |   |                 |   | ρ | ₹ 5 | 5                  | 33   | ٧.  | A 1        | ľľ    | V E     | :        |    | i   | 1G F     | •   |     | N/ | M   | E          |              |     |     |       |   |          |    |           |      |   |          |     |   |
| U   | ЗI    |            |   |            |   |           |     |        |    | m t | ΗI     | T   | Ē       |   |                 |   | 5 | 7   | 1 L                | r    | IN: | J 3        | 5     |         |          |    | ¥   | M        |     |     | ME | E T | AL         | S            |     |     |       |   |          |    |           |      |   |          |     |   |
| •   | υZ    | ۶          | L | A 3        | T | I         |     |        |    | ;;  | ₹ 2    | Y   |         |   |                 |   | F | IL  | <b>.</b> T         | = 3  | ,   | ΗN         | Ü     | 3       |          |    | h   | 107      | 7   |     | I  | 1   | DI         | 5 3          | 501 | L V | 5 D   | Ņ | 15       | TΑ | LS        |      |   |          |     |   |
|     |       |            |   |            |   |           |     |        |    |     |        |     |         |   |                 |   |   |     |                    |      |     |            |       |         |          |    |     |          |     |     |    |     |            |              |     |     |       |   |          |    |           |      |   |          |     |   |

DUMMENTS:

Turkey Creek; off road a 30 feet

$$gH = 7.58$$
.

 $T^{\circ} = 23^{\circ}C^{\circ}$ 
 $cord = 650^{\circ}$ 

TAMPLE COLLECTED BY: Marth

| U.S.          | ENVIRONMEN | ITAL | PROTECTION | AGENCY | . REGI | IIV NO   |       |
|---------------|------------|------|------------|--------|--------|----------|-------|
| SYVIRONMENTAL | SERVICES   | DIV. | 25 FUNSTO  | IN RD. | KANS45 | CITY, KS | 56115 |
|               |            |      |            |        |        |          |       |

| ## 74 FR 3 N M E!                                           | NIAL SERVICE | 2 DIA. 52 EUN21          | UN RU. KAI                | V242 CIIII                              | K2 00113                                    |
|-------------------------------------------------------------|--------------|--------------------------|---------------------------|-----------------------------------------|---------------------------------------------|
| TY: 70 ACTNO                                                | : CSXCR SAMN | d: 218 400: _ ME         | DIA: WATE                 | R PL: S P                               | F D                                         |
| LOCATION: DE                                                | SLOGE        | MINE TAILINGS MO PROJECT | T NUM: A3                 | 3 PT: LONG                              | ITUDE:                                      |
| SAMPLE DES:<br>LOCATION: DE<br>LASE/BATCH/S<br>LTORET/SAROA | MU:/_/       | NE TAILINGS (SURF.       | ACE WATER<br>BEG:<br>END: | ) 2 <b>15</b> TI<br>27/37/40 <u>/</u> 4 | ME PROM REF PI<br>SEAST:<br>NORTH:<br>DOWN: |
| INALYSIS FEQUENTAINER                                       | COLOR        | PRESERVATIVE             |                           |                                         |                                             |

IH DISSULVED METALS

COMMENTS:

Location # \$18 on field From map

W07

pH - 7.34' Cond - 205 ' Temp - 27°C'

DAMPLE COLLECTED BY: Williams + Overfelt

| • | D  | ٨ | r | т |  |
|---|----|---|---|---|--|
|   | ٠. | ш | _ |   |  |

| U.               | .5. 3 | DRIVNE | MMEN | TAL  | PROT | FCTION | AGENC | Y, FEG | ION VI | ī  |       |
|------------------|-------|--------|------|------|------|--------|-------|--------|--------|----|-------|
| <b>ENVIRONME</b> | NT4L  | SEPVI  | CES  | DIV. | 25   | FUNST  | N RD. | KANSAS | CITY,  | ΚS | o6115 |
|                  |       |        |      |      |      |        |       |        |        |    |       |

|              |       |            |               |       |                   |    |          |         |            |             |          |    |    |    |          |     |     |             |     |              |     |           |    |            | PL           |    |        |             |     |             |                |                  |     |   |
|--------------|-------|------------|---------------|-------|-------------------|----|----------|---------|------------|-------------|----------|----|----|----|----------|-----|-----|-------------|-----|--------------|-----|-----------|----|------------|--------------|----|--------|-------------|-----|-------------|----------------|------------------|-----|---|
| : C 1        | ٦ī١   | / I :      | ΤΥ            | C 8   | : 5:              |    | : I:     | ĵ       | RI         | V E         | R        | MI | NE | T  | ÀΙ       | LI  | NG  | s           |     |              |     |           |    |            | 2 E          | F  | LA     | TI          | ΤL  | ם נו<br>פענ | :              |                  |     | _ |
| 1AN<br>200   | IPL   | E<br>I     | D<br>N<br>N T | ES:   | : 6<br>: 6<br>! S | I. | i<br>161 | RI<br>E | ν <u>ε</u> | <br>R<br>_/ | мI<br>_/ | NE | T  | AI | LI<br>40 | N G | S ( | <br>su<br>: | RF# | l C ā        | . W | A T<br>EG | 23 | R )<br>G 7 | 0 <u>0</u> 1 | 10 | <br>0, | \ <u>\\</u> | M E | Ö           | FR<br>FA<br>NO | OM<br>ST:<br>RTH | PEF | ρ |
| 3 <b>T</b> ( | ) P 3 | <b>T</b> 4 | <b>/</b> S .  | A R ( | CAC               | )  | ۱J:      | :       |            |             |          |    |    |    |          |     |     |             |     | <del>-</del> |     |           |    |            |              | _  | _      |             |     |             | 00             | WN:              | _   |   |

.NALYSIS REQUESTED:

COLOR PRESERVATIVE MGP NAME CUEL WHITE 5 ML HNG3 WM METALS

+ DZ PLASTIC GREY FILTER/HND3 WO7 IN DISSOLVED METALS

COMMENTS:

Location # 19 on field map

Cond-315, pH-7.46, Temp-25°C,

PLE COLLECTED BY: Williams + Overfelt

JRAFT

FIELD SHEET

|  |  | ΝH | Ē١ | T | À١ | L | ī | E R | <b>V</b> ] | I C | 3 5 | 5 | CI |     | 2 : | ; | Fl | JN | ST | 01 | 4 | R D | • | K A | N S | SAS | ; | CI | TY | 1 | Κ: |  | 115 |  |
|--|--|----|----|---|----|---|---|-----|------------|-----|-----|---|----|-----|-----|---|----|----|----|----|---|-----|---|-----|-----|-----|---|----|----|---|----|--|-----|--|
|  |  |    |    |   |    |   |   |     |            |     |     |   |    | 220 |     |   |    |    |    |    |   |     |   | -   |     |     |   |    |    |   |    |  |     |  |

ACTIVITY DES: DIG RIVER MINE TAILINGS REF LATITUDE:

LOCATION: DESLOGE MO PROJECT NUM: A33 PT: LONGITUDE:\_\_\_\_

DAMPLE DES: SIG RIVER MINE TAILINGS (SURFACE WATER) DATE TIME FROM REF PT LOCATION: DESLOGE MO BEG: 07/2/170 1:5 EAST: \_\_\_\_\_ TASE/SATCH/SMO: \_\_\_/\_ LAB: \_\_\_ END: \_\_/\_ : NORTH: \_\_\_\_

STORET/SARDAD NO: \_\_\_\_

INALYSIS REQUESTED:

IONTAINER COLOR PRESERVATIVE MGP NAME
TUBL WHITE 5 ML HN03 WM METALS
4 OZ PLASTIC GREY FILTER, HN03 W07 IH DISSOLVED METALS

COMMENTS:

Location # 20 on field map

Cond. 310 umbon pH-7.4.
Tamp-26°C'

LAMPLE COLLECTED :Y: Williams & Enos

| U.S.          | CNVIRONMEN | TAL  | PRUTE | CTION  | AGENCY | / REG. | ION VII | ī  |              |
|---------------|------------|------|-------|--------|--------|--------|---------|----|--------------|
| ENVIRONMENTAL | SERVICES   | DIV. | 25    | FUNSTO | N RD.  | KANSAS | CITY,   | ĸs | <b>vo115</b> |

| ENVIRONMENT                     | AL SERVICES                 | DIV. 25 FUNSTON                           | RD. KANSAS        | CITY, KS 00115              |
|---------------------------------|-----------------------------|-------------------------------------------|-------------------|-----------------------------|
| Y: 10 ACT10:                    | COMMES ROXES                | 300 0CC: _ MEDI                           | A: WATER PL       | : 3 P F D                   |
| CTIVITY DES:<br>CESC : NOITADE. | OGE                         | MJ PROJECT                                | RE<br>NUM: 433 PT | F LATITUDE:<br>: LONGITUDE: |
| TOWLIANT DESC                   | G RIVER MINE<br>355<br>:/_/ | TAILINGS(GROUND 'A)  LAB:                 | BEG: JIIET        |                             |
|                                 | CSLUR<br>White              | PRESERVATIVE<br>5 ML HN03<br>FILTER, HN03 | WM METAL          |                             |

: STWENMEL

Spring #1; first one downstream of low water bridge on west side of site; spring coming out of tailings

$$pH = 7.38.$$
 $T^{\circ} = 22^{\circ}C^{\circ}$ 
conk. = 600 ·

TAMPLE COLLECTED BY : Williams / Ehos

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RO. KANSAS CITY, KS 66115 Y: 20 ACTUD: CSXCR SAMNO: 301 QCC: \_ MEDIA: WATER PL: S P F D CCTIVITY DES: RIG RIVER MINE TAILINGS

CCATION: DESLOGE

MO PROJECT NUM: A33 PT: LCNGITUDE:

CAMPLE DES: RIG RIVER MINE TAILINGS (GROUND WATER)

CATION: DESLOGE

MO BEG: 07/2+790 /2:50 EAST:

CASE/BATCH/SMG:

CASE/BATCH/SAROAD NO: TORET/SARDAD NO: \_\_\_\_ .NALYSIS REQUESTED:

JONTAINER GOLOR PRESERVATIVE MGP NAME
JUST WHITE 5 ML HNO3 WM METALS
+ OZ PLASTIC GREY FILTER/HNO3 WO7 IN DISSOLVED METALS

COMMENTS:

Arteston well (south) \$ 50' north of center line of abandoned RR bed

pH = 7.16' TOC = 17°C' cond = 550 .

JAMPLE COLLECTED BY : Martin / Enos

RAFT

FIELD SHEET

|         |                    |                | MENTAL PROTECT<br>ES DIV. 25 FU        |           |                | S 56115                          |
|---------|--------------------|----------------|----------------------------------------|-----------|----------------|----------------------------------|
| Y: 30   | ACT.IJ:            | CSXCR SAM      | NG: 302 4CC: _                         | MEDIA: WA | TER PL: S P F  | D                                |
|         |                    |                | MINE TAILINGS<br>MD PRO                |           |                |                                  |
| GCATIO: | N: DESL<br>TCH/3MB | 0 <b>3</b> E   | MO<br>/ LAB:                           | 8 E G :   | : 07/24/90 (#: | FROM REF PT  SEAST: NORTH: DOWN: |
| ONTAIN! |                    | COLOR<br>WHITE | PRESERVATI<br>5 ML HN03<br>FILTER, HN0 | 3 W07     | METALS         | METALS                           |

COMMENTS:

Location Spring # 2 on field map.

pH-7.25.

Cond -600 jumhos.

Temp - 28%.

TAMPLE COLLECTED BY: Overtilt

| KA   | -           |       |       |     |           |       |         |    |                |               |     |             |            |   |    |     | _     |     |    |    |         |    |     |     |   |      |     |                   |   |     |     |            |       |                     |            |            |    |     |      |    |    |    |   |          |
|------|-------------|-------|-------|-----|-----------|-------|---------|----|----------------|---------------|-----|-------------|------------|---|----|-----|-------|-----|----|----|---------|----|-----|-----|---|------|-----|-------------------|---|-----|-----|------------|-------|---------------------|------------|------------|----|-----|------|----|----|----|---|----------|
|      | ,: <b>4</b> | ı v T | 5.0   |     | U.<br>MEI |       |         |    |                |               |     |             |            |   |    |     |       |     |    |    |         | _  | -   |     | - | -    | -   |                   |   |     |     |            |       |                     |            |            |    | 4   | ٨1   | 15 |    |    |   |          |
|      |             |       |       |     |           |       |         | _  | - <del>-</del> | . r\<br>· = · |     | -           | -          | _ |    | -   | •<br> |     |    |    |         |    |     |     | - |      | _   |                   | - |     |     | ,<br>-     |       | <br>. <del></del> . | . <i>,</i> |            |    |     |      |    |    |    |   | <b>-</b> |
| Y:   |             | 'n    | AC    | T ! | C 1       | :     | c s     | X  | C R            |               | SA  | M           | 4 C        | : | 3  | gg. | 3     | Û   | CC | :  | _       | N  | 1 E | D I | A | :    | W   | Δ Τ               | E | ₹   | f   | L          | :     | S                   | ρ          | F          | :  | ٥   |      |    |    |    |   |          |
| CT   | I١          | 'IT   | Y     | C ! | E S :     | <br>: | ėΙ      | G. | R              | I             | V 5 | Ŕ           | <u>-</u> - | I | ٧E |     | T 4   | I   | LI | N( | <br>G S |    |     |     | - |      | -   |                   | - |     |     | E          | <br>F | L                   | AΤ         | <br>I1     | ľU | DE  | :    |    |    |    |   |          |
| . ac | ΑŢ          | IC    | N:    |     | DES       | ŝL    | O G     | Ē  |                |               |     |             |            |   |    |     |       |     |    |    |         | J: | E C | T   | N | U M  | :   | A                 | 3 | 3   | ţ   | T          | :     | L                   | CN         | G I        | T  | UD  | E :  |    | _  |    |   |          |
| AM   | PL          | E     | 0.6   | S   | : '       | 3 I   | <b></b> | R  | <br>I V        |               |     |             |            |   |    |     |       | . I |    |    |         | RO | יטנ | n C | ) | w A  | T   | = <b>-</b><br>E R | ) | -   | D/  | <b>5</b> 7 |       |                     | T          | IN         | !E | Ī5  | FF   | OM | R  | EF | : | PT       |
| ാവ   | Δ.          | T     | IN:   | . ! | O E S     | 5 L   | O G     | -  |                |               |     |             |            |   |    |     | •     | 4Ω. |    |    |         |    |     |     |   | - 73 | F ( | •                 |   | .7  | 7 : | ~          | 19    | Æ.                  | 1.         | <b>3</b> : |    | 77  | TF ∆ | ST | •  |    |   | _        |
| AS   | E           | ' B A | TC    | h   | / S:      | 10    | :       |    |                |               | _/  | <u>'</u> _' | _          |   |    |     | _     |     | L  | A  | B :     | -  |     | _   |   | 6    | NI  | D:                | _ |     | /_  |            | /_    |                     | _          | _:         | _  | _(( | ×    | RT | Н: | _  |   |          |
| TO   | R:          | T/    | ' S A | (R) | IA C      | )     | ΝO      | :  | _              | _             |     |             | -          |   |    |     |       |     |    |    |         |    |     |     |   |      |     |                   |   |     |     |            |       |                     |            |            |    |     | DC   | WN | :  | -  |   |          |
| NA   |             |       |       |     |           |       |         |    |                |               |     |             |            |   |    |     |       |     |    |    |         |    |     |     |   |      |     |                   |   |     |     |            |       |                     |            |            |    |     |      |    |    |    |   |          |
| NO.  | Tá          | Ιì    | EF    | •   |           |       |         | C  | CL             | Ü             | R   |             |            |   |    |     |       |     |    |    |         |    |     |     |   |      |     |                   |   |     |     |            |       |                     |            |            |    |     |      |    |    |    |   |          |
| เปย  | I           |       |       |     |           |       |         | W  | ΗI             | T             | Ē   |             |            |   | 5  | , ' | 41    | . ! | HN | o: | 3       |    |     |     | 1 | WM   | 1   |                   | 1 | ¥ E | T   | L          | S     |                     |            |            |    |     |      |    |    |    |   |          |

FILTER/HN03 W07 IH DISSOLVED NETALS

JOMMENTS:

Location # Spring # 3

pH - 7.07 Cond - 1100 unhas 1 Temp - 28%.

DAMPLE COLLECTED BY: Overfoll

| . ベル              |                 |           |                   |         |                  | : 1        | ď          |            |             | ыv             | <b>T</b> 5 |        | AT NA S | = At | TAI        |         | a a      | 0.7     |           | · •            | T O    | R.I | A G   | EN  | CI   | ١,   | į       | ₹E           | GI           | 0 N           | i V      | II      |     |         |                |          |         |     |    |
|-------------------|-----------------|-----------|-------------------|---------|------------------|------------|------------|------------|-------------|----------------|------------|--------|---------|------|------------|---------|----------|---------|-----------|----------------|--------|-----|-------|-----|------|------|---------|--------------|--------------|---------------|----------|---------|-----|---------|----------------|----------|---------|-----|----|
|                   | Ξ.\<br>         | 17        | I                 | 12      | M M              | E <b>N</b> | 11         | A 1        | -           | SE             | RI         | / I (  | C = :   | S    | DI'        | ٠.      |          | 25      |           | FUI            | N S    | TC  | N<br> | R [ |      | K.   | AN:     | 5 A          | s<br><b></b> | CI            | T Y      | ' ,<br> | K : | 5 4     | 61             | 15       |         |     |    |
| · Y :             | ;               | 0         | 7                 | C 1     | [4               | 0:         | :          | C :        | S X         | C R            |            | A      | MN:     | 0:   | 31         | ) 4     | ن<br>    | cc      | :         | _              | М      | E D | IA    | :   | wi A | T    | ER      |              | P L          | :             | S        | P       | F   | D       |                |          |         |     |    |
| 4 G T             | IV.             | /I        | Y                 | :       | 3.5              | S:         | L.         | 3 )<br>0 ' | G<br>G      | ۲<br>          | I١         | 1 =    | २ ।     | νI   | N E        | 7       | ND<br>YI | LI      | N(        | G S<br>Q Q .   | JE     | CT  | <br>N | UM  | :    | A.   | 33      |              | RE           | ;<br>:        | L 4      | T I     | T   | J D 8   | :<br>) E :     |          | - R     |     |    |
| 1AN<br>170<br>149 | 4.T             | [](       | N C<br>T L        | :<br>C+ | (.<br><b>\</b> } | E S        | 10         | :) (       | ; E         |                |            | _/_    | _/.     |      | Τ.         | 4 I     | LI<br>MO | NG<br>L | S<br>A    | (G             | <br>20 | UN  | D     | W A | T &  | E R: | )<br>C1 | <b>3</b> /// | AT XX        | ਵ<br>/੧<br>/_ | ig<br>   | 16      | ME  | 0       | EA<br>NO       | ROM      | :<br>H: | = F | PT |
| ANA<br>DUR<br>OUR | IT 4            | AI!<br>PI | 1 ē<br>L A<br>T S | R<br>S1 | rı               | c<br>P     | ) .<br>) i | a          | C<br>H<br>G | OL<br>HI<br>RE | .0 # T E Y | :<br>U | l       |      | Š<br>F     | H<br>IL | 5        | HN<br>R | 10.<br>HI | 3<br>NO:<br>Ng | 7      |     |       | MM  |      |      | M       | T            | AL           |               | เอเ<br>ใ | ve G    | 20  | ме<br>2 | eta<br>†<br>Ma | ils<br>2 | 13      |     |    |
| Co                | no<br>Oli<br>Te | d.        | P                 | 7       |                  | )C<br>,1   | )<br>,     | , C        |             | M              | ic         | 10     | M       | de   | <b>5</b> - | Υ       | ומלנ     | 05      |           |                |        |     |       |     |      |      |         |              |              |               |          |         |     |         |                |          |         |     |    |

SAMPLE COLLECTED BY : WILLIAMS MAKIN

|               | HANTODNIA  | iT A I | 0007 | CTTON | ACCNE  | v. 556 | TOU VI | <del>-</del> |         |
|---------------|------------|--------|------|-------|--------|--------|--------|--------------|---------|
| 0.5.          | ENVIRONMEN | HAL    | PKUI | CITUM | AGENC  | 17 125 | TOW AT | 4            |         |
| ENVIRONMENTAL | SERVICES   | DIV.   | 2.5  | FUNST | במא אנ | KANSAS | CITY   | ΚS           | o o 115 |

| SNVIRUNMEN                                        | MINT ZEKATOU | S DIV. 25 FUNSION           | N RUL KAI                | N282 CTITY K                          | 5 nollo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------|--------------|-----------------------------|--------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Y: 70 ACTNO                                       | CSXCR SAMN   | C: 305 QCC: _ MED.          | IA: WATE                 | R PL: S P F                           | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LOCATION: DES                                     | SLOGE        | MINE TAILINGS<br>No project | NUM: A3                  | 3 PT: LONGI                           | TUDE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AMPLE DES: DCATION: DES LASE/BATCH/SS TORET/SARDA | 40:/_/       | NE TAILINGS (GROUN) MO LAB: | D WATER)<br>BEG:<br>END: | 22 E TIM<br>07/2/193 <u>2:</u><br>//: | E FROM REF PT<br>\$\frac{2}{5} \text{E4ST:}  \text{NORTH:}  \text{NORTH:}  \text{NOWN:}   \text{NOWN:}  \text{NOWN:}  \text{NOWN:}   \text{NOWN:}  \text{NOWN:}   \text{NOWN:}   \text{NOWN:}   \text{NOWN:}     \text{NOWN:}                                                                            \qq       \q |
| : MALYSIS REGULATION TAINER TUBE                  | COLUR        | PRESERVATIVE<br>5 ml Hnd3   |                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

DUST WHITE 5 ME HNUS WM METALS

DZ PLASTIC GREY FILTER, HNOS WO7 IH DISSOLVED METALS

CINEMMETS:

Cocatron is Spring # 5 on field map.

PH-10.62. Cond - 2100.
Tomp - 21°C.

DAMPLE COLLECTED BY: Williams + Ems

~ . ~ ~

| N 1   | 7 1         | •            |          |              |              |     |           |        |        |            |       |          |                       |         | _          |     | _     | 2.0                | _                |          |          |     |     |      |                |       |                  |        |       |     |          |       |                                        |       |     |     |     |                   |
|-------|-------------|--------------|----------|--------------|--------------|-----|-----------|--------|--------|------------|-------|----------|-----------------------|---------|------------|-----|-------|--------------------|------------------|----------|----------|-----|-----|------|----------------|-------|------------------|--------|-------|-----|----------|-------|----------------------------------------|-------|-----|-----|-----|-------------------|
|       | ;2 <b>)</b> | \a V         | יב ז     |              | « = »        |     |           |        |        |            |       |          |                       |         |            |     |       |                    |                  |          |          |     |     |      |                |       |                  |        |       |     |          | . \$  | 4.4                                    | . 1 1 | 5   |     |     |                   |
|       |             |              | <u>.</u> |              |              |     |           |        | - ~    |            | -     |          | <b>-</b> <del>-</del> |         | •<br>      |     | -     | · ·                | - <del>-</del> - | <b></b>  |          |     |     |      | ~ <del>~</del> |       | ~ <del>-</del> - |        |       |     |          | )<br> | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; |       |     |     |     | -                 |
| : Y : | :           | 3 ()<br>     | A (      | : T          | 10:          | :   | C S       | X C    | ₹<br>  | S A        | M:    | 40       | :                     | 3 J     | 6<br>      | 30  | C.    | : .                |                  | ME       | D I      | A : | W   | iΑ   | TE             | R<br> | P                | L:     |       | - P | ۶ ــ     | ່ ບ   |                                        |       |     |     |     | _                 |
| , C . | TI          | v I          | ΤΥ       | יבי          | Ξ <b>ς</b> : | :   | 3 I       | <br>:3 | <br>≀I | V :        | <br>: | N        | IN                    | <br>Ē   | — —<br>Т А | IL  | . I I | NG:                | s — ·            |          |          |     |     |      |                |       | <br>R            | <br>56 | <br>L | д Т | IT       | ם ט'  | E:                                     |       |     |     |     |                   |
| 27    | C 4 '       | 7 7          | 3 44 6   |              | 7, 20        | 7.1 | n :       |        |        |            |       |          |                       |         | 5.4        | 1.1 |       | 200                | 3 1              | E (*)    | 7        | AH  | M . | ,    | 1.3            | 7     | O                | т.     | - 1   | Oti | $c.\tau$ | T ! ! | n F                                    |       |     |     |     | _                 |
| ٠,    | 4P I        | LE           | <u>.</u> | - <b>-</b> - | :            | 3 I | <b></b> : | 2 T    | 7 E    | <b>₹</b> - | M     | E N :    | <b></b> .             | <br>T 4 | IL         | IN  | IG:   | - <b></b><br>S ( , | - <del>-</del> - | าน<br>วน | ת<br>פור |     | AT  | l Ei | <br>K)         |       | JA               | Tä     | /2    | 3   | ī        | 12 <  | · F                                    | - R : | )M  |     | 2   | <del>-</del><br>T |
| . :(  | 04          | TI           | אנ       | :            | ) <u>=</u> 9 | S L | ១៤        | =      |        |            |       |          |                       |         | 14         | i)  |       | -                  |                  |          |          |     | 3 8 | 6    | :              | .7    | - ا              | ۲ د    | ٠,    | 1   | 4:       | 15    |                                        | -     | 7:  | _   |     | ۷. ا              |
| 14:   | 3 E 1       | / 3          | AT(      | H.           | / 51         | 13  | :         |        |        | _/         | _'    | <b>/</b> |                       |         | _          |     | L     | 1 B :              | :                |          | _        |     | ΞN  | 1)   | :              |       | /_               | _/     |       |     | _:       |       | . 1                                    | 10 F  | TH  | : _ | . ( | ء مم<br>۔         |
| . T : | 3 A C       | 5 <b>T</b> . | 15,      | 1 5          | ) A (        | )   | ИΟ        | :      |        |            |       | _        |                       |         |            |     |       |                    |                  |          |          |     |     |      |                |       |                  |        |       |     |          |       | Ĺ                                      | ים (  | in: | R.  | 63  | = 2               |
|       |             |              | Ιŝ       |              |              |     |           |        |        |            |       |          |                       |         |            |     |       |                    |                  |          |          |     |     |      |                |       |                  |        |       |     |          |       |                                        |       |     |     |     |                   |
|       |             |              | 13       |              |              |     |           |        |        |            |       |          |                       |         |            |     |       |                    |                  |          |          |     |     |      |                |       |                  |        |       |     |          |       |                                        |       |     |     |     |                   |
| . U!  | BI.         |              |          |              |              |     |           | 4H     | IT     | E          |       |          |                       | 5       | ML         | . Н | INI   | C 3                |                  |          |          | '/  | M   |      |                | ME    | TΑ               | LS     |       |     |          |       |                                        |       |     |     |     |                   |

. DZ PLASTIC GREY FILTER, HNO3 **70k** IH DISSULVED METALS

: STMEMMEC

Leachate Seep Area -- south of well DG-3. PH = 7.39. 7/26/90 cond = 1400 mm unhas 1

RAFT

FIELD SHEET

| , ,      |       |                   |      |       | J . , — - 1 |        |        |         |     |       |
|----------|-------|-------------------|------|-------|-------------|--------|--------|---------|-----|-------|
|          | 1.5.  | <b>ENVIRONMEN</b> | TAL  | PRUTE | CTION       | AGENCY | () REG | IIV KCI |     |       |
| ENVIRONM | ENTAL | SERVICES          | DIV. | 25    | FUNSTO      | N RD.  | KANSAS | CITY,   | K S | 56115 |

|                                 | . ~               |                         |               |                   |       |
|---------------------------------|-------------------|-------------------------|---------------|-------------------|-------|
| Y: 30 ACT10:                    | CSXC2 SAMMC: 307  | QCC: _ MEDIA:           |               | SPFD              |       |
| .230 YTIVITO.<br>.CIVITO.: DESL | BIG RIVER MINE TA | TLINGS<br>10 PROJECT NO | IM: A33 PT: 1 | LONGITUDE:        |       |
| .OCATION: DESL                  | G RIVER MINE TAIL | INGS (GROUND V          | SEG: 07/27/90 | 0 <b>/6:00</b> 8# | AST:  |
| TASE/BATCH/SMO<br>TORET/SARDAD  | NO:/_/            | LAB:                    | END://_       | : NO              | ORTH: |

WALYSIS REQUESTED:

JUNTAINER COLOR PRESERVATIVE MGP NAME
TURI WHITE 5 ML HNO3 WM METALS
OUT PLASTIC GREY FILTER, HNO3 WO7 IH DISSOLVED METALS

JUMMENTS:

Landfill Well

pH = 6.92. conl = 550. fo = 17°C.

JAMPLE COLLECTED BY : Martin / Enos

page/pages has/have been removed for confidentiality reasons.

| `RAFT                                               |                                            |                       | FIELD S                 |                          |                                       |                                      |        |
|-----------------------------------------------------|--------------------------------------------|-----------------------|-------------------------|--------------------------|---------------------------------------|--------------------------------------|--------|
| ENVIRON                                             | U.S. EN<br>MENTAL 3                        | VVIRGNMEN<br>SERVICES | TAL PROTEC<br>DIV. 25 F | TION AGENC<br>UNSTON RD. | Y, REGION<br>KANSAS CII               | VII<br>TY, KS 06115                  |        |
| Y: PO ACT                                           | ทอ: CSXC                                   | R SAMNC:              | 309 4CC:                | _ MEDIA: W               | ATER PL: '                            | 5 P F D                              |        |
| .OCATION:                                           | DESLOGE                                    |                       | NE TAILING<br>MO PR     | DJECT NUM:               | A33 PT: 1                             | ATITUDE:<br>CNGITUDE:                |        |
| JAMPLE DES<br>LOCATION:<br>JASE/DATCH<br>JTORET/SAR | S: BIG RI<br>DESLOGE<br>N/SMO:<br>ROAD NO: | VER MINE              | TAILINGS(<br>MO<br>LAB  | GROUND WAT<br>3E<br>: EN | ER) DATE 2<br>G: 07/2774<br>D: _/_/S/ | TIME FROM  A8:/5 HAST:  NORTH  COWN: | REF PT |
| lusi                                                | C (                                        | JLOR<br>HITE          | 5 ML HNG3               | IVE MGP<br>WM<br>03 W07  | METALS                                | DLVEC METALS                         |        |
| Tammen <b>ts:</b>                                   | DG -5<br>Maniter                           | - Oej<br>Well         | oth 10.75               | 5                        |                                       |                                      |        |

 $\rho H = 6.56$ .

cond = 1400.  $\rho = 180C$ .

water has little sediment both on sampling and on purging.

SAMPLE CULLECTED BY : Martin Enos

| ENVIRON                                         |                                  |             | ONMENTAL  | 9.12                    | ION AGENC             |                             |                  |                                 | 5                          | ı <b></b> -  |
|-------------------------------------------------|----------------------------------|-------------|-----------|-------------------------|-----------------------|-----------------------------|------------------|---------------------------------|----------------------------|--------------|
| -CTIVITY D                                      | ES: 3                            | IG RIV      | ER MINÉ T | AILINGS                 |                       |                             | REF LATI         | TUDE:                           |                            | -            |
| AMPLE DES<br>COATION:<br>ASE/EATCH<br>TORET/SAR | : 31G<br>DESLO<br>/SMC:<br>DAD N | RIVER<br>GE | MINE TAI  | LINGS (GR<br>MO<br>LAP: | ROUND WAT<br>BE<br>En | ER) 07/2<br>G: 07/2<br>D:/_ | 150 08<br>-Sph - | ME FRO<br>:25 EAS<br>NOR<br>DOW | M REF P<br>T:<br>TH:<br>N: | ፣<br>-<br>ን5 |
| :NALYSIS R<br>IGNTAINER<br>IUBI<br>+ OZ PLAST   |                                  | COLOR       | 5 M       | IL HNG3                 | МW                    | META                        | LS               | C METAL                         | s                          |              |
| Jamments:                                       | DC-<br>Monit                     | 5<br>Well   | Depi      | th 10.7                 | 's feel               | ,                           |                  |                                 |                            |              |
|                                                 |                                  |             |           | of                      | 309                   | 7                           |                  |                                 |                            |              |

SAMPLE COLLECTED SY : Martin Enos

|                      | <u> </u>  | 4 V I     | [ R                    | 0 N            |            |                                 |          |               |     |     |    |     |     |     | A T<br>O I |            |            |         |                     |     |    |            |    |    |     |                 |                   |              |            |      |      |    |   |     |           | s<br>   | 50  | 61             | 15                      |     |       |                | _ |
|----------------------|-----------|-----------|------------------------|----------------|------------|---------------------------------|----------|---------------|-----|-----|----|-----|-----|-----|------------|------------|------------|---------|---------------------|-----|----|------------|----|----|-----|-----------------|-------------------|--------------|------------|------|------|----|---|-----|-----------|---------|-----|----------------|-------------------------|-----|-------|----------------|---|
| Υ:                   | ,         | (1)       | Ä                      | C T            | 14:        | ) <b>:</b>                      | _ (      | : <b>S</b>    | x c | R   | S  | A M | N ( | :   | 3          | 10         | )          | 10      | C                   | :   | _  | М          | ΕC | Ι  | A : |                 | 1 A               | TE           | R          | 1    | ²L   | :  | 5 | Þ   | F         | ת<br>ת  | )   |                |                         |     |       |                |   |
|                      | Α1        | [I        | NC                     | :              | <u>C</u> ! | <u>:</u> 5                      | L        | G             | Ξ   |     |    |     |     |     |            |            | M          | 9       | i                   | PR  | ٥. | JE         | C7 | ٢  | ΝU  | M:              | :                 | 43           | 33         | i    | 7    | :  | L | J N | GI        | ΤL      | ) C | E : .          |                         |     | _     |                | • |
| MA<br>CC<br>CA<br>CT | IPL<br>AT | ::<br>(8) | 0<br>3 N<br>4 T<br>7 S | ES<br>CH<br>AP | : 7:       | 8<br>8<br>8<br>6<br>6<br>0<br>0 | IO<br>Lo | ;<br>) G<br>: | ₹ I | V : | ę  | /_  | ./_ | \ E | T          | AI         | [ <b>L</b> | IN<br>O | iG:                 | S ( | G  | ? O        | UN | 13 | H   | IA1<br>36<br>43 | [ E<br>E G<br>H D | R)<br>:<br>: | 01         | 0.// | ながって | 7  |   | 0.  | I M<br>8: | 7/2<br> |     | FR<br>FA<br>NO | OM<br>ST:<br>RTH<br>WN: | R E | <br>3 | ۶۱<br><b>ت</b> | 5 |
| A N C                |           |           |                        |                |            |                                 |          |               |     |     | 23 |     |     |     | ρ          | <b>P</b> 3 | 5          | £R      | <b>. V</b> <i>i</i> | A T | ΙY | <b>/</b> E |    |    | 14  | IGF             | ,                 |              | <b>N</b> . |      | /3   | /1 | 0 |     |           |         |     |                |                         |     |       |                |   |

5 ML HNU3

. 3Z PLASTIC 32 EY

FILTER, HNG3

W07 IH DISSOLVED METALS

DOMMENTS: Ug 1

Manitor wall

37.5 feet

pH = 6.78.

cond = 900'

p = 15°C'

Water is clear ou sampling.

Very rusty to somewhat rusty on purging.

SAMPLE COLLECTED SY : Martin Enos

| 64 <b>VI</b> RON                                   |                                                 | TENTAL PROTECTION 25 DIV. 25 FUNCTO      |                              |                            | o <b>611</b> 5                             |
|----------------------------------------------------|-------------------------------------------------|------------------------------------------|------------------------------|----------------------------|--------------------------------------------|
| -Y: 90 ACT                                         | HO: CSXCR SAM                                   | 18: 311 GCC: _ MED                       | IA: WATER                    | PL: S P = D                |                                            |
|                                                    |                                                 | MINE TAILINGS MO PROJECT                 | NUM: A33                     | REF LATITUD<br>PT: LONGITU | E:<br>DE:                                  |
| AMPLE SES<br>LOCATION:<br>LASE/DATCH<br>JTORET/SAR | : BIG RIVER M.<br>DESLOGE<br>/SMC:/_<br>OAD NO: | INE TAILINGS (GROUN<br>MO<br>/ LAB:      | O WATER)<br>BEG: 0<br>End: _ | 712/190 01:35<br>-1-21     | FROM REF PT<br>EAST:<br>NORTH:<br>DOWN: 45 |
| JUBI<br>• DZ PLAST                                 | COLOR<br>WHITE<br>IC GREY                       | PRESERVATIVE<br>5 ML HNC3<br>FILTER/HNC3 | 4 MK<br>1 70k                | ETALS<br>H DISSULVED M     | ETALS                                      |
| COMMENTS:                                          | Moniter Well                                    | 06-3 Well d                              | epth                         | 45 feet                    |                                            |

pH = 6.56 card = 1100 ·  $T^0 = 17^{\circ}C$  ·

Rusty water, both on purging and Sampling.

Only \$\int 200 ml on sampling; so split between 2 samples

|                                                          |                                          | ENTAL PROTECTION<br>DIV. 25 FUNSTO |                                        |                                                           |
|----------------------------------------------------------|------------------------------------------|------------------------------------|----------------------------------------|-----------------------------------------------------------|
| Y: PO ACTHO                                              | : CSXCF SAMNO                            | : 312 QCC: _ MED                   | IA: WATER PL:                          | S ° F D                                                   |
|                                                          |                                          |                                    |                                        | LATITUDE:                                                 |
| AMPLE DES:<br>DCATION: DE<br>DASE/BATCH/S<br>TORET/SARDA | 815 RIVER MIN<br>SLOGE<br>MC://<br>D NO: | NE TAILINGS (GROUN<br>140<br>LAB:  | D WATER) DATE<br>BEG: 37/237<br>END:/_ | TIME FROM REF PT<br>0009:00 EAST:<br>NORTH:<br>OOWN: 30.5 |
| -                                                        |                                          | PRESERVATIVE<br>5 ML HNO3          | _                                      |                                                           |

DZ PLASTIC GREY FILTER, HNO3 **#**07 IH DISSOLVED METALS

DAMPENTS: Manifor Well DG-2 Well depth 30.5 for

pH = 6.45. To = 16°C. cond = 700.

Fair amount of Schiment both sampling & csp. purging

TAMPLE COLLECTED BY : Martin Enes

|            | EN       | ۷I | 20      | N.  |           |       |               |     |    |     |    |     |    |     |    |     |            |         |         |     |          |     |    |     |     |          |            |              |        |            |    | N<br>IT |    |                                       | K \$     | á          | 6        | 11: | 5             |   |     |         |            |
|------------|----------|----|---------|-----|-----------|-------|---------------|-----|----|-----|----|-----|----|-----|----|-----|------------|---------|---------|-----|----------|-----|----|-----|-----|----------|------------|--------------|--------|------------|----|---------|----|---------------------------------------|----------|------------|----------|-----|---------------|---|-----|---------|------------|
| : Y :      | ,        | リー | 40      | , T | NO        | :     | C             | 5 X | ξ. | ₹   | Ş: | A M | NO | :   | 3  | 14  |            | i C     | C :     |     | -        | M ! | ED | I / | ۱:  | W        | A 1        | Γ.E.         | R      | ,<br>,     | L: | S       |    | • • • • • • • • • • • • • • • • • • • | F        | D          |          |     |               |   |     | <b></b> |            |
| TO:        | IV<br>AT | IT | Y<br>N: | 0   | <br>3<br> | :     |               | I 3 |    | ? I | ٧  | ER  | 4  | Ί   | ΝĒ | T   | A :        | IL<br>) | I î     | NG: | S<br>0 J | ΙĒ  | CT |     | NU! | M :      |            | 43           | 3      | <br>R<br>P | EF | L       | Α' | T I<br>IG                             | TU<br>IT | <b>0</b> : | :<br>) E | :_  |               |   | -   | <br>    |            |
| 36.<br>26. |          |    |         |     |           |       |               |     |    |     |    |     |    | v E | T  | 4 I | L I        | [ N     | GS<br>L | 3 ( | <br>3 R  | 201 | UN | ס   | W   | AT<br>BE | E 4<br>G : | ₹)<br>:<br>: | ა:<br> | 0A         | 36 | 91)     |    | 6                                     | M E      | 0          |          |     | м<br>Т:<br>ТН |   | ř   | PT      | ^ <i>L</i> |
| STO<br>GNA | LY       | 12 | S       | 2   | <u> </u>  | i U i | <del></del> S | T : |    | :   |    |     | _  |     | P  | RE  | <b>S</b> : |         | ١٧      | 4 T | ΙV       | ١Ę  |    |     | M   | GΡ       |            |              | N A    | ME         |    |         |    |                                       |          |            | : ט      | JWI | N:            | • | _4. | _#      | -7         |

AHITE

5 ML HNO3

. UZ PLASTIC GREY FILTER, HNO3

W07

IH DISSOLVED METALS

: STAPMAMOD

Location minis Temporary Well #1 on field map

pH - 7.15. cond - 470. Temp - 25°C.

SAMPLE COLLECTED BY: Overtelt / Williams

| IJ <b>.</b> S | FNVIRGNMEN | ITAL | PROTE | A MOITS | GENCY | regi   | ION VII | [  |       |
|---------------|------------|------|-------|---------|-------|--------|---------|----|-------|
| ENVIRGNMENTAL | SERVICES   | DIV. | 25    | FUNSTON | RD.   | KANSAS | CITY,   | KS | 56115 |

| ENVIRGNMER                                             | ITAL :      | SERVIC       | 25 DI  | .V. 25 | FUNSTON | RD. K   | ANSAS CIT                 | Y, KS 561 | 15   |
|--------------------------------------------------------|-------------|--------------|--------|--------|---------|---------|---------------------------|-----------|------|
| Y: 90 ACTNO:                                           | CSX         | CR SAM       | INC: 3 | 15 QCC | _ MEDI  | A: WAT  | ER PL: S                  | P F D     |      |
| CTIVITY DES:                                           |             |              |        |        |         |         |                           |           |      |
| DAMPLE DES: 8 DOCATION: DES DASE/BATCH/SM TORET/SARDAD | Lase<br>:0: | /_           | /      | MO     |         | 3 E G : | -07 <i>1<b>27</b>1</i> 90 | 11:32 EA  | 1ST: |
| NALYSIS REGU<br>CONTAINER<br>CUBI<br>- DZ PLASTIC      | M P         | OLDR<br>HITE | 5      |        | 03      |         |                           | LVED MET/ | ırz  |

.OMMENTS:

Temporry well sample collected on NW side of tailings pile. Cocation minime 4#2 on field map water table 9 ft well depth 12 ft

pH - 7.05 Cond - 420 umhos Temp - 25%

SAMPLE COLLECTED EY: Williams L Overfilt

| U.S.          | ENVIPONMENT. | AL PRO | STECTION  | AGENCY | . REGI | ON VII |          |
|---------------|--------------|--------|-----------|--------|--------|--------|----------|
| ENVIRGNMENTAL | SERVICES O   | IV. 2  | 25 FUNSTO | N RD.  | KANSAS | CITY,  | KS 56115 |

| : Y:        | ₹(+ AC        | TNJ:         | CSXCR                | SAMNC:  | 316 v(        | C: _ 4ED:       | IA: WAT               | ER PL:         | SPFO                 |                                      |      |
|-------------|---------------|--------------|----------------------|---------|---------------|-----------------|-----------------------|----------------|----------------------|--------------------------------------|------|
| CTI<br>LCCA | YTIV<br>:NCIT | 053:<br>05SL | wIG R<br>.üGΞ        | IVER MI | NE TAIL<br>OM | INGS<br>PROJECT | NUM: A                | RSF<br>33 PT:  | LATITUDE<br>LONGITUD | :                                    |      |
| 3438        | / BATC        | H/SMC        | (3 RIV<br>.068<br>): | /_/     | TAILIR<br>MO  | NGS (GROUNI     | WATER<br>BEG:<br>END: | 07/27/9<br>//_ | n <b>[5.8</b> ]      | FROM REF<br>EAST:<br>NORTH:<br>DOWN: | = P1 |
|             |               |              | STED:                |         | PRESEN        | RVATIVE         | MGP                   | NAME           |                      |                                      |      |

TONTAINER COLOR PRESERVATIVE MGP NAME
TUBL WHITE 5 ML HNOB WM METALS
TO DE PLASTIC GREY FILTER, HNOB WO7 IN DISSOLVED METALS

COMMENTS:

Temporary well sample collected on N end of tailings pile. Location is minimall #3 on field map

94-6,93.

Cond-600 jumbos.

Temp - 2002'

JAMPLE COLLECTED DY: Overtelt + Williams

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 56115 -Y: 40 ACTNO: COXOR SAMNO: 317 GCC: \_ MEDIA: WATER PL: S P F O ACTIVITY DES: BIG RIVER MINE TAILINGS REF LATITUDE: LOCATION: DESLOGE MO PROJECT NUM: A33 PT: LONGITUDE: DAMPLE DES: BIG RIVER MINE TAILINGS(GROUND WATER) DATE FROM REF PT LOCATION: DESLUGE MD BEG: 07/27/90 BEAST: LASE/BATCH/SMD: // LAB: END: // : NORTH: DOWN: INALYSIS REQUESTED: COLOR PRESERVATIVE MGP NAME 5 ML HNO3 ЯM METALS + DZ PLASTIC GREY FILTER/HND3 WO7 IH DISSCLVED METALS Temperary well sample collected near Wi-vol # 3. Location mini-well # 4 on COMMENTS: field map. Depth-12 ft

pH - 7.11.

Coad - 700 jumbos.

7emp - 20°C.

LAMPLE COLLECTED BY: Overtelt / Williams

water level - 9ft

|                          | ,        |   |     |   |    |    |   |   |     |    |             |                |          |    |    |    |    |   |   |   | _  | -     |     | -  | - |   | <br>     |    |     |   |   |    |    |   |       |   |   |     |    |     |   |          |    |    |       |   |      |                |   |
|--------------------------|----------|---|-----|---|----|----|---|---|-----|----|-------------|----------------|----------|----|----|----|----|---|---|---|----|-------|-----|----|---|---|----------|----|-----|---|---|----|----|---|-------|---|---|-----|----|-----|---|----------|----|----|-------|---|------|----------------|---|
|                          | <u> </u> | V | ΙR  | 0 |    |    |   |   |     |    |             |                |          |    |    |    |    |   |   |   |    |       |     |    |   |   | и<br>5 Т |    |     |   |   |    |    |   |       |   |   |     |    |     |   | 5        | ó  | 61 | 15    | i |      |                |   |
| `Y:                      |          | 0 |     | C | T! | 10 | : | _ | C : | 5) | ( C         | . <del>-</del> | _        | \$ | Δ! | 15 | 10 | : | 3 | 1 | 3  | <br>{ | C ( | :  | : | _ | 1E       | 01 | [ A | : | k | ΙA | TE | R | <br>P | L | : | 5   | F  | · • | F | <u>-</u> | )  |    |       |   | <br> | · <del>-</del> | _ |
| T 3 C .                  |          |   |     |   |    |    |   |   |     |    |             |                |          |    |    |    |    |   |   |   |    |       |     |    |   |   |          |    |     |   |   |    |    |   |       |   |   |     |    |     |   |          |    |    |       |   |      |                |   |
| MA.<br>30.<br>24.<br>24. |          |   |     |   |    |    |   |   |     |    |             |                |          |    |    |    |    |   |   |   |    |       |     |    |   |   |          |    |     |   |   |    |    |   |       |   |   |     |    |     |   |          |    |    |       |   |      |                |   |
| AV.<br>ND.<br>6UI        | T A      | I | N E | R |    |    |   |   |     | ,  | ) ()<br>  H | L              | <u>ာ</u> | Ε  |    |    |    |   | , | ; | ΜI | _     | H.  | 40 | 3 |   | Ē        |    |     | W | M |    |    | M | ۲,    | L |   | i a | L۷ | / E | D | Ņ        | 15 | TA | i L S | 5 |      |                |   |

: STMEMMOD

BKg. Spring -- north side of Big River in Bone Hole Area

pH = 7.04.
cond = 550 umhos:  $T = 17^{\circ}C$ .

SAMPLE COLLECTED DY: Martin/Enas

| U.S.          | ENVIRONMEN | TAL  | 22 <b>0T</b> 6 | A MCITS | GENCY | '≠ REG | IIV NOI |     |       |
|---------------|------------|------|----------------|---------|-------|--------|---------|-----|-------|
| ENVIRGNMENTAL | SERVICES : | .VIC | 2.5            | FUNSTON | RD.   | KANSAS | CITY,   | K S | 56115 |

|            |              |             |             |             |      |     |     |     |           |           |    |      |     |     | PL:                |              |      |           | <br>           |  |
|------------|--------------|-------------|-------------|-------------|------|-----|-----|-----|-----------|-----------|----|------|-----|-----|--------------------|--------------|------|-----------|----------------|--|
| 10T<br>10C | IVII<br>ATIO | TY (<br>ON: | 015:<br>015 | 310<br>1039 | G RI | VER | MIN | 5 T | AIL<br>MO | ING<br>PR | 01 | T NU | IM: | 433 | REF<br>P <b>T:</b> | LATI<br>LONG | TUD! | 5:<br>05: | <br>. <u> </u> |  |
|            |              |             |             |             |      |     |     |     |           |           |    |      |     |     | DATE               |              |      |           |                |  |

LOCATION: DESLUGE MD BEG: C7/27/90 15:45 EAST:

DASE/RATCH/SMO: \_\_\_\_/\_\_ LAB: \_\_\_\_ FND: \_\_/\_\_\_ NGRTH:

TORET/SARDAD NO: \_\_\_\_\_

ANALYSIS REQUESTED:

COLOR PRESERVATIVE MGP NAME
CUBI AHITE 5 ML HN03 WM METALS
CZ PLASTIC GREY FILTER, HN03 W07 IH DISSOLVED METALS

: STMEMMCI

North end of funnel under site; Bone Hole Area

pH= 7.54 cond = 650 um hos T = 1900

TAMPLE COLLECTED DY: Martin/Enos

| ACTIVITY DES: AIG RIVER MINE TAILINGS REF LATITUDE:            | - UE I  | <del>- FLA</del> | <del>\$7</del> .7 | <del>-</del> | # H     | <del>24</del> - |        |       | o Mi         | ER  | ל ט א<br><mark>יאאי</mark> | 33        |      | ₩ 07 | <del></del> | M E | CI        | 220        | LVE     | א ס  | TALS   | -// | M |   |
|----------------------------------------------------------------|---------|------------------|-------------------|--------------|---------|-----------------|--------|-------|--------------|-----|----------------------------|-----------|------|------|-------------|-----|-----------|------------|---------|------|--------|-----|---|---|
| ACTIVITY DES: BIG RIVER MINE TAILINGS REF LATITUDE:            | CONT    | TAINE            | ĸ                 |              | ÇG      | ACL             |        |       |              |     |                            |           |      |      |             |     |           |            |         |      |        |     |   |   |
| ACTIVITY DES: BIG RIVER MINE TAILINGS REF LATITUDE:            | - NAL   | YSIS             | RE.               | QUES         | Tab     | :               |        |       |              |     |                            |           |      |      |             |     |           |            |         |      |        |     |   |   |
| ACTIVITY DES: AIG RIVER MINE TAILINGS REF LATITUDE:            | TOF     | ET/S             | ARC               | 40 6         | 10:     |                 |        |       |              |     |                            |           | -    |      | _ •         |     | * ***     | ·          |         |      | DOWN   | :   | N | A |
| ACTIVITY DES: BIG RIVER MINE TAILINGS REF LATITUDE:            | .45     | 1230<br>1237     | CH/               | 54C:         | . J     |                 | , ,    |       | •            | 1   | 43:                        | •         |      | = N  | 0:          | O I | ,,,       | , ; .<br>, | <u></u> |      | NORT   | н.  |   | • |
| -CTIVITY GES: BIG RIVER MINE TAILINGS REF LATITUDE:            |         |                  |                   |              |         |                 |        |       |              |     |                            |           |      |      |             |     |           |            |         |      |        |     |   |   |
| CTIVITY DES: BIG RIVER MINE TAILINGS REF LATITUDE:             |         |                  |                   |              |         |                 |        |       |              |     |                            |           |      |      |             |     |           |            |         |      |        |     |   | ; |
|                                                                | _ J C # | TION             | : 5               | SSL€         | 35      | 1. 2 4          | •• 6   | 1 211 | - '-         | (0  | PRO                        | ,<br>JJEC | .T 1 | IUM: | А3          | 33  | PT        | : L        | CNO     | SITU | DE:    |     |   | • |
| · · · · · · · · · · · · · · · · · · ·                          |         | . U T T Y        |                   | <b></b> .    | 7.G     | PTV             | <br>-₽ | YTN.  | - <b>-</b> - |     | <br>T N G S                | :         |      |      |             |     | - <b></b> |            | ATI     | Tun  | <br>:• |     |   | , |
| -Y: 70 ACTNO: CSXCR SAMNO: 320FQCC: _ MEDIA: WATER PL: S P F D | - Y :   | 20 A             | CTN               | C: C         | . S X C | 3 2             | A MN   | G: .  | 3 2 O F      | QC( | C: _                       | . ME      | DIA  | \: W | ATE         | E R | ΡL        | : 5        | Ρ       | F D  |        |     |   |   |

Trip Blank
Preserved at lab
Total Metals only

SAMPLE COLLECTED BY: Martin

| FAFT                                                                     |                           | AIBLD SHEET                    |                                                                                              |
|--------------------------------------------------------------------------|---------------------------|--------------------------------|----------------------------------------------------------------------------------------------|
|                                                                          |                           |                                | AGENCY, REGION VII<br>N RD. KANSAS CITY, KS 56115                                            |
| Y: 20 ACTNO: CO                                                          | SXCR SAMNC:               | 321Facc: _ MEDIA               | IA: WATER PL: S P F D                                                                        |
|                                                                          |                           |                                | REF LATITUDE:                                                                                |
| AMPLE DES: BIG<br>LOCATION: DISLOC<br>LASE/SATCH/SMO:<br>LORET/SARDAD NO | RIVER MINE<br>SE/_/<br>D: | TAILINGS (GROUND<br>MO<br>LAB: | D WATER) DATE TIME' FROM REF PT<br>3EG: 07/27/90 14:05 EAST:<br>END:/_/:_ NORTH:<br>DOWN:/_/ |
| NALYSIS REQUEST                                                          |                           | PRESERVATIVE                   | MGP NAME                                                                                     |

JOHMENTS:

Field Blanks

Regard ? Preserved in Reld

LAMPLE COLLECTED BY : \_\_\_ Enos

| ۰ ۵ • زا      | INVIRONME! | VTAL P | PROTE | A NEITS | GENCY | // REGI | CN VII | _  |       |
|---------------|------------|--------|-------|---------|-------|---------|--------|----|-------|
| ENVIRONMENTAL | SERVICES   | DIV.   | 2.5   | FUNSTON | 90.   | KANSAS  | CITY,  | ΚS | 56115 |

| : γ                  | : ;        | ÷          | A C      | TN              | O:         |      | CR |      |    |    |    |          | -   |           | -               | MEDI | -   | _   |     |        |          |     |    |            |                          | ~    | <br> |
|----------------------|------------|------------|----------|-----------------|------------|------|----|------|----|----|----|----------|-----|-----------|-----------------|------|-----|-----|-----|--------|----------|-----|----|------------|--------------------------|------|------|
| ٠,                   | TIV        | IT         | Y        | ĎÆ              | 5:         | 819  | 3  | IV E | R  | ΜI | NE | T A<br>M | ILI | ING<br>PR | อ <b>า</b><br>2 | ECT  | אטא | : / | 133 | R<br>P | εF<br>Τ: | L A | TI | TUD<br>ITU | ē:<br>DE:_               | <br> | <br> |
| . 3°<br>. <b>X</b> : | CAT<br>SE/ | I D<br>A E | N:<br>TC | (<br><b>\</b> H | FSL<br>SMC | 43.5 |    | /    | _/ |    |    | М        | ח   |           |                 |      | a   | FG. | · 0 | 7/2    | 7/       | จด  | 14 | . 10       | FRO<br>FAS<br>NOR<br>DOW | т.   |      |

IMALYSIS REQUESTED:

COUDTAINER COLOR PRESERVATIVE MGP NAME CUBI WHITE 5 ML HNOS / WM METALS

→ DI PLASTIC GREY FILTER, HND3 • WO7 IH DISSOLVED METALS

JOMMENTS:

Field Blank (prepared same as 321F)

SAMPLE COLLECTED BY : Enas

|      |           |          |    |     |     |    |    |    |         |   |               |        |   |      |     |    |     |    |   | _          | _   | - | <br>_ | •  |    |    |   |     |   |   |    |    |     |         |   |            |     |        |            |            |                  |      |            |  |
|------|-----------|----------|----|-----|-----|----|----|----|---------|---|---------------|--------|---|------|-----|----|-----|----|---|------------|-----|---|-------|----|----|----|---|-----|---|---|----|----|-----|---------|---|------------|-----|--------|------------|------------|------------------|------|------------|--|
|      | F         | - N      | ٧: | IR  | : 0 |    |    |    |         |   |               |        |   |      |     |    |     |    |   |            |     |   |       |    |    |    |   |     |   |   |    |    |     | N<br>IT |   |            |     | s<br>  | <b>)</b> ( | <b>5 1</b> | 15               |      |            |  |
| Y    | :         | )        | ü  | 2   | C   | T' | νí | :: | <br>0.5 | X | <u>ر</u><br>د | e<br>e | 3 | A 7/ | liv | 0: | 3 2 | 23 | F | C          | C : |   | <br>М | £0 | ΞI | Α: |   | 4 A | T | R |    | PI | . : | 5       | _ | P          | F   | ວ<br>ວ |            |            |                  | <br> |            |  |
|      |           |          |    |     |     |    |    |    |         |   |               |        |   |      |     |    |     |    |   |            |     |   |       |    |    |    |   |     |   |   |    |    |     |         |   |            |     |        |            |            |                  | <br> | . <u>-</u> |  |
|      |           |          |    |     |     |    |    |    |         |   |               |        |   |      |     |    |     |    |   |            |     |   |       |    |    |    |   |     |   |   |    |    |     |         |   |            |     |        |            |            | OM<br>ST:<br>RTI |      |            |  |
| . N. | NT<br>3 I | Γ Δ<br>[ | I! | Ų E | R   |    |    |    |         | C | 01<br>H:      | L O    | Ξ |      |     |    | 5   | 14 | L | <b>a</b> ! | ٧Ľ  | 3 |       |    | ,  | W  | М |     |   |   | ΞT | ΑI |     |         | L | <b>V</b> € | : O | М      | <u>.</u>   | ΤΔ         | LS               |      |            |  |

COMMENTS:

Rinsate of disposable tetton bailers ased for sampling

SAMPLE COLLECTED (Y: Martin

| U.S.          | ENVIRONMEN | TAL  | PROTE | CTION   | AGENCY | PEG:   | ION VI | I  |       |
|---------------|------------|------|-------|---------|--------|--------|--------|----|-------|
| ENVIRONMENTAL | SERVICES   | DIV. | 25    | FUNSTO. | N RD.  | KANSAS | CITY,  | KS | 66115 |

|       |     |       |      |     |     |                   |           |        |      |     |           |          |     |      |       |                   |    |             |              |    |             |             |                              |     |     | _           |
|-------|-----|-------|------|-----|-----|-------------------|-----------|--------|------|-----|-----------|----------|-----|------|-------|-------------------|----|-------------|--------------|----|-------------|-------------|------------------------------|-----|-----|-------------|
| Υ:    | 2.  | ) ;   | CT   | 140 | :   | ÇSX               | CR        | SAN    | INC: | -   | SIM.      | cc:      |     | MED: | [ A : | WA                | TE | R           | PL:          | S  | P           | f D         |                              |     |     | _           |
| ·CT   | IV  | ITY   | 1 0  | E S | :   | EIG               | BI        | ۶ تا ۷ | . MI | NE  | TAI       | LING     | 3 S |      |       |                   |    |             | REF          |    |             |             | E:<br>DE:                    |     |     |             |
| . A S | 3/3 | E A 1 | TC H | 1/3 | MC  | G R<br>D G E<br>: |           | _/_    | ./   | T # | ILI<br>CM | NGS (    | (SU | RFA( | E     | WAT<br>SEG<br>END | ER | )<br>67<br> | 3414<br>1241 | 90 | 了<br>之<br>— | . <u>30</u> | EROI<br>EAST<br>NORT<br>DOWN | TH: | F P | T<br>-<br>- |
| ·ΝΑ   | LYS | 513   |      | ĘĠ  | )UE | STE               | ົນ:<br>ວະ | _      |      |     |           | <b>-</b> |     | •    |       |                   |    |             |              |    |             |             |                              |     |     |             |

JONTAINER GOLOP
JZ PLASTIC GREY

PRESERVATIVE FILTER, HNO3

MGP NAME

WO7 IN DISSULVED METALS

COMMENTS:

confluence of Owl Creek and Bry River.

(Artesion well actually)

Cond - 700 jumbes. pH - 7.10. Temp - 15°C. PAFT

|                             |                       | ENTAL PROTECTION<br>S DIV. 25 FUNSTO |                     |                            | 56 <b>11</b> 5 |
|-----------------------------|-----------------------|--------------------------------------|---------------------|----------------------------|----------------|
| Y: 40 ACTNO                 | NEAS ROXES :          | :: 33 Ficc: _ MES                    | DIA: HATER          | PL: S P F U                | ***            |
| CTIVITY 028                 | S: SIG RIVER<br>SLOGE | MINE TAILINGS MO PROJECT             | r NUM: A33          | REF LATITUO<br>PT: LONGITU | E:             |
| AMPLE DES:<br>.GCATION: DE  | BIG PIVER MI<br>SLOGE | NE TAILINGS (GROUN                   | D WATER)<br>BEG: 37 | DATE TIME<br>/27/90 /4:30  | FROM REF PI    |
| ASE/BATCH/S<br>ADRAZNTEROT. | '_/                   | LAB:                                 | END:                | //:                        | NORTH:         |
| HALYSIS RET                 |                       |                                      |                     |                            |                |
|                             |                       | PRESERVATIVE                         |                     |                            |                |
| THRT                        | <b>□ 4 7 T</b> 7      | I S MI HNOT                          | WM MA               | TALS                       |                |

TUBI WHITE 'S ME HNOS WM METALS - DZ PLASTIC GREY - FILTER, HNOS WO7 IH DISSOLVED METALS

.DMMENTS:

#32**4**F

Rinsate of Geogrape Pipe

| ry: an Active                        | : COXOR SAMNO:           | 325FQCC: _ MEDI                | A: #ATER | PL: 3 P F D                  |       |
|--------------------------------------|--------------------------|--------------------------------|----------|------------------------------|-------|
| CTIVITY DES<br>Continued description | S: BIG RIVER MI<br>SLOGE | NS TAILINGS<br>MU PROJECT      | NUM: 433 | REF LATITUDE<br>PT: LONGITUD | :     |
| LOCATION: DE<br>TASE/BATCH/S         | ESLOGE                   | TAILINGS (GROUND<br>MO<br>L48: | 85G: 07/ | 27/90 15:30                  | EAST: |
| 1931                                 | CULOR<br>White           | 5 ML HNO3                      |          |                              |       |
| JOHMOUTS:                            |                          | FILTER HN03                    | WUY IH   | <del>- DISSULVEC - M</del> E | 7-27  |

Acid Blank, prepared at motel
Total Metals only

JAMPLE COLLECTED IY: Martin

page/pages has/have been removed for confidentiality

20

PAFT U.S. ENVIRONMENTAL PROTECTION AGENCY, REGIGN VII ENVIRONMENTAL DERVICES DIV. 25 FUNCTON RD. KANSAS CITY, KS 56115 ACTIVITY DES: BIG RIVER MINE TAILINGS REF LATITUDE: LOCATION: DESLOGE MO PROJECT NUM: A33 PT: LONGITUDE:\_ JAMPLE DES: BIG RIVER MINE TAILINGS

DATE TIME FROM RE

LOCATION: DESLOGE

MO

BEG: C7/27/90 /2:47 EAST:

LASE/EATCH/SMC:

DOWN: STORET/SARGAD NO: CONTAINER/FILTER TYPE: NUMBER TIME OF DAY TIME INDICATOR DUMP/MOTOR TYPE: NUMBER ON: 12:47 ON: 1/8/4/6 OLOW INDICATOR: ON: 1/8/4/6 OFF: 1/2/55/6 ANALYSIS FEGUESTAD: MGP NAME TOTAL METALS DR.
AND PARTICULATE LEAD IN AIR 34 PRESERVATIVE COLUR COLUR LASTIC DAY AHITE NONE 12/ 19/90 JAMMENTS: BR-DM-02-1

Collecated sample, bornfrin. Howard Wood property. Approximately 500 feet cost of the Big River site, from the East side of the tailing piles.

|                                                                  | .S. INVIRONMENT<br>NTAL SERVICES D       |                             |                                 |                                                        | 6115                                    |
|------------------------------------------------------------------|------------------------------------------|-----------------------------|---------------------------------|--------------------------------------------------------|-----------------------------------------|
| :Y: 98 ACTNU:                                                    | : CSXCR SAMNG:                           | 403 GC:MED                  | IA: AIR                         | PL: 3 P F D                                            |                                         |
| LOCATION: DES                                                    | : 116 RIVER MIN<br>Sloge                 | MO PROJECT                  | NUM: A33                        | PT: LONGITUD                                           | )                                       |
| DAMPLE DES: 1<br>COCATION: DES<br>DASE/BATCH/SY<br>CTORET/SAROAC | BIG RIVER MINE SLOGE MC:/ D NG:          | TAILINGS<br>MO<br>LAB:      | BEG: 074<br>END: <u>CZ4</u>     | 12779) B: 66<br>12779) B: 66<br>14720 23: 40<br>23 P.C | FROM REF PT<br>EAST:<br>NORTH:<br>COWN: |
| DUNTAINER/FIL<br>TUMP/MOTIR<br>FLOW INDICATO                     | LTER TYPE: _ NU<br>TYPE: _ NU<br>OR: ON: | MBEP<br>IMBER<br>DO DEF: 30 | TIME<br>ON:<br>OFF:             | 27.00 TIME<br>12:00 ON:<br>23:40 CFF:                  | 1ND10ATOR<br>3/38/1<br>3840-0           |
|                                                                  | MHITE                                    | PRESERVATIVE<br>NONE        | MAN GOK<br>FRG TOMA<br>MRG/2416 | TOTAL RETICULATE LEA                                   | METALS PR<br>LO IN AIR BY               |
| COMMENTS: B                                                      |                                          |                             | 0,0                             |                                                        |                                         |
|                                                                  | Ossita so                                | ample 10                    | ration.                         | nor throst                                             | edge                                    |

Ons. tre sample, location: northwest edge of tailings pile. Approximately 50 feet northwest of Big Biser.

SAMPLE COLLECTED BY : BOBBETS / McCall / SINA

|                                          |                                                   |                                   | AGENCY/ PEGION<br>ON RD. KANSAS CIT  |                                             |
|------------------------------------------|---------------------------------------------------|-----------------------------------|--------------------------------------|---------------------------------------------|
| 'Y: 10 ACTA                              | CE CEXCE SAMN                                     | : 404 GCC: _ ME                   | DIA: AIR PL: 3                       | PFD                                         |
|                                          | EG: DIG RIVER N<br>DESLOGE                        | INE TAILINGS HO PROJEC            | •                                    | CNGITUDE:                                   |
| ASEVEATORY                               | : BIG PIVER MIN<br>PESLOGE<br>/CMG:/_/<br>CAD NO: | NE TAILINGS<br>MO<br>LAB:         | BEG: 07/27/70<br>END: 02/24/90       | TIME FROM REF PT  A: CA EAST:  AV: DOWN:    |
| IONTAINER/F<br>TUMP/MOTOR<br>TLOW INDICA | FILTER TYPE: _<br>TYPE: _<br>ATOR: ON:            | NUMBER<br>NUMBER<br>12.00 OFF: By | TIME OF DA<br>ON: /2:0/<br>OFF: 24:0 | Y TIME INDICATOR  ON: 398028  OFF: 40.530.8 |
| LASTIC CAS                               | COLOR<br>G WHITE                                  | PRESERVATIVE<br>NGME              | MGP NAME AMON PARTICUL YA STOUTON    | TETAL METALS ER<br>ATE LEAD IN AIR BY       |
| TOMMENTO.                                | BR-BM-04-1                                        |                                   | -1                                   |                                             |

Onsite sample location Approximately 100 feet north of land fill shed.

page/pages has/have been removed for confidentiality reasons.

23

|                                      |                                                    |                                   | AGENCY/ REGION<br>IN RD. KANSAS CIT |                                                           |
|--------------------------------------|----------------------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------------------------------|
|                                      |                                                    |                                   | DIA: AIR PL: S                      |                                                           |
| LOCATION:                            | 95 <b>51</b> 068                                   | MO PROJECT                        | NUM: A33 PT: L                      | ATITUDE:                                                  |
| TASE/BATCH                           | : BIG RIVER MI<br>DESLOGE<br>(/SMO:/_/<br>OAD NO:/ | LAB:                              | FND: 1124191                        | PIME FROM REF PT  13:00 EAST:  24:00 NCRTH:  DOWN:        |
| CHTAINER/<br>UMP/MOTOR<br>LOW [NDIC  | FILTER TYPE: _<br>TYPE: _<br>CATOR: ON:            | NUMBER<br>NUMBER<br>12:00 OFF: 24 | TIME OF DA  ON: 23:22  OFF: 24:40   | Y TIME INDICATOR ( ON: <u>- 170</u> 0  OFF: <u>890.03</u> |
| NALYSIS R<br>CONTAINER<br>PLASTIC ÉA | EQUESTED:<br>COLOR<br>G WHITE                      | PRESERVATIVE<br>None              | MGP NAME AMON PARTICUL  PS/34/12    | ATE LEAU IN AIR BY                                        |

COMMENTS: BR-DM-48-1

FIGID DAILY BLANK

CAMPLE COLLECTED BY : BURNETS SIVA BUBRITS

|                                                   |                               | NTAL PROTECTION DIV. 25 FUNSTO |                                          |                                                                    |                      |
|---------------------------------------------------|-------------------------------|--------------------------------|------------------------------------------|--------------------------------------------------------------------|----------------------|
| Y: 40 ACTNG:                                      | CSXCR SAMNE                   | : 409 400: _ MED               | IA: AIR PL:                              | S P F D                                                            |                      |
| LOCATION: DES.                                    | Loga                          | MU PROJECT                     | ' NUM: 433 PT:                           | LATITUDE:                                                          |                      |
| .AMPLE DES: 8<br>.CCATION: DES!<br>JASE/EATCH/SHI | IG RIVER MIN<br>LOGE<br>0:/_/ | E TAILINGS<br>40<br>LAB:       | 24<br>DATE<br>BES: 67/27/<br>END: 01/24/ | 73.72.00 0.3.<br>TIME FROM RES<br>90 H:45 EAST:<br>90 23.45 NGRTH: | = PT                 |
| TORET/SARGAD                                      | TER TYPE:                     | NUMBER                         | 17:5<br>TIME DE                          | AGO.)  OAY TIME INDICATE                                           | <br>1R               |
| PUMP/MUTBP                                        | r: GN:                        | NUMBER<br>2 00 OFF: 24         | ON: #:                                   | 45 CN: 63/2-2<br>45 CFF: 703/                                      | - 1388.9<br>+ 2113.1 |
| NALYSIS REQU                                      | ESTED:                        |                                |                                          | •                                                                  |                      |
| CONTAINER<br>CLASTIC GAG                          |                               | PRESERVATIVE<br>NUNE           | MGP NAME<br>AMPT FARTIC                  | TOTAL METALS  ULATE LEAD IN AIR                                    | ₹ 3 <b>Y</b>         |

DAMENTS: BR-AM-01-Z

SAME AS SAMPLE # CSXCR400

TAMPLE COLLECTED BY : ROBERTS /McColl /5.110

|                                                                            |                                   |                              | GENCY, REGION V<br>RD. KANSAS CITY     |                                                 |
|----------------------------------------------------------------------------|-----------------------------------|------------------------------|----------------------------------------|-------------------------------------------------|
| FY: 90 ACTNO: C3                                                           | SXCR SAMMG:                       | 410 400: _ MEDI              | A: AIR PL: S                           | P F D                                           |
| LOCATION: DESLOG                                                           | 5=                                | MJ PROJECT                   | NUM: A33 PT: L3                        | TITUDE:                                         |
| JAMPLE DES: BIG<br>LOCATION: DESLOS<br>JASE/BATCH/SMC:<br>JTORET/SAROAO NO | RIVER MINE<br>SE<br>/_/<br>D:     | TAILINGS<br>MO<br>LAB:       | DATE<br>3E3: 07/24/90<br>END: 07/24/90 | TIME FROM REF PT 17:00 EAST: 23:50 NORTH: DOWN: |
| JONTAINER/FILTER<br>-UMP/MOTOR<br>FLOW INDICATOR:                          | R TYPE: _ NU<br>TYPE: _ NU<br>DN: | MBER<br>MBER<br>TO DEF: 7375 | TIME OF, BAY ON: 12:00 OFF: 23:50      | TIME INDICATOR ON: 175516 OFF: 132665           |
| ANALYSIS REQUEST<br>BUNTAINER<br>PLASTIC BAG                               | COLOR<br>WHITE                    |                              | MGP NAME<br>AMAT PARTICULA<br>WYJZNIA  | TOFALMOTALS TE LEAD I'I AIR BY                  |
| ここりかいてく こうだんこう                                                             | M -(D Z - )                       | •                            |                                        |                                                 |

SUMMENTS: BR-DM-\$Z-Z

SAME AS SOMPLE # CSXCRADZ

| RAFT                                                                                    | FIELD SHEET<br>ENTAL PROTECTION AGENCY/ REGION VII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                         | S DIV. 25 FUNSTON RD. KANSAS CITY, KS 36115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TY: +3 ACTIVE: COXCR SAMNO                                                              | C: 411 RCC: _ MECIA: AIR PL: S P F D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CTIVITY DES: MIG RIVER #<br>LUCATION: DESLOGE                                           | VINE TAILINGS REF LATITUDE:  MO PROJECT NUM: 433 PT: LONGITUDE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .AMPLE DES: BIG RIVER MIN<br>LOCATION: DISLUGE<br>LAGE/BATCH/SMG://<br>TORET/SAPOAD VO: | NE TAILINGS DATE • TIME • FROM REF PT  MO BEG: 07/27/90 12:00 EAST:  LAB: END: 07/24/90 23:30 NORTH:  • OGWN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CONTAINER/FILTER TYPE: _ FUMP/MOTOR TYPE: _ LOW INDICATOR: ON:                          | NUMBER TIME OF DAY TIME INDICATOR NUMBER ON: 12:00 ON: 3840.00   12:00 OFF: 23:30 OFF: 4533.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -NALYSIS ARQUESTED:<br>CONTAINER COLOR<br>-LASTIC FAG WHITE                             | PRESERVATIVE MGP NAME TOFOLMETALS NONE AMON FARTICULATE LEAD IN AIR BY  WELLS A PROPERTY OF THE PROPERTY OF TH |
| 13MMENTS: BR-0M-93-                                                                     | · Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                         | SAME AS SAMPLE CSXCR 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

TAMPLE COLLECTED BY : ROBERIS/McColl/Silva

# FIGLO SHEET

|                         | ∃ <b>N V</b>              | IFC                     |                      |                        |                  |                   |            |             |                   |                                    |           |          |      | 4 G E N C<br>N R D . |           |                    |                   |          |                         | 56     | 115                   |     |                 |
|-------------------------|---------------------------|-------------------------|----------------------|------------------------|------------------|-------------------|------------|-------------|-------------------|------------------------------------|-----------|----------|------|----------------------|-----------|--------------------|-------------------|----------|-------------------------|--------|-----------------------|-----|-----------------|
| 1:                      | 45<br>54                  | ÀC                      | TV                   | ា:                     | c s              | X C G             | S.F        | MilC        | : 4               | 12 %                               | cc:       |          | MEDI | IA:                  | ik        |                    | PL:               | S        | P F                     | D      |                       |     |                 |
| 3.0                     |                           | 7 11 -                  |                      | 1                      |                  |                   |            |             |                   | TAI                                |           |          |      | NUM:                 |           | 7 7                | 3 T -             |          | A1 ~ T T                | 1100   |                       |     |                 |
| MA<br>00.<br>24.:<br>0T | IPLE<br>ATI<br>EVE<br>RET | DE<br>CN:<br>ATC<br>/SA | S:<br>D<br>H/<br>NRJ | 31<br>ESI<br>SMC<br>AD | 16<br>106<br>108 | RIV               | ER         | MIN<br>'_'- | ET                | AIL:                               | INGS<br>) | 3<br>18: |      | NUM<br>a a           | G:<br>ND: | 071<br>971         | 211<br>211<br>251 | 90<br>90 | 7 I M E<br>12:0<br>09:1 | \$ 5 S | ROM<br>EAST:<br>NORTH | REF | PT              |
| ION<br>TUM<br>TUO       | IATI<br>P/M<br>I k        | NER<br>OTO<br>NDI       | R∕F<br>IR<br>ICA     | ILI<br>TOS             | τε¤<br>3:        | Y T<br>Y T<br>A C | PE:<br>PE: |             | NUN<br>Νυν<br>Σ:Φ | 변론자<br>원투유<br>( <mark>사</mark> ) ( | FF        |          |      | :15                  |           |                    | ,                 |          |                         |        | 0.7                   |     |                 |
| CON                     | LYS<br>ITAI<br>STI        | NER                     | <b>,</b>             |                        |                  | CCL               | üR         |             |                   | RES <sup>a</sup><br>Oni            |           |          | ū    | MGF<br>AMJ           | ~{γ<br>γ⁄ | NA!<br>Paf<br>9190 | IE<br>PTIC        | UL A     | ۳<br>ا ۲۶               | 101:   | DL MI                 | AIR | ><br>3 <b>Y</b> |

COMMENTS: BR-AM-\$4-2

SOME AS SAMPLE CSXCR404

page/pages has/have been removed for confidentiality reasons.

24

|                          | é à        | ١٧              | ΙR       | 0           |            |       |          |          |        |         |                   |     |     |         |                 |                      |     |          |            |                  |    |      |            |   |               |               |          | ۶<br>N S        |          |        |            |      |                   | ζς.      | ာ<br>==           | <b>61</b> | <b>1</b> 5            | <b>-</b> |     |                 |
|--------------------------|------------|-----------------|----------|-------------|------------|-------|----------|----------|--------|---------|-------------------|-----|-----|---------|-----------------|----------------------|-----|----------|------------|------------------|----|------|------------|---|---------------|---------------|----------|-----------------|----------|--------|------------|------|-------------------|----------|-------------------|-----------|-----------------------|----------|-----|-----------------|
| · Y :                    |            | 2)              | A        | C           | T :1       | ŋ<br> | :        | 5        | 3 X    | с<br>_  | ٦<br>-            | 3   | A M | N C     | :               | 4                    | 14  | <u>ز</u> | <u>د</u> ز | :                | _  | ΜE   | D I        | Α | :             | ΑI            | <b>२</b> |                 | F        | L      | : :        | 5    | <b>.</b>          | F        | )<br>             |           |                       |          |     |                 |
| 101                      |            |                 |          |             |            |       |          |          |        |         |                   |     |     |         |                 |                      |     |          |            |                  |    | Jē C | <b>.</b> T | N | UM            | :             | A3       | 3               | P        | Τ:     | : 1        | . 31 | r I<br>1G         | TU       | อ =<br>บ บ<br>บ บ | :         |                       | <b>-</b> |     |                 |
| 148<br>100<br>140<br>140 | i ē j      | / 3             | 4 T      | C           | <b>1</b>   | ۲,    | 4 ()     | :        | _      | <b></b> |                   | _ ' | ′_  | /_      | . <u>.</u>      | Τ                    | 4 I | LI<br>MO | N G        | . 4 <sup>1</sup> | ∄: |      | ·          |   | 3             | E G<br>N D    | :        | 67<br>QZ        | 0A<br>12 |        | 195<br>190 |      | r I I<br>U_<br>23 | <u>a</u> | <u> </u>          | NC        | OM<br>ST<br>RT:<br>WN | H:       |     | PT              |
| 10%<br>10%<br>10%        | IT:<br>iP/ | AII<br>MH<br>II | NE<br>OT | 3<br>0<br>1 | <b>/</b> F | I     | LT<br>OR | <u>.</u> | ĸ      | T 1     | Y P<br>Y P<br>N : | #   | -   | -<br>]_ | NU<br>NU<br>  T | JM<br>JM<br><b>4</b> | 3 E |          |            |                  |    | 7    |            |   |               |               |          |                 |          |        | ,          |      |                   |          |                   |           | 4                     | ,        |     |                 |
| 3 L 2<br>3 O M<br>3 N 3  | 1 T 1      | II              | N €<br>C | E<br>T      | ΑG         | ı     |          |          | C<br>W | 01<br>H | LU                | Ξ   |     |         |                 | Ŋ                    |     | SE<br>E  |            |                  |    |      |            | ! | MG<br>MA<br>M | P<br>D/<br>~} | /2:      | NA<br>FA<br>114 | MÉ<br>RT | [<br>[ | CUL        | ۵.   | 7 E               | ،<br>طر  | TO                | 74        | IN                    | 16'<br>A | [g] | S<br>B <b>Y</b> |
| 101                      | IM.        | - 71            | د ۲      | :           |            | 5     | ) K      | . –      | 17     | $\sim$  | 1 -               | 9   | ) ( | ,       | - Z             | •                    |     |          |            |                  |    |      |            |   |               |               |          |                 |          |        |            |      |                   |          |                   |           |                       |          |     |                 |

0-5

SAMEAS CSXCRX 406

SAME AS SAMPLE CSXCRAO

|                                          | U.S. ENVIRONMEN                            | FIZED SHEET<br>NEL PROTECTION<br>DIV. 25 FUNSTO |                                  |                                          | 0 6 1 1 5                  |
|------------------------------------------|--------------------------------------------|-------------------------------------------------|----------------------------------|------------------------------------------|----------------------------|
|                                          |                                            | 415 UCC: MED                                    |                                  |                                          |                            |
| ACTIVITY DE                              | S: FIS PIVER MI<br>ESLOGE                  | NE TAILINGS<br>MO PROJECT                       | NUM: A33                         | REF LATITUD'<br>PT: LCNGITU              | ::<br>De:                  |
| DAMPLE DES:<br>DCATION: D<br>DASE/BATCH/ | BIG RIVER MINE                             | TAILINGS MC LAB:                                | <b>40</b><br>3EG: 07/3           | ATE TIME<br>27740 12:05<br>241 23:50     | FROM REF PT<br>EAST:       |
| CONTAINER/F<br>PUNTAINER/F<br>PUDICA     | ILTER TYPE: _ N<br>TYPE: _ N<br>TOR: ON:LZ | IUMBER<br>IUMBER<br>IDS OFF: 23:                | SØ OFF:                          | 0F. DAY TIME<br>12: 05 ON:<br>23:50 OFF: | INDICATOR 5134.7           |
| PLASTIC BAG                              | COL32<br>WHITI                             |                                                 | MGP NAM<br>AME PAR<br>Mad 241 th | E<br>TICULATE LE                         | otolmetols<br>to in air en |
| : STHENMED                               | BR-AM-07-                                  | 7                                               |                                  |                                          |                            |

Same as sample CSXCRAPT

|          | ز<br>     | IV ] | [ 2 | ū N     |            |              |     |          |    |   |      |     |     |    |        |     | ION<br>NSTO |     |                |     |                   |            |                        |          | Κς . | 5511                     | 5   | <br> |
|----------|-----------|------|-----|---------|------------|--------------|-----|----------|----|---|------|-----|-----|----|--------|-----|-------------|-----|----------------|-----|-------------------|------------|------------------------|----------|------|--------------------------|-----|------|
| Υ:       | ;         | (1)  | À   | C T     | 115        | ٠:           | S   | 5 X      | Cr | ŝ | Δ M. | NO: | . 4 | 1ó | <br>-} | 00: | <br>МED     | IA: | ΑI             | ⊋   | 1                 | PL:        | 5                      | <b>P</b> | = J  |                          |     | <br> |
|          |           |      |     |         |            |              |     |          |    |   |      |     |     |    |        | LIN | JECT        | NU  | <sup>M</sup> : | A33 | 3                 | 21:        | LĴ                     | NG:      | ITU  | _                        |     | <br> |
| 35<br>25 | 41<br>E / | TI:  | N C | :<br>Cr | 5 :<br>7 : | : 51<br>S:11 | L U | 3 E<br>_ |    |   |      | /   |     |    | МΘ     |     |             |     | 3 E G<br>G N D | : ( | •0/<br>07/<br>07/ | 241<br>241 | 705<br>90<br><u>90</u> | T I I    | :ΦQ  | FRO<br>EAS<br>NOR<br>DOW | TH: | <br> |

CONTAINER/FILTER TYPE: NUMBER TIME JF, DAY TIME INDICATOR UMP/MOTOR TYPE: NUMBER ON: 17:00 ON: 17:00 ON: 890.03 ON: 17:00 OFF: 70:00 OFF: 70:00

-NALYSIS REQUESTED: CONTAINER COLO

LASTIC BAG

COLUR PRESERVATIVE MONE

MGP NAME TOTALMETALS

PARTICULATE LEAD IN AIR BY

REGION 197

SMMFHTS: BR-BM-48-Z

FreD Daily Blank

CAMPLE COLLECTED EY: ROBERTS/McColl/Silva

| . \ =               | '              | •      |                   |          |             |             |        | .1.   | _ :    | s.,     | _        | :   | - N         | ΙV  | T       | 3    | 21            | ۷M  | ا<br>خ | V.             | T 4 | L.       |     | ÷             | - 0 | T | = C | . T  | T      | - '<br>0 N | 1  | Δí  | 3.5 | N (        | C Y    |           |                | 2        | F (       | . T         | Sul!     | ų         | ν.       | . T        |          |               |            |            |                |                    |     |            |                |            |          |
|---------------------|----------------|--------|-------------------|----------|-------------|-------------|--------|-------|--------|---------|----------|-----|-------------|-----|---------|------|---------------|-----|--------|----------------|-----|----------|-----|---------------|-----|---|-----|------|--------|------------|----|-----|-----|------------|--------|-----------|----------------|----------|-----------|-------------|----------|-----------|----------|------------|----------|---------------|------------|------------|----------------|--------------------|-----|------------|----------------|------------|----------|
|                     | Ξ              | ių i   | V I               |          |             |             |        |       |        |         |          |     |             |     |         |      |               |     |        |                |     |          |     |               |     |   |     |      |        |            |    |     |     |            |        |           |                |          | -         | _           |          |           |          |            |          | S _           | <b>ว</b> ( | <b>5</b> 1 | 15             |                    |     |            |                |            |          |
| · Y:                | _              | ),     | 3                 | 4        | C           | _<br>T      | ~ ·    | <br>C | •<br>• |         | 0        | 3 > | ((          | , २ | :<br>:  | <br> | Δ !           | 111 | . C    | :              |     | 1        | 7   |               | : C | C | :   | _    |        | M E        | ם: | I / | 4:  | - 1        | 4 I    | R         |                |          | 7         | ۲.          | :        | 5         |          | - <b>-</b> | ۶        | כ             |            |            |                |                    |     |            |                |            |          |
| 10 T                | I              | V<br>T | I T               | , A      | :           | Û           | E<br>) | S     | :      | L.      | 3.<br>3. | I : | ;           | 7   | I       | ۷    | Ē i           |     | Ų      | I              | N S | :        | Τ.  | A I           | L   | I | N ( | 3 S  | J      | E C        | T  | 1   | ۷Ú  | М :        | :      | 4         | 31             | <b>.</b> |           | 3 =         | F<br>:   | L         | A T      | T I        | T        |               | ± ;        | :<br>:     | -              | -                  |     | -<br>-     |                | •          |          |
| 100<br>145<br>143   |                |        |                   |          |             |             |        |       |        |         |          |     |             |     |         |      |               |     |        |                |     |          |     |               |     |   |     |      |        |            |    |     |     |            |        |           |                |          |           |             |          |           |          |            |          |               |            |            |                |                    |     |            |                |            |          |
| , מונ<br>אטי<br>נוד | IT<br>IP<br>IW | A /    | I.V<br>M.J<br>I.V | 12<br>11 | 5<br>C<br>I | /<br>ヮ<br>こ | Ξ.     | I :   | L.     | Σ<br>R: | •        | 2   | 1           | Y   | P<br>P  | = ;= | :<br>:<br>_/_ | 12  | - , (  | NI<br>NI<br>NO | U!  | 13<br>13 | E : | <b>?</b><br>ሚ | F   | 7 |     | <br> | <br>Z. | <u>4.</u>  | 0  | 0_  |     | -          |        | T 0       | I!<br>N:<br>FF | 4 €<br>: | ()<br>()  | F<br>X<br>Y | <i>#</i> | DA<br>E   | <b>Y</b> | T<br>3     | I;<br>N: | 4 E<br>:<br>: | -          | IN         | 01<br>20<br>27 | C 1                | 17  | OR<br>2    | تن -<br>م<br>م | 2/.<br>18: | 13<br>28 |
| ANA<br>CON<br>CLA   | IT<br>S        | 4<br>T | Is<br>IG          | ΙĒ       | ₹<br>;      | Δ           | ,      |       |        |         |          | ĺ   | J C<br>√ in | L   | .0<br>T | £    |               |     |        |                |     |          |     |               |     |   |     |      |        |            |    |     | A   | ĕ F<br>M ( | ς<br>γ | /<br>A={7 | :<br>51 2      | 4 4      | (4)<br>5) | E<br>「I     | C        | <b>ال</b> | ۲,       | 7 5        | 70       | TA            | AI         | . <i>J</i> | TIME IN        | 2 <i>71</i><br>1 i | AL. | <b>ら</b> ( | ₽.<br>≟ Y      | (p)        |          |
|                     |                |        |                   |          |             |             | •      |       |        |         |          |     |             |     |         |      | •             |     |        |                |     |          |     |               |     |   |     |      |        |            |    |     |     |            |        |           |                |          |           |             |          |           |          |            |          |               |            |            |                |                    |     |            |                |            |          |

Location same as CSXCR 400

SAMPLE COLLECTED BY: ROBBETS/SILVA/McCall

| U.S. ERVIRONME<br>INVIRONMENTAL SERVICES                                                    |                                       | GENCY, REGION VII<br>RD. KANSAS CITY,             |                                          |
|---------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------|------------------------------------------|
| FY: PO ACTUB: ESXCR SAMNE                                                                   | : 418 0CC: _ MEDI                     | A: AIR PL: S P                                    | F D                                      |
| ACTIVITY DOS: BIG RIVER M<br>LGCATION: DESLOGE                                              | INE TAILINGS MO PROJECT               | REF LATI<br>NUM: 433 PT: LONG                     | TUDE:                                    |
| SAMPLE DES: EIG RIVER MIN<br>LUCATION: DESLOGE<br>DASE/BATCH/SMC:/_/_<br>DTORET/SARGAD NO:/ | E TAILINGS MD LAG:                    | DATÉ PO 1<br>BEG: C7127190 /A<br>END: 07126190 AY | ME FROM REF PT :// EAST: // NORTH: OOWN: |
| CONTAINER/FILTER TYPE: _<br>PUMP/MCTOR TYPE: _<br>FLOW INDICATOR: ON: <u>/2/</u>            | NUMBER<br>NUMBER<br>OFF: <u>ZY:00</u> | TIME OF DAY TO<br>UN: B: ED O<br>DFF: AS: ED O    | IME INDICATOR                            |
| AMALYSIS REQUESTED:<br>COLOR<br>PLASTIC BAG WHITE                                           | PRESERVATIVE<br>NGNE                  | MGP NAME AMCA PARTICULATE  MS/201/2=              | TOTAL MRTALS R.P. LEAD IN AIR BY         |
| COMMENTS: BR-AM-\$2-                                                                        | 3                                     |                                                   |                                          |
| Location                                                                                    | Sant as                               | CSX CR 9                                          | + \$2                                    |

|                                                                  |                                             |                                  | AGENCY, REGION<br>ON RO. KANSAS CIT                |                              |
|------------------------------------------------------------------|---------------------------------------------|----------------------------------|----------------------------------------------------|------------------------------|
| 'Y: 90 ACTNO:                                                    | CSXCR SAMNI                                 | : 419 DCC: _ ME                  | CIA: AIR PL: S                                     | PFO                          |
| LOCATION: DES                                                    | 1 <b>L</b> 033                              | MO PROJEC                        |                                                    | .SNGITUDF:                   |
| JAMPLE DES: 3<br>LOCATTUN: PES<br>LASE/BATCH/SM<br>LTORET/SAPOAC | 10:/_/                                      | NE TAILINGS<br>MO<br>LAS:        | , DRTEC<br>BEG: C7/2/198<br>_ END: <u>07</u> /2/2/ | TIME FROM REF PT  DOWN:      |
| CONTAINER/FIL<br>UMP/MOTOR<br>TLOW INDICATO                      | TIR TYPE: _<br>TYPE: _<br>OR: ON: <u>/2</u> | NUMBER<br>NUMBER<br>100 JFF: 23: | TIME OF OF<br>ON: <u>公: 公</u> :<br>30              | Y TIME INDICATOR  OFF: 2333. |
| -NALYSIS FECU<br>JUNTAINER<br>TLASTIC DAG                        | COLOR                                       | PRESERVATIVE<br>NONE             | MGP NAME<br>AM21 PARTICUL                          | ATE LEAD IN AIR 34           |
| DAMENTS. B                                                       | 12-17-103                                   | ₹-~ <b>~</b>                     | १००५ १ १ १ १ १                                     | •                            |

s: B12-H19-03-3

Location game as CSXCR443

TAMPLE COLLECTED EX: BOBLETS / Mc Call SILVA

|                                             |                                            |                                      | ENTAL PROTECTI<br>5 DIV. 25 FUN |                |                                       |                                                      |          |
|---------------------------------------------|--------------------------------------------|--------------------------------------|---------------------------------|----------------|---------------------------------------|------------------------------------------------------|----------|
| :A: 53 Y                                    | ctno: cs                                   | XCF SAMO                             | : 420 RCC: _                    | MEDIA: AIR     | PL: S P                               | F )                                                  |          |
|                                             |                                            |                                      | VINE TAILINGS<br>MO PROJ        |                |                                       |                                                      |          |
| JAMPLE D<br>LICATION<br>JASE/BAT<br>FORET/S | ES: 316<br>: 085103<br>CH/3M0:<br>AR040 43 | RIVER MINGE/_/                       | S TAILINGS<br>ON<br>CA:         | eeg:<br>       | ०८४५ एटे त<br>२१२२४७० छ<br>७१३४०१७० छ | IME FROM REF<br>L: 10 EAST:<br>2: 10 NGRTH:<br>COWN: | PT       |
| CONTAINE<br>FUMP/MOT<br>FLOW IND            | R/FILTER<br>UR<br>ICATOR:                  | TYPE: _<br>TYPE: _<br>ON: <u>/2/</u> | NUMBER<br>NUMBER<br>OO 3FF: O   | ۲<br>او<br>او  | IME JF 24Y<br>N: 12:00<br>FF: 05:00   | TIME INDICATE<br>ON: <u>41243.</u><br>OFF: 425/7     | OR<br>23 |
| NALYSIS<br>DONTAINE<br>PLASTIC              | RIQUEST<br>P<br>BAG                        | TRO:<br>Calor<br>White               | PRESERVATIV<br>None             | /E MGP<br>AMO/ | NAME<br>FARTICULAT                    | TOTAL METALS<br>ELEADIN AIS                          | PR       |
|                                             |                                            | M-\$4                                |                                 | mgl            | 39190                                 | •                                                    |          |

Sance Location as CSXCR 49.4

TAMPLE COLLECTED BY: PUREETS | SILVA | McCall

| -Y: +O ACTHO                 | : CSXCR SAMN         | d: 421 GCC: _ MED        | DIA: AIR   | PL: 5 P F D                                                                 |
|------------------------------|----------------------|--------------------------|------------|-----------------------------------------------------------------------------|
| SEC YTIVITO.<br>EC :NOITADE. | : RIG RIVER<br>SUDGE | MINE TAILINGS MO PROJECT | ' NUM: 433 | REF LATITUDE: PT: LONGITUDE:                                                |
| TURETISARUA                  | 19 49:               |                          |            | DATE PTIME FROM REF P<br>127790 11:30 EAST:<br>132120 24:00 NORTH:<br>00WN: |
| -UNP/MOTOR<br>-LOW INDICAT   | TYPE:                | 30 JFF: 24.              | 00 JFF:,   | OF JAY TIME INDICATOR  (L:30, ON: A1869.9  A4:40 OFF: A184.9                |
| MALYSIS REA                  | UESTED:              |                          |            | • .                                                                         |
| CONTAINER                    | COLOR                | PRESERVATIVE             | MGP / NA   | HE TOTAL MATALS P.                                                          |
| PLASTIC BAG                  | AMITE                | NUME                     | 12 Sept 1  | ME TOTAL METALS P. RTICULATE LEAD IN AIR 8                                  |

Sample Location Same as CSXCR413

NAMPLE COLLECTED BY : BIBERTS MCCall Silva

|                                                                     |                                                 | TAL PROTECTION<br>DIV. 25 FUNSTO |                                         |                                           |                         |
|---------------------------------------------------------------------|-------------------------------------------------|----------------------------------|-----------------------------------------|-------------------------------------------|-------------------------|
| Y: 70 ACTNO:                                                        | CSXCR SAMNC:                                    | 422 400:MED                      | CIA: AIR PL                             | SPFO                                      |                         |
|                                                                     |                                                 | NE TAILINGS<br>MO PROJECT        | . <b></b>                               |                                           |                         |
| NAMPLE DES: BI<br>LOCATION: DESL<br>LASE/BATCH/SMO<br>ROCARZ/TEROTE | G RIVER MINE                                    | TAILINGS<br>MO<br>LAB:           | 047<br>9EG: C7127<br>END: <u>C7</u> 125 | TIME FROM  TO 12:24 EAST:  19024:24 NORTH | REF PT                  |
| CONTAINER/FILT<br>PUMP/MOTOR<br>PLOW INDICATOR                      | ER TYPS: _ N<br>TYPE: _ N<br>: ON: <u>/2100</u> | UMBER<br>UMBER<br>2              | TIME CF<br>UN: 12<br>OD OFF:94          | ODAY TIME INDICATED ON: 703               | ATOR .<br>N. /<br>Z. Ce |
| ANALYSIS REQUE<br>CONTAINER<br>PLASTIC (146                         | CCLOR                                           |                                  | MGP NAME<br>ANDT PARTIO                 | TOTAL MEN<br>CULATE LEAD IN               | ALS P.P.                |
| COMMENTS: B                                                         | •                                               | -3                               |                                         | sul                                       |                         |
|                                                                     | ý                                               |                                  |                                         | CSXCR.                                    | 406                     |

## TBBLD SHEET

| ENVI                                         | U.S. E<br>Ronmental                                  | NVIRONMENT<br>SERVICES D               | AL PROTECTION A<br>IV. 25 FUNSTON | AGENCY, RE<br>U RD. KANSA                           | GION VII<br>S CITY, KS                  | 5 á 1 1 5                               |
|----------------------------------------------|------------------------------------------------------|----------------------------------------|-----------------------------------|-----------------------------------------------------|-----------------------------------------|-----------------------------------------|
| :Y: 75 /                                     | ACTNO: DSX                                           | CR SAMNE:                              | 423 9CC: MEDI                     | (4: AIR                                             | PL: S P F D                             |                                         |
| CTIVITY                                      | / LES: 514<br>N: 0:350063                            | RIVER MIN                              | E TAILINGS<br>MO FROJECT          | NUM: A33                                            | REF LATITUDE<br>PT: LONGITUS            | E:                                      |
| JAMPLE :<br>LCCATIUM<br>LASZ/BAT<br>JTCRCT/( | DES: BIG R<br>N: BESLOGE<br>FCHZSMD: _<br>CARCAD ND: | ENIM SEVI                              | TAILINGS<br>MD<br>LA3:            | * )<br>3eg: C7 <i>l</i><br>end: <u>/</u> 2 <i>l</i> | 27: PEXINE<br>2170 12:60<br>26190 00:15 | FROM REF PT<br>EAST:<br>NORTH:<br>DOWN: |
| TONTAINS<br>TUMP/MOT<br>TLOW INC             | EF/FILTER TOR DICATOR:                               | TYPE: _ NU<br>TYPE: _ NU<br>GN: _/2/00 | MBER<br>MBER                      | TIME<br>ON: 3<br>OFF: §                             | OF DAY TIME<br>2 20 ON:<br>2 25 OFF:    | INDICATOR                               |
| -MALYSIS<br>JONTAINS<br>FLASTIC              | S REQUESTE<br>Er c<br>                               | D:<br>CLOR<br>HITE                     | PRESERVATIVE<br>NONE              | MGP NAM                                             | E Total TICULATELE                      | I MATHE PR                              |
| DOMMENT:                                     | 5: BK.                                               | 1 M- 07.                               | -3                                | 1,042151142                                         | ·                                       |                                         |
|                                              | Sai                                                  | uple .                                 | location                          | Sance                                               | as C5                                   | XCR \$7                                 |

| INVIRONMENTAL                                                           | . SERVICES DI                                    | L PROTECTION V. 25 FUNSTO   | N RD. KANSA                        | S CITY, KS o                            | 6115                                    |
|-------------------------------------------------------------------------|--------------------------------------------------|-----------------------------|------------------------------------|-----------------------------------------|-----------------------------------------|
| Y: 20 ACTHO: CS                                                         | SXCR SAMNO: (                                    | 24 ICC: IF MED              | IA: AIR                            | FL: 3 P F D                             |                                         |
| CTIVITY DES: 31<br>JCATION: DESLO                                       | <b>.</b> ξ                                       | MO PROJECT                  | NUM: A33                           |                                         | E:                                      |
| DAMPLE DES: BIG<br>DOATION: DOSLOG<br>ASE/BATCH/SMO:<br>TORET/SARDAD HO | RIVER MING T<br>GE/_/<br>D:                      | AILINGS<br>MC<br>LAB:       | 10.<br>8EG: 374<br>END: <u>Q14</u> | ATE PIME .<br>27/95 /2 00<br>35/2024:00 | FROM REF PT<br>EAST:<br>NORTH:<br>DOWN: |
| .ONTAINER/FILTER<br>UMP/MUTOR<br>FLOW INDICATOR:                        | R TYPE: _ NUR<br>TYPE: _ NUR<br>ON: <u>/2/00</u> | 1888<br>1888<br>1988: 24/00 | TIVE:<br>ON: 2<br>OFF:             | OF CAY TIME (2:20 ON: (4:20 OFF:        | INDICATOR<br>_/(6/0.03<br>              |
| NALYSIS REQUEST<br>JONTAINER<br>FLASTIC DAG                             | COLOR 6                                          | PRESERVATIVE<br>NONE        | MGP NAM. AMJA PAR                  | L TOTAL TICULATE LEA                    | DIN AIR SY                              |
| COMMENTS: 73 2                                                          | sm- 48                                           | - 3                         | 910                                |                                         |                                         |

Field Daily Blank

SAMPLE COLLECTED DY : PABRATS / No CON SILVA

| , 'A-1                                 |                        |                      |             |            |      |      |                          |     |             |           |      |            |        |            |            |                |               |                  |       |             |            |
|----------------------------------------|------------------------|----------------------|-------------|------------|------|------|--------------------------|-----|-------------|-----------|------|------------|--------|------------|------------|----------------|---------------|------------------|-------|-------------|------------|
| ENVI                                   |                        |                      |             |            |      |      | TAL<br>DIV.              |     |             |           |      |            |        |            |            |                |               | S 5              | 6115  |             |            |
| :Y: 73                                 | ACTA                   | 10:                  | ×           | C =        | 44.2 | INC: | 425                      | )C  | C: _        | <br>_ ME  | DIA  | : A        | <br>IR |            | PL:        | <b></b>        | э F           | פ                |       |             |            |
| ACTIVITO                               | Y 06                   | 13:<br>23 <b>5</b> L | 310<br>300£ | <br>       | VER  | » I  | NE T                     | AIL | INGS<br>PRO | S<br>DJEC | T N  | UM:        | A 3    | 3          | REF<br>PT: | LA<br>LCI      | TITU          | נחט<br>פר        | :     |             |            |
| JAMPLE<br>JOCATIO<br>JASE/BA<br>TORET/ | DES:<br>IN: E          | aI<br>ESL<br>SMC     | G 8         | IVE        | R 1  | IINE | TAI                      | LIN | 6 S         |           |      | 3 6        | <br>G: | 577        | Ate<br>271 | ور ( ۵۵<br>( م | 11.3<br>11.11 | φ <sub>0</sub> ς |       | REF         | PT         |
| NIATACI<br>PMNAMUL<br>NI WOJ           | IER/F<br>ITOR<br>IDICA | FILT<br>ATOR         |             | TYP<br>TYP | E:   | - N  | UMB =<br>UM 3 Ε<br>- 3 Φ | R   | <br>F: _    | øø        | , 50 |            |        |            | 11:        | $3\phi$        |               |                  | ,     |             |            |
| AMALYSI<br>DONTAIN<br>PLASTIC          | ler.                   |                      | C           | OLU        |      |      |                          |     |             |           |      | MGP<br>AMO | 4      | NAM<br>PAR | E<br>TIC   | UL A           | ب<br>إ ۲≘     | 101<br>101       | nl Me | iale<br>AIR | 9 <b>Y</b> |
|                                        |                        | <u>ب</u> د           |             | ۱ ۸۵       | . 1  | 4    | A                        |     |             |           |      | γa         | ۽ ارت  | 919        | ,          |                |               | 1                |       |             |            |

DEMMENTS: BR-AM-41-4

SOME AS CSXCR 400

DAMPLE CULLECTED BY: 120 BC ATS McCOll/5/1/10

|                                                             |                                |                                  | AGENCY, REGION VII<br>N RD. KANSAS CITY, KS               | o 6115                              |
|-------------------------------------------------------------|--------------------------------|----------------------------------|-----------------------------------------------------------|-------------------------------------|
| TY: 90 ACTNU:                                               | CSXCR SAMNO                    | : 426 100: _ MED                 | IA: AIR PL: S P F D                                       |                                     |
| 4CTIVITY DES:<br>LOCATION: DESL                             |                                |                                  | REF LATITUD<br>NUM: A33 PT: LONGITU                       |                                     |
| ETORET/SAROAD                                               | 235<br>:/_/_<br>NO:            |                                  | DATE TIME 0<br>BEG: C7/27/90 12:44<br>END: 03/77/90 00:06 | EAST:<br>NCRTH:<br>DOWN:            |
| CONTAINER/FILT<br>CUMP/MOTOR<br>FLOW INDICATOR              | ER TYPE: _<br>TYPE: _<br>: JN: | NUM3ER<br>NUMBER<br>≥ 00 3FF: 00 | TIME OF DAY TIME ON: 12:440 SCN: OB OFF: 06:06 OFF:       | •                                   |
| ANALYSIS REQUE<br>CONTAINER<br>PLASTIC BAG<br>COMMENTS: 3 G | COLOR<br>WHIT:                 | BVDN                             | MGP NAME TO<br>AM21 PARTICULATE LZ<br>VVS/121/40          | STALMETO IS<br>AD IN AIR BY<br>O.S. |

SAMEDS CSXCR 402

134MENTS: BR-114-43-4

#### FIRLD SHEET

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIPONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY/ KS 56115 Y: 20 ACTIG: OSXGR SAMNO: 427 RCC: \_ MEDIA: AIR CTIVITY DES: DIG RIVER MINE TAILINGS REF LATITUDE: .BCATION: DESLOGE MO PROJECT NUM: A33 PT: LONGITUDE: CHAIR MINE TAILINGS DATE TIMES FROM REF PT AMPLE DES: BIG RIVER MINE TAILINGS 1334713N: 383L03E MD 3EG: 07/27/90 12:06 EAST: 1488/34TCH/SMD: // LAB: END: 07/76/90 23:21 NORTH: TORET/SARDAD NO: MGP NAME TOTAL METALS
AMOT PARTICULATE LEAD IN AIR 84 .MALYSIS PEQUESTED: CONTAINER COLOR PRESERVATIVE LASTIC SAS SHITE NGNE 0.5. 5/29/90

SIME AS CSXCR403

|                                                                            | ENVIRONMENTAL PROTECTION A<br>SERVICES DIV. 25 FUNSTON      | AGENCY, PEGION VII<br>FRD. KANSAS CITY, KS 56115                                            |
|----------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| FY: 90 ACTNO: CS                                                           | SXCP SAMNO: 428 QCC: _ MEDI                                 | A: AIR PL: S P F D                                                                          |
| LOCATION: GESLO                                                            | GE MO PROJECT                                               | REF LATITUDE:                                                                               |
| JAMPLE DES: 31G<br>LOCATION: DESLO:<br>DASE/BATCH/SMC:<br>GTORET/SARDAD NO | RIVER MINE TAILINGS  BE MO LAB:                             | .047E C.S. TIME = ROM REF PT<br>3EG: C7/27/90 12:20 EAST:<br>END: 01/76/90 24:00 NORTH:<br> |
| CONTAINER/FILTER<br>PUMP/MOTOR<br>FLOW INDICATOR:                          | R TYPE: _ NUMBER NUMBER TYPE: _ NUMBER ON: 17.00 OFF: 74.00 | 11ME OF DAY TIME INDICATOR ON: 12:00 UN: 475173 OFF: 74:00 OFF: 43968.6                     |
| ANALYSIS REQUEST<br>CONTAINER<br>CLASTIC GAG<br>COMMENTS: BR               | COLOR PRESERVATIVE NONE                                     | MGP NAME TOTALMETAK<br>AM21 PARTICULATE LEAD IN AIR BY<br>Y2 5/29/9-                        |

SAME AS CSXCR 4\$4

| ENVIRON                                                 |                                    |                         |                           |                      |             |                         | REGION V                                        | II<br>7 KS 6611                  | 5                     |
|---------------------------------------------------------|------------------------------------|-------------------------|---------------------------|----------------------|-------------|-------------------------|-------------------------------------------------|----------------------------------|-----------------------|
| 4Y: 90 ACT                                              | √ព: ८ऽ                             | XCR SA                  | MNC: +2                   | 9 306: _             | MECI        | A: AIR                  | PL: S                                           | P F D                            |                       |
| CTIVITY OF LOCATION:                                    | DESLOG                             | Ē.                      |                           | MO PRO               | JECT 1      | EEA : MUP               | PT: LO                                          | TITUDE:<br>NGITUDE:_             |                       |
| AMPLE DES:<br>.JCATION: .J<br>.ASE/BATCH/<br>TORET/SARC | : 8IG<br>DESLOG<br>/SMG:<br>DAO YO | RIVER<br>E              | MINE TA<br>_/             | ILINGS<br>MO<br>LAB: |             | BEG: 0<br>END: <u>(</u> | 74 6.5.<br>DATE<br>27/27/90<br>D <u>}/26/90</u> | TIME FRO 12:09 EAS 23:15 NOR 00W | M REF PT<br>T:<br>TH: |
| CONTAINER/S CUMP/MOTOR FLOW INDICA                      | FILTER<br>Ator:                    | TYPE:<br>TYPE:<br>GN: _ | EMUN _<br>BMUN _<br>LZ:_D | ēR<br><br>Ø )FF:     | <u> 23!</u> | TIN<br>UN:              | ME CF DAY<br>: 12:90<br>: 23:15                 | TIME INC<br>ON: Z<br>OFF: Z      | ICATOR<br>GOSTA       |
| .NALYSIS RE<br>.INTAINER<br>.LASTIC BAC<br>.UMMENTS:    | ,                                  | CGLGR<br>WHITS          | OM                        | ESERVATI<br>Ne       | <b>v</b> E  | AGP AGE STATE           | NAME<br>Particula<br>4/12                       | TO 151                           | MCTSIS<br>N AIR 3Y    |

SOME ASCSXCR 413

| FNVIRONA                                        |                                                |                            | N AGENCY, REGION VII<br>Ton RD. KANSAS CITY,                       |                                                    |
|-------------------------------------------------|------------------------------------------------|----------------------------|--------------------------------------------------------------------|----------------------------------------------------|
| Y: 30 ACT                                       | NO: CSXCR SAM                                  | NE: 430 200: _ M           | EDIA: AIR PL: S P                                                  | = ນ                                                |
| 305TTON+ 6                                      | 2551225                                        | Ma conte                   | REF LATI<br>CT NUM: A33 PT: LONG                                   | TTUDE                                              |
| TAMPLE DES: LOCATION: 5 .ASE/BATCH/ LTCRET/SAFE | : DIG RIVER V<br>DESLOGE<br>/SMG:/<br>DAD NO:/ | INE TAILINGS MO LA8:       | DATE TI<br>DATE TI<br>BEG: C7/27/90, 12<br>END: 01/21/90 da        | ME FROM REF PT<br>:¢¢ EAST:<br>:Z6 NGRTH:<br>DOWN: |
| CONTAINER/A PUMP/MOTOR PLOW INDICA              | FILTER TYPE: TYPE: ATOR: ON:                   | NUMBER NUMBER 12:00 OFF: 0 | 1 TIME OF DAY TO ON: 17:40 0                                       | IME INDICATOR N: 77476 FF: 8493.8                  |
| TLASTIC DAT                                     |                                                | PRESERVATIVE<br>NONE       | MGP NAME PARTICULATE  MGP NAME  PARTICULATE  MGP NAME  PARTICULATE | TOTAL METOLS LEAD IN AIR BY C.S.                   |

some as csxcr 4\$6

|                                          |                                  |                                 | N AGENCY, REGITON RD. KANSAS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------|----------------------------------|---------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FY: →O ACTN                              | U: SSXCR SAMN                    | 0: 431 RCC: _ M                 | EDIA: AIR PL                 | : S P F D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                          |                                  |                                 | CT NUM: A33 PT               | F LATITUDE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TASE/BATCH/                              | EIG RIVER MI<br>ESLOGE<br>SMO:// | VE TAILINGS<br>MO<br>LAS:       | 3EG: 07127                   | 00 STIME, FROM REF PT<br>190 12:09 EAST:<br>190 23:55 NORTH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONTAINER/F<br>PUMP/MOTOR<br>TEBW INDICA | TILTER TYPE:                     | NUMBER<br>NUMBER<br>7/00 OFF: Z | TIME OF ON: 17 3/55 OFF: 23  | $\frac{3}{4}$ TIME INDICATOR<br>$\frac{1}{2}$ $\frac{1}{4}$ |
| -LASTIC JAG                              | COLOR                            | PRESERVATIVE<br>NONE            | MGP NAME<br>AMOT PARTI       | CULATE LEAD IN AIR 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

SAMC CSXCR 497

DAILY FIELD Blonk

|                                                                     |                                   | NTAL PROTECTION DIV. 25 FUNSTO   |                                           |                                               | ;                       |
|---------------------------------------------------------------------|-----------------------------------|----------------------------------|-------------------------------------------|-----------------------------------------------|-------------------------|
| :Y: 20 ACTNG: 6                                                     | SSXCR SAMNE                       | : 433 QC: _ MED                  | DIA: AIR PL                               | : S P = D                                     |                         |
|                                                                     | 39E                               | MO PROJECT                       |                                           | : LONGITUDE:                                  |                         |
| DAMPLE DES: SI<br>LUCATION: CESL<br>DASE/BATCH/SMD<br>DTORET/SARDAD | 3 RIVER MIN<br>338<br>:/_/<br>NO: | E TAILINGS MO LA3:               | ' DAT<br>2EG: 07/27<br>END: <u>07</u> /2' | TIME FROM 1/30 # 30 EAST 1/90 83 29 NORT 00WM | REF PT                  |
| CONTAINER/FILT<br>PUMP/MOTOR<br>PLOW INDICATOR                      | ER TYPE: _<br>TYPE: _<br>: ON:Z   | NUMBER<br>NUMBER<br>2100 DEF: 33 | TIME OF<br>ON: <u>18</u><br>59 OFF: 23    | DAY TIME INDI<br>:00 GN: 35<br>:59 JFF: 43    | CAJ 28<br>98. 3<br>12.8 |
| INALYSIS REDUF<br>CONTAINER<br>LASTIC BAG                           | CJŁOK                             | PRESERVATIVE<br>NONE             | MGP NAME<br>AMJA PARTI                    | Total MR                                      | MS PR                   |

: 3 MMENTS: BR-0 M-01-5

Same as CSXCR 460

DAMPLE COLLECTED BY: Roberts / Mc Call /5. Wa

|                                                   |                                           |                             | ON AGENCY/ REGI<br>Ston RD. Kansas    |                                                                 | 15                              |
|---------------------------------------------------|-------------------------------------------|-----------------------------|---------------------------------------|-----------------------------------------------------------------|---------------------------------|
| ·Y: →O ACTNO                                      | : C3XCR SAMNO                             | : 434 PCC: _                | MEDIA: AIR P                          | .: S P F D                                                      |                                 |
| CTIVITY DES<br>CCATION: DE                        | : BIG RIVER N<br>SLOGE                    | INE TAILINGS MO PROJ        | RECT NUM: A33 PT                      | EF LATITUDE:<br>f: Longitude:                                   |                                 |
| AMPLE DES: LOCATION: DE LASE/BATCH/SI TORET/SAROA | SIG RIVER MIN<br>SLUGE<br>MC:/_/<br>D NO: | E TAILINGS AD LAB:          | DA1<br>BEG: 07/20<br>END: <i>02/2</i> | TE TIME FR<br>7/90 <u>B:00</u> FA<br>7/90 <u>83:4/</u> NO<br>DC | OM REF PT<br>ST:<br>RTH:<br>WN: |
| JUNTAINER/FI<br>JUMP/MOTOR<br>FLOW INDICAT        | LTER TYPE: _<br>TYPE: _<br>OR: ON:        | NUMBER<br>NUMBER<br>2. UFF: | TIME OF<br>ON: 17<br>0FF: 23          | F DAY TIME IN<br>B: UN: 2                                       | OICATOR<br>47/5.9<br>44/7.7     |
| LASTIC HAG                                        | COLOR<br>WHITE                            | PRESERVATIV<br>NONE         | E MGP NAME<br>AM21 PART:<br>WL  21/10 | Total M<br>ICULATE <del>LEAD</del>                              | METALS P.R.                     |
| JOMMENTS:                                         | BR-MM-9                                   | 7-5                         | ,                                     |                                                                 |                                 |

Same as CSXCR 402

SAMPLE COLLECTED EX: Boberts/McColl/Silva

| INVIRON                                           |                                              |                            | ON AGENCY, REGIO<br>Ston RD. Kansas C      |                                                       |
|---------------------------------------------------|----------------------------------------------|----------------------------|--------------------------------------------|-------------------------------------------------------|
| :Y: 90 ACT                                        | NG: OSXOR SA                                 | MNC: 435 ACC: _            | MEDIA: AIR PL:                             | SPFD                                                  |
| SCTIVITY 3                                        | ES: DIG PIVE<br>DESLOGE                      | R MINE TAILINGS<br>MJ PROJ | REF<br>ECT NUM: A33 PT:                    | LATITUDE:                                             |
| TAMPLE DES<br>LOCATION:<br>DASE/BATCH<br>TARE/SAR | : 313 RIVER<br>045L04E<br>/SMO:/<br>040 NO:/ | MINE TAILINGS 40 LAB:      | DATE<br>3EG: 07/27/<br>END: <i>Q[12]</i> / | TIME FROM REF PT 93 12:10 EAST: 90 23:12 NORTH: DOWN: |
| IONTAINER/<br>TUMP/MOTOR<br>FEDW IMDIC            | FILTER TYPE:<br>TYPE:<br>ATOR: JN:           | NUMBERNUMBER               | TIME OF ON: 23: 23: 43 OFF: 23:            | DAY TIME INDICATOR ON: 59/4/8 42 OFF: 64/7.0          |
| IMALYSIG R<br>CONTAINER<br>TLASTIC CA             | EQUESTED:<br>COLOR<br>G WHITE                | 10112                      | E MGP NAME<br>AMOT PARTIC                  | ULATE LEAD IN AIR BY                                  |

13MMENTS: 132-0M-\$3-5

Some as CSXCR 403

SAMPLE COLLECTED BY: Proberts Mc Call Silva

|                                                                         |                                  | NTAL PROTECTION<br>DIV. 25 EUNST( |                                     | _                                                        |
|-------------------------------------------------------------------------|----------------------------------|-----------------------------------|-------------------------------------|----------------------------------------------------------|
| Y: )) ACTNO: (                                                          | SXCR SAMNO                       | : 435 000: _ 486                  | DIA: AIR PL:                        | SPFO                                                     |
| CTIVITY DES: .<br>.JCATION: DESE.                                       |                                  | INE TAILINGS<br>MO PROJECT        | REF<br>I NUM: A33 PT:               | LATITUDE:                                                |
| TAMPLE DES: 316<br>_DCATION: DESE:<br>TASE/SATCH/SMO:<br>TORET/SAROAD:: | RIVER MIN<br>135<br>:/_/_<br>ND: | E TAILINGS 17 LA3:                | DATZ<br>33G: 07/27/9<br>END: 07/28/ | TIME FROM REF PT PO 23: 00 EAST: 20 00: 1/2 NORTH: DOWN: |
| CONTAINER/FILTS SUMP/MOTOR FLOW INDICATORS                              | TYPE: _<br>TYPE: _<br>: GN:      | NUMBER<br>NUMBER<br>3-00 JFF: 00  | TIME OF S<br>ON: /2://<br>OFF: 00:  | DAY TIME INDICATOR  ON: 43246.9  11 OFF: 43968.6         |
|                                                                         | COLOR                            | PRESERVATIVE                      | MGP NAME                            | Top   Matals C<br>HLATE LEAD IN AIR SY                   |
| -LASTIC PAG                                                             |                                  | BNBK                              | AMM FARTICI VY 3/21/40              | JLATE <del>LEAD I</del> N AIR SY<br>•                    |
| DIMMENTS: 32                                                            | -137-0                           | ,-5                               | ·                                   |                                                          |

Samz as CSXCR 404

TAMPLE COLLECTED BY: Bebats/McCall /5/Va

|                                                                           |                                         |                         | RD. KANSAS CITY.                       |                                                     |
|---------------------------------------------------------------------------|-----------------------------------------|-------------------------|----------------------------------------|-----------------------------------------------------|
| TY: PC ACTNO: C.                                                          | SXCR SAMNO: 437                         | ACC: _ MEDIA            | A: AIR PL: S                           | P F J                                               |
| -CTIVITY BES: 8<br>-UCATION: DESLO                                        | IG RIVER MINE T<br>Ge                   | AILINGS<br>MU PROJECT N | PEF LATUM: A33 PT: LC                  | TITUDE:                                             |
| JAMPLE DES: 3IG<br>.3CATION: DESLO:<br>JASE/PATCH/SMC:<br>JTCRET/SARDAD N | RIVER MINE TAI<br>GE<br>/_/<br>O:       | LINGS<br>MO<br>LAC:     | DATE<br>BEG: 07/27/90<br>ENO: 07/28/20 | TIME EROM REF PT  //: 42 EAST:  /: 00 NGRTH:  OOWN: |
| CONTAINER/FILTS CUMP/MOTGR -LOW INDICATOR:                                | R TYPE: _ NUMBE<br>TYPE: _ NUMBE<br>ON: | R<br>OFF: //DD          | TIME OF DAY<br>ON: 1/:43<br>OFF: 1/:00 | TIME INDICATOR  JN: 226528  OFF: R3442              |
| ANALYSIS REJUES<br>DUNTAINER<br>HLASTIC HAG                               | COLOR PRE                               | SER <b>vativ</b> e<br>E | MGP NAME<br>AMEN PARTICULAT            | Total Matals PR                                     |

. JMMENTS: BR-12M-45-5

Summ as CSYCR 4/3

TAMPLE COLLECTED BY: Babels Mosel Silva

| u.S.<br>ENVIRONMENTA                                                     |                                      | TAL PROTECTIO<br>DIV. 25 FUNS |                      |                                                  |                                      | 15                     |
|--------------------------------------------------------------------------|--------------------------------------|-------------------------------|----------------------|--------------------------------------------------|--------------------------------------|------------------------|
| 'Y: 90 ACTNO: C                                                          | SXCR SANNE:                          | 438 QCC: _ M                  | EDIA: AIR            | PL: S                                            | P F D                                |                        |
| OCTIVITY DES: 3                                                          |                                      |                               | CT NUM: A3           | REF LA<br>3 PT: LC                               | TITUCE:<br>NGITUDE:                  |                        |
| TAMPLE DES: BIG<br>LOCATION: DESLO<br>LASE/BATCH/SMG:<br>LTGRET/SARDAD N | RIVER MINE<br>Se<br>O:/_/            | TAILINGS MO LAB:              | 3EG:<br>=ND:         | DATE<br>67/27/90<br><i>OP/28/1 <u>9</u>0</i>     | TIME FR<br>2:00 EA<br>00:24 NO<br>00 | OM REF PT              |
| CONTAINER/FILTE<br>PUMP/MOTOR<br>-LOW INDICATOR:                         | R TYPE: _ NI<br>TYPE: _ NI<br>JN:/32 | JMSER<br>JMBER<br>LO JFF: _O  | 11<br>ON<br>OF 34 OF | ME OF DAY<br>1: <u>12:00</u><br>F: <u>00</u> :29 | TIME IN ON:                          | DICATOR                |
| ANALYSIS REQUES<br>CONTAINER<br>PLASTIC DAG                              | TFD:<br>COLOR<br>WHITE               | PRESTRVATIVE<br>NONE          |                      |                                                  |                                      | Metals P.P.) IN AIR BY |
|                                                                          | ./,                                  |                               | my 120               | 119.0                                            | •                                    |                        |

1844ENTS: BR-DM-\$6-5

Same as CSXCR 406

LAMPLE COLLECTED BY: Roberts Mc Poll S. Via

|                                                                          |                                          |                              | GENCY, REGION RD. KANSAS CIT                   |                                                    |
|--------------------------------------------------------------------------|------------------------------------------|------------------------------|------------------------------------------------|----------------------------------------------------|
| Y: 40 AGTHO: SS                                                          | SXCR SAMNC: 4                            | 39 GCC: _ MEDI               | A: AIR PL: 3                                   | PFD                                                |
| CTIVITY DES: 31<br>GCATION: DESECT                                       | IG RIVER MINE<br>38                      | TAILINGS<br>MD PROJECT       | REF L<br>NUM: A33 PT: L                        | ATITUDE:                                           |
| AMPLE DES: BIG<br>LOCATION: DESLOC<br>LASE/DATCH/SMO:<br>CO CACRAC/TERCT | RIVER MINE T<br>Se/_/<br>J:              | AILINGS<br>MO<br>LAB:        | DATE<br>3EG: C7/27/90<br>END: <u>AZIZ</u> 8/20 | TIME FROM REF PT  13:00 EAST:  00:27 NORTH:  00WN: |
| TUMPANIARAFILTER<br>TUMPAMOTOR<br>FLOW INDICATOR:                        | R TYPE: _ NUM<br>TYPE: _ NUM<br>JN:ZA_DA | 3ER<br>3ER<br>DFF: <b>DO</b> | 11MS OF DA<br>ON: 2:00<br>27 OFF:00:2          | TIME INDICATOR ( ON: 730-61-73  OFF: 8047.         |
| PALYSIS REQUEST<br>CONTAINER<br>CLASTIC BAG                              | TED:<br>SOLOR P<br>WHITE N               | RESERVATIVE<br>Une           | MGP NAME AMOT PARTICUL:                        | Total Malals (P.R.) ATE LEAD I'L AIR BY            |

. 3 MM ENTS: BEAM- \$7-5

Same as CSXCR 407

THERE CILLECTED SY : Bobet McColl Silva

| HVIPONM                                   | ULGL ENVIRONM<br>Tental service                | ENTAL PROTECTION 3 DIV. 25 FUNST  | AGENCY, R                     | EGIJN VII<br>AS CITY, KS o                                   | 6115                                    |
|-------------------------------------------|------------------------------------------------|-----------------------------------|-------------------------------|--------------------------------------------------------------|-----------------------------------------|
| .Y: 70 ACTN                               | 13: CSXCR SAMN                                 | antal protection of div. 25 punst | DIA: AIR                      | PL: S P F D                                                  |                                         |
| CTIVITY DE                                | ES: SIG RIVER<br>Disluga                       | PINE TAILINGS MD PROJEC           | T NUM: 433                    | REF LATITUDA<br>PT: LCNGITUD                                 | :                                       |
| .AMPLE DES:<br>LOCATION: P<br>.ASE/PATCH/ | SIG RIVER MI<br>PESLOSE<br>SMG:/_/<br>CAD NO:/ | NE TAILINGS<br>MD<br>LAB:         | 3∈G:∠C7.<br>END:∠ <b>C</b> 2. | DATE TIME<br>127190 <u>12:0</u> 0.<br>1221 <u>90 24:00</u> . | FROM REF PT<br>EAST:<br>NGRTH:<br>DOWN: |
| CONTAINER/F<br>FORMANDER<br>FOIGNI WOLCA  | TYPE: _<br>TYPE: _<br>UTGR: GN:                | NUMBER<br>NUMBER<br>12.00 OFF: BY | TIME<br>ON:<br>CON OFF        | OF DAY TIME<br>DAY ON:<br>24:00 OFF:                         | INDICATOR                               |
| .WALYSIS RE<br>JONTAINER<br>PLASTIC RAG   | EQUESTED:<br>COLOR<br>G WHITE                  | PRESERVATIVE<br>NONE              | MGP NAM<br>AMO1 PAM           | ME <i>Tehl</i><br>RTICULATE <del>LEA</del>                   | METALS (PL)                             |
| .IMMENTS:                                 | 125 2W- 98                                     | -5                                |                               |                                                              |                                         |
|                                           | Daily 1                                        | Field Bland                       | K                             |                                                              |                                         |

TAMPLE COLLECTED IN: Roberts McColl/Silva

|                                                                       |                                         |                                | GENCY, REGION VII<br>RD. KANSAS CITY, KS (             | 5 <b>611</b> 5                          |
|-----------------------------------------------------------------------|-----------------------------------------|--------------------------------|--------------------------------------------------------|-----------------------------------------|
| Y: 30 ACTNO: 0                                                        | SXCR SAMNO:                             | 441 GCC: MEDI/                 | 4: AIR PL: S P F D                                     |                                         |
| CTIVITY DES: 6<br>DCATION: DESL                                       | IG RIVER MI<br>GE                       | NE TAILINGS<br>MO PROJECT (    | REF LATITUD:<br>NUM: A33 FT: LONGITU                   | :<br>)E:                                |
| AMPLE DES: BIG<br>CCATION: CESLO<br>BASE/BATCH/SMC:<br>TORET/SAROAD N | FIVER MINE                              | TAILINGS<br>Mo<br>LAC:         | 016 TIME<br>CEG: C7127190 12:00<br>END: 17124140 23:56 | FROM REF PT<br>EAST:<br>NORTH:<br>DOWN: |
| CONTAINER/FILTS<br>PUMP/MOTOR<br>FLOW INDICATOR:                      | R TYPE: _ NI<br>TYPE: _ NI<br>GN: _/2/0 | JMBER<br>JMBER<br>O DFF: 23:56 | TIME OF DAY TIME ON: 12:00 ON: OFF: 23:36 OFF:         | INDICATOR<br><u>43/7.8</u><br>5034.7    |
| NALYSIS REQUES<br>CONTAINER<br>PLASTIC BAG                            | CCLGR                                   | PRESERVATIVE<br>NUNE           | MGP NAME + 127 AMOT PARTICULATE LES                    | to metals                               |

15 MMENTS: 732-AM-41-6

Sample location same as CSXCR 400

TAMPLE COLLECTED OF : Roberts / 14/4 M/ Silva

|                                                          |                                                    |                                | N AGENCY) REGION<br>FON RD. KANSAS CI                       |                                                          |
|----------------------------------------------------------|----------------------------------------------------|--------------------------------|-------------------------------------------------------------|----------------------------------------------------------|
| 'Y: 90 ACT                                               | ID: CSXCR SAMNO                                    | : 442 300: _ MS                | DIA: AIR PL:                                                | SPFD                                                     |
|                                                          | ES: BIG RIVER N<br>DESLOGE                         | 'INE TAILINGS<br>MO PROJEC     | REF<br>CT NUM: A33 PT:                                      | LATITUDE:                                                |
| JAMPLE DEC:<br>LOCATION: E<br>LASE/BATCH/<br>LTORET/SARC | : 3IG RIVER MIN<br>DESLOSE<br>/JMO:/_/<br>DAD MO:  | CPAILINGS UP LAB:              | 0 <b>7/5</b><br>8EG: 07/2/19<br>END: <u>7/2(</u> / <u>5</u> | TIME FROM REF PT  10 12:00 EAST:  10 23:31 NORTH:  DOWN: |
| JONTAINER/S<br>PUMP/MOTOR<br>TEOW INDICA                 | FILTER TYPE: _<br>TYPE: _<br>ATOR: ON: <u>/2</u> / | NUMBER<br>NUMBER<br>00 OFF: 23 | TIME OF 3<br>ON: 12:0<br>139 OFF: 23:3                      | 90 3N: 15417.7<br>90 3FF: 16116.8                        |
| TLASTIC BAC                                              | COLOR<br>WHIT:                                     | PRESERVATIVE<br>Mune           | MGP HAME<br>AMM FARTICU<br>Majay190                         | LATE LEAD IN AIR BY                                      |
| COMMENTS:                                                | BR-AM-62-                                          | · <b>6</b>                     | -•                                                          |                                                          |

Sumple location same as CSXCR4/2

IAMPLE COLLECTED BY: Lopeots /11=fall 5ilva

| •             |                |                   |                 |       |
|---------------|----------------|-------------------|-----------------|-------|
| J. 3.         | ENVIRONMENTAL  | PROTECTION AGENCY | Y, REGION VII   |       |
| ENVIRONMENTAL | . SERVICES DIV | . 25 FUNSTON RD.  | KANSAS CITY, KS | óó115 |

|                         |                         | <b>V</b> L 1      |                                |                |                         | 4 L      | c                 |                      |             |                  |            |              | ، ر.<br>     |            | 3 I U        |         |                 | ·               | 4113             | # 3<br>           |                                   |            |                | ა ∵<br>       | 011                      | , ,<br>            |                 |            |
|-------------------------|-------------------------|-------------------|--------------------------------|----------------|-------------------------|----------|-------------------|----------------------|-------------|------------------|------------|--------------|--------------|------------|--------------|---------|-----------------|-----------------|------------------|-------------------|-----------------------------------|------------|----------------|---------------|--------------------------|--------------------|-----------------|------------|
| : Y :                   | 3                       | .)                | ACT                            | ΝO             | :                       | C 3 X    | Ç₹                | ŜA                   | MNO         | ]:               | 443        | 30           | ::           |            | MED          | IA:     | Α:              | IR              |                  | ٥L                | : Ś                               | Р          | F              | מ             |                          |                    |                 |            |
|                         |                         |                   |                                |                |                         |          |                   |                      |             |                  |            |              |              |            |              |         |                 |                 |                  |                   |                                   |            |                |               | :<br>)E:_                |                    |                 |            |
| . A 6<br>. 3 0<br>. A 5 | 1PL<br>34T<br>367       | = :<br>[0]<br>[A] | ) E S<br>N :<br>T C H<br>S A P | :<br>::<br>:/? | 3 I<br>3 L<br>3 C<br>60 | G R      | IV                | ER /                 | ,1IN<br>_/_ | \                | TAI        | LIN<br>HO    | IGS<br>LA    | 9:         |              |         | 3 E (           | G:<br>D:        | 67<br>-Z         | 02f<br>127<br>129 | 7 - 17<br>E<br>190<br>1 <u>90</u> | T 1.0.     | IM<br>2::      | 55<br>00      | FRO<br>EAS<br>NOR<br>DOV | M F<br>ST:<br>RTH: | REF             | PT         |
| 101<br>108<br>163       | ITA<br>1P/<br>Iw        | 1.1<br>CN<br>'VI  | ER/<br>TUP<br>DIC              | /F I           | LT<br>GR                | £ 2<br>: | TY:<br>TY:<br>ON: | PE:<br>2             | -<br>3      | NU:<br>NUI<br>53 | ABE<br>ABE | К<br>R<br>ЛЕ | F:           | - <i>p</i> | 13;c         | 0       | · <b>-</b> -    | 7.1<br>01<br>01 | [ME<br>N:<br>FF: | 0F<br>13<br>03    | DA<br>: <u>55</u><br>: <u>00</u>  | <b>Y</b> i | TI<br>DN<br>DF | ME<br>:<br>F: | INC<br>_66<br>_73        | 10<br>17<br>197    | 470             | R          |
| : NA<br>: C             | 1 L Y<br>1 T A<br>1 S T | SI.<br>IV         | S R<br>EP                      | E G            | 308                     | STE      | O:<br>GLG         | JR<br>Γ <del>Ξ</del> |             | ;                | PRE<br>NON | Sê₹<br>d     | <b>Y A</b> 1 | TIV        | <del>-</del> | بم<br>2 | IGP<br>IMD<br>Y | r.              | NA<br>Pa         | ME<br>RTI         | CUL                               | ΑΤ         | -7<br>         | lot.          | al 14                    | leti<br>[N )       | )<br>a/4<br>a12 | 3 <b>Y</b> |
|                         |                         | · . 🕶 .           | ٠.                             |                | `R                      | 12-A     | M                 | - d                  | ٦,-         | · 6              |            |              |              |            |              |         |                 | ، ادي           | , (1)            | •                 |                                   |            | ,              | •             |                          |                    |                 |            |

Sample location sume as CSXCR4\$3

JAMPLE CULLECTED BY: Roberts /5/1/a /1/4/

|                                                                   |                                     |                      | N AGENCY) REGION<br>'ON RD. KANSAS CI         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------|-------------------------------------|----------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ·Y: 30 ACTNO:                                                     | CSXCR SAMN                          | : 444 GCC: _ M5      | DIA: AIR PL:                                  | SPFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                   |                                     |                      |                                               | LATITUDE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AMPLE DES: 3.<br>DCATION: DES!<br>LASE/EATCH/SM!<br>LTURET/SARGAD | IG RIVER MIN<br>LOGE<br>G://<br>NO: | MO LAD:              | 02421<br>aeg: 07/27/9<br>end: <u>17/24</u> /9 | TIME FROM REF PT 10 12:00 EAST: 10 23:47 NGRTH: 10 DOWN: 10 DOWN: 11 TOWN: |
|                                                                   |                                     |                      |                                               | AY TIME INDICATOR  2 ON: 43964.6  27 JFF: 44675.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ANALYSIS FEQUI<br>CONTAINER<br>(LASTIC HAG                        | ESTED: COLOR WHITE                  | PRESERVATIVE<br>NONE | MGP NAME<br>AMOT MPARTICL<br>8101140          | Had wetals 1711  SLATE LEAD IN AIR 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Sample location same as CSXCRØ4

SAMPLE COLLECTED EY: Roberts / 5. Na METAL 1011

| • •           |              |          |           |         |           |          |
|---------------|--------------|----------|-----------|---------|-----------|----------|
| U.S.          | ENVIRONMENT  | TAL PROT | ECTION AG | SENCY.  | REGION VI | I        |
| ENVIRONMENTAL | . SERVICES D | 51V. 25  | FUNSTON   | RO. KAN | SAS CITY, | KS 56115 |

|                                                                    | 4£                                 |                                 | on no. Namo,                 |                                                      |                                         |
|--------------------------------------------------------------------|------------------------------------|---------------------------------|------------------------------|------------------------------------------------------|-----------------------------------------|
| TY: PO ACTNO:                                                      | CSXCR SAMNO                        | : 445 QCC: _ ME                 | DIA: AIR                     | PL: S P F D                                          | .=                                      |
| -CTIVITY DES:<br>LOCATION: DESI                                    | MIG RIVER M<br>LOGE                | INE TAILINGS<br>MU PROJEC       | T NUM: 433                   | REF LATITUDE<br>PT: LONGITUDE                        | :                                       |
| DAMPLE DES: 30<br>LOCATION: DESI<br>DASE/BATCH/SMO<br>TORET/SARDAD | IG RIVER MIN<br>LUGE<br>D:/_/_     | E TAILINGS  40  LAB:            | 3EG: 07/<br>END: <u>/</u> 2/ | 7 TIME<br>127190 []:39<br>129190 []:30               | FROM REF PT<br>EAST:<br>NORTH:<br>DOWN: |
| CONTAINER/FILT TUMP/MOTOR FLOW INDICATOR                           | TER TYPE: _<br>TYPE:<br>R: ON: /// | NUMBER<br>NUMBER<br>39 OFF: 00: | TIME<br>ON:<br>30 OFF:       | 0F DAY TIME<br><u>1</u> :39 ON:<br><u>00:30</u> OFF: | INDICATOR<br>23442,2<br>24215.6         |
| INALYSIS REQUI<br>JUNTAINER<br>PLASTIC BAG                         | ESTED:<br>COLOR<br>WHITE           | PRESERVATIVE<br>NONE            | MGP NAI<br>AMDI PAI          | ME TOPE                                              | tal 11 etals 60                         |
| COMMENTS:                                                          | BR-AM. Ø=                          | 5-6                             | W3/29/2                      | 7                                                    |                                         |
|                                                                    | /                                  | / /                             |                              | <i>~</i> .                                           | . 0.11                                  |

Surple location saule 45 (5XCR4/3

SAMPLE COLLECTED BY: Roberts /5.1/a METIL

| FIGUU SHEET                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII<br>ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 36115                                                                                                                                                 |
| TY: FO ACTION: SSXCR SAMNO: 446 RCC: _ MEDIA: AIR PL: S P F D                                                                                                                                                                                                        |
| CCTIVITY DES: BIG RIVER MINE TAILINGS REF LATITUDE:  DOCATION: DESLOGE MO PROJECT NUM: A33 PT: LONGITUDE:                                                                                                                                                            |
| CCTIVITY DES: BIG RIVER MINE TAILINGS  DESCRIPTION: DESLOGE  MO PROJECT NUM: A33 PT: LONGITUDE:  AMPLE DES: BIG RIVER MINE TAILINGS  DATE TIME FROM REF PT  DOATION: DESLOGE  MO BEG: C7127190 11:45 9AST:  DASE/SATCH/SMG: // LAB: END: 2124190 21:15 NORTH:  DOWN: |
| TONTAINER/FILTER TYPE: NUMBER TIME OF DAY TIME INDICATOR  TUMP/MOTOR TYPE: NUMBER JN: 11:45 DN: 4237.4  TLOW INDICATOR: JN: 11:45 DFF: 21:15 OFF: 21:15 OFF: 4971.0                                                                                                  |
| ANALYSIS REQUESTED: DINTAINER COLOR PRESERVATIVE MGP NAME total idetals la PLASTIC DAG AHITE NONE AMON PARTICULATE LEAD IN AIR BY                                                                                                                                    |
| 13MMENTS: 73 - AM-\$6-6 8/21/90                                                                                                                                                                                                                                      |
| Sumple Location sume as CSXCR4De                                                                                                                                                                                                                                     |
| Fuse blew in flow controler                                                                                                                                                                                                                                          |

TAMPLE COLLECTED EY: Roberts / 5:1/4 Mital

:. Short sample -line

|                                                                  |                                          | ENTAL PROTECTION<br>3 DIV. 25 FUNSTO |                                                        |                                                               |    |
|------------------------------------------------------------------|------------------------------------------|--------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|----|
| Y: 90 ACTNO:                                                     | CSXCR SAMN                               | C: 448 QCC: _ MED                    | IA: AIR PL: S                                          | PFD                                                           |    |
| .CTIVITY DES:<br>LZEG :MCITADEL                                  | BIG RIVER<br>OGE                         | MINE TAILINGS MO PROJECT             | REF L<br>NUM: A33 PT: L                                | ATITUDE:                                                      |    |
| AMPLE DES: 31<br>DCATION: DESL<br>CASE/BATCH/SMG<br>TGRET/SARDAD | S RIVER MI<br>DGE<br>:/_/<br>NU:         | NE TAILINGS<br>MO<br>LAB:            | 0074<br>3EG: U7/27/90<br>END: <u>7/24/9</u>            | TIME FROM REF PT 12:00 EAST: 023:30 NORTH: DOWN:              |    |
| TJIFNRENIATNO.<br>RDTCMN9MUP<br>RDTADIGNI WCJE                   | ER TYPE: _<br>TYPE: _<br>: UN: <u>/2</u> | NUMBER<br>NUMBER<br>100 DFF: 231     | TIME OF DA<br>ON: <u>/Z:00</u><br>30 OFF: <u>23:30</u> | y time indicator<br>jn: <u>4047./</u><br>p off: <u>4737.9</u> |    |
| -MALYSIS REQUE<br>CONTAINER<br>CLASTIC CAG                       | STED:<br>COLOR<br>AHITE                  | PRESERVATIVE<br>NONE                 | MGP NAME<br>AMON PARTICUL<br>MZ ONIGO                  | fotal metals  ATE LEAD IN AIR SY                              | ug |

DAMENTS: BR-AM-476

Surple location same as CSXCR467

AMPLE COLLECTED EY: Roberts Silia 11 = A

|                                                                  |                                            |                             | AGENCY, REGIGN VII<br>IN RD. KANSAS CITY, KS 66115                                                           |
|------------------------------------------------------------------|--------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------|
| Y: 90 ACTNO:                                                     | CSXCP SAMN                                 | C:/ 449 QCC: _ MED          | IA: AIR PL: S P F D                                                                                          |
| CTIVITY DES:<br>CCATION: DESI                                    | OIG RIVER<br>USE                           | MINE TAILINGS<br>MO PROJECT | REF LATITUDE: NUM: A33 PT: LGNGITUDE:                                                                        |
| AMPLE DES: 3:<br>GCATION: DESI<br>GASE/BATCH/SMC<br>TORET/SARDAD | IG RIVER MI<br>_065<br>3:/_/<br>NO:        | NE TAILINGS MO LAS:         | NUM: A33 PT: LGNBITUDE:  DATE TIME FROM REF PT  BEG: 07/27/10 42:00 EAST:  END: 12/24/40 24:00 NCRTH:  DOWN: |
| CNTAINER/FILT<br>UMP/MOTOR<br>LOW INDICATOR                      | TER TYPE: _<br>TYPE: _<br>R: JN: <u>/2</u> | NUMBER                      | TIME OF DAY TIME INDICATOR ON: 22:00 ON: 377/4 OFF: 24:00 OFF: 4492.4                                        |
| NALYSIS FEGUI<br>CONTAINER<br>CLASTIC BAG                        | ESTED:<br>Color<br>White                   | PRESERVATIVE<br>NONE        | MGP NAME fotal metals AMON FARTICULATE LEAD IN AIR 34                                                        |

13MM=NTS: 32-AM-48-6

Daily Rield blank

TAMPLE COLLECTED EY: Roberts/6.1/a/11/4/11/

# APPENDIX F PHOTOGRAPHIC RECORD

### APPENDIX E

FIELD SHEETS AND CHAIN-OF-CUSTODY RECORDS

| ACTIVITY LEADER (F     | Print) /       |         | NAME (        | OF SUR           | over or activity | DATE OF COLLECTION O SHEET |               |                       |               |                                                                                    |
|------------------------|----------------|---------|---------------|------------------|------------------|----------------------------|---------------|-----------------------|---------------|------------------------------------------------------------------------------------|
|                        |                | )       | 1319          | KIVE             | or Mine 1        | QI                         |               | DAY MONTH YEAR / 01 5 |               |                                                                                    |
| CONTENTS OF SHIP       | MENT           | T\/0    | E OF CONTAINE | De               |                  |                            | ALI           | ر<br>د د د            | ASDIA.        |                                                                                    |
| SAMPLE                 | CUBITAINER     | BOTTLE  | BOTTLE        |                  | VOA SET          |                            | AMPL          |                       | MEDIA<br>othe | RECEIVING LABORATORY REMARKS/OTHER INFORMATION (condition of samples upon receipt. |
| NUMBER                 |                |         | AINERS PER SA | BOTTI<br>MPLE NO |                  | water                      | ŝ             | sediment              | dust          | other sample numbers, etc.)                                                        |
| CSXCR DOI.             |                | 1       |               |                  |                  |                            | X             |                       |               |                                                                                    |
| 1 002                  |                | /       |               |                  |                  |                            | X             |                       |               |                                                                                    |
| 003                    |                | /       |               |                  |                  |                            | X             |                       |               |                                                                                    |
| 004                    |                | 1       |               |                  |                  |                            | X             |                       |               | FM00616XA, 24                                                                      |
| 005.                   |                | 1       |               |                  |                  |                            | X             |                       |               |                                                                                    |
| 006.                   |                | /       |               |                  |                  |                            | X             |                       |               |                                                                                    |
| 007                    |                | /       |               |                  |                  |                            | X             |                       |               |                                                                                    |
| 008                    |                | 1       |               |                  |                  |                            | Х             |                       |               |                                                                                    |
| 009                    |                | 1       |               |                  |                  |                            | X             |                       |               |                                                                                    |
| 010                    |                | 1       |               |                  |                  |                            | X             |                       |               |                                                                                    |
| 011.                   |                | 1       |               |                  |                  |                            | Χ             |                       |               |                                                                                    |
| 012                    |                | 1       |               |                  |                  |                            | χ             |                       |               |                                                                                    |
| 0/3/                   |                |         |               |                  |                  |                            | χ             |                       |               |                                                                                    |
| 014.                   |                | 1       |               |                  |                  |                            | X             |                       |               |                                                                                    |
| 015                    |                | 1       |               |                  |                  |                            | X             |                       |               |                                                                                    |
| 016.                   |                | 1       |               |                  |                  |                            | X             |                       |               |                                                                                    |
| 017                    |                | j       |               |                  |                  |                            | X             |                       |               |                                                                                    |
| 018                    |                |         |               |                  |                  |                            | X             |                       |               |                                                                                    |
| 019                    |                | 1       |               |                  |                  |                            | X             |                       |               |                                                                                    |
| 020                    |                | /       |               |                  |                  |                            | X             |                       |               | ·                                                                                  |
| 02/                    |                | )       |               |                  |                  |                            | Х             |                       |               |                                                                                    |
| 022                    |                | )       |               |                  |                  |                            | X             |                       |               |                                                                                    |
| 023                    |                |         |               |                  |                  |                            | X             |                       |               |                                                                                    |
| V 024                  | ,              | 1       |               |                  |                  |                            | X             |                       |               | <u> </u>                                                                           |
| DESCRIPTION OF SH      | IIPMENT        |         |               |                  | MODE OF SHIP     | PME                        | NT            |                       |               |                                                                                    |
| PIECE(S) CO            | ONSISTING OF   |         | BOX(ES)       |                  | COMME            |                            | L CA          | RRI                   | ER:           |                                                                                    |
|                        | S); OTHER      |         |               |                  | COURIER          |                            | <b>1814</b> / | ver                   | ١             | (CUIDDING DOGUMENT WILLIAMS                                                        |
| PERSONNEL CUSTO        |                |         |               |                  | JAMITLE          | n U                        | ) A A I       | . I EL                | ,<br>         | (SHIPPING DOCUMENT NUMBER)                                                         |
| RELUNQUISHED BY        | سينين والأحادث | DATE    | TIME          | R                | ECEIVED BY       |                            |               |                       |               | REASON FOR CHANGE OF CUSTODY                                                       |
| Colux (Cf) w           | efelt          | 7/3     | 8/90 8:       | 30 .             | Shower !         | P                          | N             | lu                    | tin           | Transport to KC                                                                    |
| SEALED RELINQUISHED BY | UNSEALE        |         | /             |                  | SEALED           |                            | , -           |                       | ED [          | REASON FOR CHANGE OF CUSTODY                                                       |
| ALLINGUISHED BY        | MI.            | DATE    |               | 1                | POSCI            | (),                        | . ما          | 1.                    | 1/            | Transport to EPA Lab                                                               |
| JAMMIN.                | UNSEALE        |         | 7 10          |                  | ISEALED          | //0                        | UNS           | EA                    | VI<br>LED []  | <i>Y</i> '                                                                         |
| RELINQUISHED BY        | 7 110          | DATE    | · / l         |                  | ANDE             |                            | 7 <i>T</i> -  | 33                    | 19.           | REASON FOR CHANGE OF CUSTODY                                                       |
| Light O                | MAKEN LE       | DIA 7/3 | 990 120       |                  | F-12             | <i>!</i> }                 | UN            | LΥ<br>SEA             | ر<br>LED [    | Williams .                                                                         |
| 7-EPA-9262(Revised 5   | -              | -VAL    |               |                  | 1                | 7.2                        |               |                       | 7             |                                                                                    |

| ACTIVITY LEADER(P                                                           | rint)              | O = 1           | NAME                    | of Surve             | Y OR ACTIVITY                         | <b>1</b> -7 | _   | 1        |       | DATE OF COLLECTION 70  DAY MONTH YEAR | SHEET     |
|-----------------------------------------------------------------------------|--------------------|-----------------|-------------------------|----------------------|---------------------------------------|-------------|-----|----------|-------|---------------------------------------|-----------|
| Overfe                                                                      |                    | Bob             | 13/3                    | > K + v              | Y OR ACTIVITY                         | e !         | Q:  | /1 r     | 19 5  | DAY MONTH YEAR                        | 2 01 5    |
| CONTENTS OF SHIPMENT  TYPE OF CONTAINERS SAMPLED MEDIA RECEIVING LABORATORY |                    |                 |                         |                      |                                       |             |     |          |       |                                       |           |
| SAMPLE                                                                      | CUDITAINED         | 8 07<br>BOTTLE  |                         |                      | VOA SET                               |             | AMP |          | othe  |                                       | MATION    |
| NUMBER                                                                      | CUBITAINER<br>NUME |                 | BOTTLE<br>AINERS PER SA | BOTTLE<br>AMPLE NUMB | (2 VIALS EA)<br>BER                   | water       | 501 | sediment | dust  | other sample numbers.                 |           |
| CSXCR 026.                                                                  |                    |                 |                         |                      |                                       |             | χ   |          |       |                                       |           |
| 1 027                                                                       |                    |                 |                         |                      |                                       |             | χ   |          |       |                                       |           |
| 028                                                                         |                    |                 | _                       |                      |                                       |             | χ   |          |       |                                       |           |
| 029                                                                         |                    |                 |                         |                      |                                       |             | Χ   |          |       | FMO0616XA                             | 24        |
| 030                                                                         |                    | 1               |                         |                      |                                       |             | X   |          |       | /                                     |           |
| CSXCR 100                                                                   |                    |                 |                         |                      |                                       |             |     | Χ        |       |                                       |           |
| 101                                                                         |                    | 1               |                         |                      |                                       |             |     | X        |       |                                       |           |
| 102                                                                         |                    | 1               |                         |                      |                                       |             |     | X        |       |                                       |           |
| 103                                                                         |                    | 1               |                         |                      |                                       |             |     | X        |       |                                       |           |
| 104                                                                         |                    | İ               |                         |                      |                                       |             |     | X        |       |                                       |           |
| 105                                                                         |                    | 1               |                         |                      |                                       |             |     | χ        |       |                                       |           |
| 106                                                                         |                    |                 |                         |                      |                                       |             |     | X        |       |                                       |           |
| 167                                                                         |                    | j               |                         |                      |                                       |             |     | Х        |       |                                       |           |
| 108                                                                         |                    | 1               |                         |                      |                                       |             |     | X        |       |                                       |           |
| 109                                                                         |                    |                 |                         |                      |                                       |             |     | Х        |       |                                       |           |
| 110                                                                         |                    |                 |                         |                      |                                       | Ш           |     | Х        |       |                                       |           |
|                                                                             |                    |                 |                         |                      |                                       |             |     | λ        |       |                                       |           |
| 119                                                                         |                    | <u> </u>        |                         |                      |                                       |             |     | χ        |       |                                       |           |
| 1120                                                                        |                    | 1               |                         |                      |                                       |             |     | χ        |       |                                       |           |
| 1/3                                                                         |                    | 1               |                         |                      |                                       |             |     | χ        |       |                                       |           |
| 114                                                                         |                    | , i             |                         |                      |                                       |             |     | X        |       |                                       |           |
| 115                                                                         |                    | /               |                         |                      |                                       |             |     | X        |       |                                       |           |
| 116                                                                         |                    |                 |                         |                      |                                       |             |     | Δ        |       |                                       |           |
| 117                                                                         |                    | 1               |                         |                      |                                       |             | ·   | Х        |       |                                       |           |
| DESCRIPTION OF SH                                                           | IPMENT             |                 |                         |                      | MODE OF SHII                          | PME         | NT  |          |       |                                       |           |
| PIECE(S) CO                                                                 | INSISTING OF       |                 | BOX(ES)                 |                      | СОММЕ                                 |             | L C | ARR      | IER   |                                       |           |
| ICE CHEST(S                                                                 | S); OTHER          |                 |                         |                      | ——— COURIEI                           |             | VAC | EYEI     | D     | (SHIPPING DOCUMENT N                  | JMBER)    |
| PERSONNEL CUSTO                                                             | OY RECORD          |                 |                         |                      | · · · · · · · · · · · · · · · · · · · |             |     |          |       |                                       |           |
| RELINGUISHED BY                                                             | SAMPLER)           | DATE            |                         |                      | EIVED BY                              |             | ٠,  |          | , ,   | REASON FOR CHANGE O                   | F CUSTODY |
| John A ( )                                                                  | vefelt<br>Unseale  | 7/28            | 190 83                  | ,                    | JAMES /                               | -           | ,   |          | LED P | Transport to                          | 200 MC    |
| RELINQUISHED BY                                                             | физелес            | DATE            | TIME                    |                      | EIVED BY                              |             |     | 4        | //    | REASON FOR CHANGE O                   |           |
| Fain R                                                                      | Marte              | 7/3             | 940 100                 |                      | POUNT CO                              | 1/0         | -72 | 1/2/     | #_    | Transporte CP                         | 46.96     |
| SEALED<br>RELINQUISHED BY                                                   | UNSEALE            | DATE            | <u> </u>                |                      | EALED<br>CEIVED BY                    |             | Uff | SEA      | LED   | REASON FOR CHANGE C                   | FCUSTODY  |
| 12.100                                                                      | SA                 | 7/3             | 1/4 120                 |                      | 18-12 B                               |             |     | * [4     |       | 1 100                                 | ļ         |
| SEALED                                                                      | NSEAL              | <b>D</b> X / // | 772                     | S                    | EALED                                 | ,*          | UN  | SEA      | ALED  |                                       |           |

| ACTIVITY LEADER(P                        | RVEY C       | N ACTIVITY      | Ý                                            | 1        |         |                         |                  | DATE OF COLLECTION 90 SHEET |                            |        |          |                                                                 |
|------------------------------------------|--------------|-----------------|----------------------------------------------|----------|---------|-------------------------|------------------|-----------------------------|----------------------------|--------|----------|-----------------------------------------------------------------|
| CONTENTS OF SHIP                         |              | b               | 1519                                         | Kiv      | 40 gr / | Nint'                   | $\overline{q}_i$ | ljr                         | · -                        | j      |          | DAY MONTH YEAR 3 of 5                                           |
| <del></del>                              | MENI         | TY              | PE OF CONTAIN                                | IERS     |         |                         | Ś                | AME                         | LED                        | ME     | AIC      | RECEIVING LABORATORY                                            |
| SAMPLE<br>NUMBER                         | CUBITAINER   | <u> </u>        | BOTTLE                                       | B011     | LE      | VOA SET<br>(2 VIALS EA) |                  |                             | nent                       |        | other    | REMARKS OTHER INFORMATION<br>(condition of samples upon receipt |
|                                          | NUME         | BERS OF CON     | TAINERS PER S                                |          |         |                         | water            | ğ                           | Sed                        | dust   |          | other sample numbers etc.)                                      |
| ESXCR 118                                |              |                 |                                              | <u> </u> |         |                         |                  |                             | X                          | L      |          |                                                                 |
| 119                                      |              | 1               |                                              | <u> </u> |         |                         |                  |                             | X                          |        | Ĺ        |                                                                 |
| 1 120                                    |              | 1               |                                              |          |         |                         |                  |                             | X                          |        |          |                                                                 |
| (SXCR 200                                | 12           |                 |                                              |          |         |                         | Х                |                             |                            |        |          | Friico 6/6XA, E                                                 |
| 201                                      | · 2          |                 |                                              |          |         |                         | X                |                             |                            |        |          | 7                                                               |
| 202                                      | . (نو        |                 |                                              |          |         |                         | Х                |                             |                            |        |          |                                                                 |
| 203                                      | . )          |                 |                                              |          |         |                         | Χ                |                             |                            |        |          |                                                                 |
| 204                                      | , 2          |                 |                                              |          |         |                         | X                |                             |                            |        |          |                                                                 |
| 205                                      | . )          |                 |                                              |          |         |                         | Χ                |                             |                            |        |          |                                                                 |
| 306                                      | · 4          |                 |                                              |          |         |                         | χ                |                             |                            |        |          |                                                                 |
| 207                                      | ı û          |                 |                                              |          |         | ,                       | χ                |                             |                            |        |          |                                                                 |
| 208                                      | · å-         |                 |                                              |          |         |                         | λ                |                             |                            |        |          |                                                                 |
| 209                                      | , ).         |                 |                                              |          |         |                         | χ                |                             |                            |        |          |                                                                 |
| 210                                      | 2            |                 |                                              |          | 1       | :                       | χ                |                             |                            |        |          |                                                                 |
| 2//                                      | 2            |                 |                                              |          |         |                         | χ                |                             |                            |        |          |                                                                 |
| 2/2                                      | <b>ل</b> ي . |                 |                                              |          |         |                         | χ                |                             |                            |        |          |                                                                 |
| 9130                                     | 1 2          |                 |                                              |          | Ì       |                         | Χ                |                             |                            |        |          |                                                                 |
| 213                                      | . 2          |                 |                                              |          |         |                         | χ                |                             |                            |        |          |                                                                 |
| 3 14                                     | , ,)         |                 |                                              |          |         |                         | χ                |                             |                            |        |          |                                                                 |
| 215                                      | , 1          |                 |                                              |          |         |                         | χ                |                             |                            |        |          |                                                                 |
| 216                                      | . 2          |                 |                                              |          |         |                         | Χ                |                             |                            |        |          |                                                                 |
| 217                                      | )            |                 |                                              |          |         |                         | λ                |                             |                            |        |          |                                                                 |
| 218                                      | ر ،          |                 |                                              |          |         |                         | λ                |                             |                            |        |          |                                                                 |
| 219                                      | · d.         |                 |                                              |          |         |                         | Х                |                             |                            |        |          |                                                                 |
| DESCRIPTION OF SH                        | IIPMENT      |                 |                                              |          | МС      | DE OF SHI               | PME              | NT                          |                            |        |          |                                                                 |
| PIECE(S) CC                              | NSISTING OF  |                 | BOX(ES)                                      |          |         | СОММЕ                   | RCIA             | L C                         | ARR                        | IER    |          |                                                                 |
|                                          | s): other    |                 |                                              |          | -       | COURIE                  |                  |                             |                            |        |          |                                                                 |
|                                          |              |                 | SAMPLE                                       | R C      | VNC     | EYE                     | D                |                             | (SHIPPING DOCUMENT NUMBER) |        |          |                                                                 |
| PERSONNEL CUSTO                          |              | DAT             | E TIME                                       | - 16     | ECEN    | /ED BY                  |                  |                             |                            | _      |          | REASON FOR CHANGE OF CUSTODY                                    |
| RELINQUISHED BY                          | 1.01         | 13/2            | 8/90 83                                      |          | ,       | Janes 1                 | d.               | 9).                         |                            | 1      |          |                                                                 |
| SEALED                                   | UNSEALE      | المراز إلجاما ه | 8/90 1                                       | <u> </u> | SEA     |                         | -                |                             | EA.                        |        |          | Many of to AC                                                   |
| RELINQUISHED BY                          | -7           | DAT             | E TIME                                       | F        | RECEI   | (ED BY                  | 7)               |                             |                            | 1      | <i>i</i> | REASON FOR CHANGE OF CUSTODY                                    |
|                                          | Mad.         | 7/3             | 1990 100                                     | 20       | 16      | /4/(!)                  | 10               | Cap                         |                            | 17     | ~ L      | Transport to SPA Lub                                            |
| SEALED<br>RELINQUISHED BY                | UNSEALE      | DAT             | E TIME                                       | - F      | ] SEAL  | VED BY                  |                  | 7/                          | SEA                        | /LE    |          | REASON FOR CHANGE OF CUSTODY                                    |
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | )robiM       | / -1/7<br>1/7   | 1.7100                                       | 3()      | 1 1     |                         |                  | $R^{1}$                     | •                          | ٠.     |          | 13                                                              |
| SEALED                                   | UNSEAL       | ₽₽∏ <u></u>     | <u>/                                    </u> |          | SEAL    | _ED                     | · ·-             | UN                          | SEA                        | A L. E | :D       |                                                                 |

| ACTIVITY LEADER(Print) NAME OF SURVEY OR ACTIVITY By River Mine Tailings |                                     |                |              |             |                         |                            |              |              |              | DATE OF COLLECTION SHEET |                                                              |
|--------------------------------------------------------------------------|-------------------------------------|----------------|--------------|-------------|-------------------------|----------------------------|--------------|--------------|--------------|--------------------------|--------------------------------------------------------------|
| CONTENTS OF SHIPMENT                                                     |                                     |                |              |             |                         |                            |              |              |              |                          | DAY MONTH YEAR 4 of 5                                        |
| TYPE OF CONTAINERS SAMPLED MEDIA RECEIVING LAROBATORY                    |                                     |                |              |             |                         |                            |              |              |              |                          |                                                              |
| SAMPLE<br>NUMBER                                                         | 1-1:1-ev-                           | BOTTLE         | BOTTLE       | BOTTLE      | VOA SET<br>(2 VIALS EA) | П                          |              | nent         |              | other                    | REMARKS OTHER INFORMATION (condition of samples upon receipt |
|                                                                          | <del></del>                         | BERS OF CONTAI | NERS PER SAM |             |                         | water                      | Şō           | seg          | dust         |                          | other sample numbers, etc.)                                  |
| CSXCR 220                                                                | 2_                                  |                |              |             |                         | X                          | _            | _            |              |                          |                                                              |
| CSXCR 310                                                                | 12                                  |                |              |             |                         | $\chi$                     |              | $\downarrow$ |              |                          |                                                              |
| 301                                                                      | . 2                                 |                |              |             |                         | X                          |              |              |              | ,                        | EMODGIOXA,                                                   |
| 302                                                                      | , ک                                 |                |              |             |                         | х                          |              |              |              |                          | //                                                           |
| 363                                                                      | . 2                                 |                |              |             |                         | $\lambda$                  |              |              |              |                          |                                                              |
| 3.04                                                                     | . 2-                                |                |              |             |                         | $\mathbf{x}$               |              |              |              |                          |                                                              |
| 305                                                                      | 2                                   |                |              |             |                         | χ                          |              |              |              |                          |                                                              |
| 306                                                                      | 1.2                                 |                |              |             |                         | Х                          |              |              |              |                          |                                                              |
| 307                                                                      | . 2                                 |                |              |             |                         | $\lambda$                  |              |              |              |                          |                                                              |
| 308                                                                      | 2                                   |                |              |             |                         | X                          |              |              |              |                          |                                                              |
| 309                                                                      | 1)                                  |                |              |             |                         | χ                          |              |              |              |                          |                                                              |
| 3690                                                                     | - 2                                 |                |              |             |                         |                            |              |              |              |                          |                                                              |
| 310                                                                      | 12                                  |                |              |             |                         | $\chi$                     |              |              |              |                          |                                                              |
| 311                                                                      | - 2                                 |                |              |             |                         | χ                          |              |              |              |                          |                                                              |
| 312                                                                      | , 2                                 |                |              |             |                         | Χ                          |              | $\perp$      |              |                          |                                                              |
| 314                                                                      | . 2                                 | !              |              | ·           |                         | X                          |              |              | $\perp$      |                          |                                                              |
| 3/5                                                                      | 12                                  |                |              |             |                         | X                          |              |              |              |                          |                                                              |
| 376                                                                      | . 2                                 |                |              |             |                         | Х                          |              |              |              |                          |                                                              |
| 317                                                                      | - 2                                 |                |              |             |                         | X                          |              |              |              |                          |                                                              |
| 3/8                                                                      | 2                                   |                |              |             |                         | X                          |              |              |              |                          |                                                              |
| 319                                                                      | 2                                   |                |              |             |                         | X                          | $\downarrow$ |              | $\downarrow$ |                          |                                                              |
| 320F                                                                     |                                     |                |              |             |                         | X                          | _            |              |              |                          |                                                              |
| 3215                                                                     | . 2                                 |                |              | <del></del> |                         | $\lambda$                  | $\downarrow$ | $\perp$      | $\downarrow$ |                          |                                                              |
| ¥ 322F                                                                   | 2                                   |                |              |             |                         | Х                          |              |              |              |                          |                                                              |
| DESCRIPTION OF SH                                                        | HPMENT                              |                |              |             | MODE OF SHIP            | PMEN                       | ΝT           |              |              |                          |                                                              |
| PIECE(S) CO                                                              | ONSISTING OF                        | ·              | BOX(ES)      |             | COMME                   |                            | . C#         | ARRI         | ER           |                          |                                                              |
| ICE CHEST(                                                               | S), OTHER                           |                |              | _ }         | COURIER                 |                            | A!\/I        | EVEL         | )            |                          | CHIPPING DOCUMENT WINDED                                     |
| PERSONNEL CUSTO                                                          | DV DECODO                           |                |              |             |                         | 11 00                      | 14 V I       | . 1          |              |                          | (SHIPPING DOCUMENT NUMBER)                                   |
| RELIMIQUISHED BX                                                         |                                     | DATE           | TIME         | REC         | CEIVED BY               |                            |              |              | -            |                          | REASON FOR CHANGE OF CUSTODY                                 |
| Walut Ch                                                                 | ndelf                               | 7/28           | 90 830       |             | Stain                   | $\mathcal{F}^{\mathbb{Z}}$ | 1            | 2.           | 1            | <i>;</i>                 | Thomas A XC                                                  |
| SEALED RELINQUISHED BY                                                   | KNSEALE                             | DATE           | TIME         | s           | CEIVED BY               |                            | NS           | EAI          | LEC          | ) [                      | REASON FOR CHANGE OF CUSTODY                                 |
| KEEHINGOISHED BY                                                         | 1 /201 . 17                         | 7 - 1          |              |             | Po IN                   | ),                         |              | lo.          | P            | 1                        | Transport to EPACaL                                          |
| N. A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A                                 | UNSEALE                             | 7/30           | <u> </u>     |             | EALED                   | / /J                       | יוונ         | OEA<br>SEA   | LEI          | <u> </u>                 | (                                                            |
| RELINQUISHED BY                                                          | 1/1                                 | DATE           | TIME         |             | CEIVED BY               | ,                          | .)<br>.:     | /            |              | ,                        | REASON FOR CHANGE OF CUSTODY                                 |
| SEALED                                                                   | - 1.502 - 1.004/11 - 1.173951/202 L |                |              |             |                         |                            |              |              |              |                          |                                                              |

7-EPA-9262(Revised 5/85)

| ACTIVITY LEADER(P                       | rint)                |              | NAME          | OF SUR      | VEY (    | OR ACTIVITY                                      | 7            |                       |          |                         |                         | DATE OF COLLECTION            | SHEET    |
|-----------------------------------------|----------------------|--------------|---------------|-------------|----------|--------------------------------------------------|--------------|-----------------------|----------|-------------------------|-------------------------|-------------------------------|----------|
| ACTIVITY LEADER(P                       | Ł. 130               | طود          | Big           | $R_{ij}$    | Pr       | OR ACTIVITY $M_{LLR}$                            | Ta           | .                     | i.       | e 5                     |                         | DATE OF COLLECTION MONTH YEAR | 5 of 5   |
| CONTENTS OF SHIP                        |                      |              |               |             |          |                                                  |              | )                     |          |                         | <u>سيبيت السادام بي</u> |                               |          |
| SAMPLE                                  |                      |              | E OF CONTAIN  | ERS         |          |                                                  | .5           | AMP                   |          |                         |                         | RECEIVING LABORATO            |          |
| NUMBER                                  | CUBITAINER           | BOTTLE       | BÓTTLE        | BOTTL       | Ē        | VOA SET<br>(2 VIALS EA)                          | ٦            |                       | sediment |                         | othe                    | (condition of samples upor    | receipt  |
|                                         | NUME                 | BERS OF CONT | AINERS PER S  | AMPLE NU    | MBER     |                                                  | ∗ate         | Sol                   | Se<br>Se | dust                    |                         | other sample numbers          | etc )    |
| 15X1R323F                               | 2                    |              |               |             |          |                                                  | λ            |                       |          |                         |                         |                               |          |
| 374                                     | )                    |              |               |             |          |                                                  | Ŋ,           |                       |          |                         |                         |                               |          |
| 3)45                                    | ·ì                   |              |               |             |          |                                                  |              |                       |          |                         |                         | Elinalusta                    |          |
|                                         |                      |              | ·             |             |          |                                                  | 7            | -                     | $\vdash$ | <del> -</del>           |                         | FMOP616XA,                    |          |
| 325F                                    | <del></del>          |              |               |             |          |                                                  | -            | _                     | -        | -                       |                         |                               |          |
| V )25.                                  |                      | 1            |               |             |          | <del> </del>                                     | ļ            | $\lambda$             | _        | _                       |                         |                               |          |
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |                      |              |               |             |          | ļ                                                |              | _                     | L        | _                       |                         |                               |          |
| ·                                       |                      |              |               |             | _        |                                                  |              |                       |          |                         |                         |                               |          |
|                                         |                      |              |               |             |          |                                                  |              |                       |          |                         |                         |                               |          |
|                                         |                      |              |               |             |          |                                                  |              |                       |          |                         |                         |                               |          |
|                                         |                      |              |               |             |          |                                                  |              |                       |          | -                       |                         |                               |          |
|                                         |                      | Λ.           |               |             |          |                                                  | _            |                       | $\vdash$ | -                       |                         |                               |          |
|                                         |                      |              |               | <del></del> |          | <del>                                     </del> | -            |                       | -        | <del> </del>            |                         |                               |          |
| · · · · · · · · · · · · · · · · · · ·   |                      |              |               |             |          |                                                  |              |                       |          |                         |                         |                               |          |
| · · · · · · · · · · · · · · · · · · ·   |                      |              |               |             |          |                                                  |              |                       |          |                         |                         |                               |          |
| !                                       |                      |              | ·.            |             |          |                                                  |              |                       | _        |                         |                         |                               |          |
|                                         |                      |              | ·-·-          |             |          |                                                  |              |                       |          |                         |                         |                               | <br>     |
|                                         |                      |              |               |             |          |                                                  |              |                       |          |                         |                         |                               |          |
|                                         |                      |              |               |             |          |                                                  |              |                       |          |                         |                         |                               |          |
|                                         |                      |              | · · · · · · · |             |          |                                                  |              |                       |          |                         |                         |                               |          |
|                                         |                      | <del></del>  |               | `           |          | <del>                                     </del> |              |                       |          |                         |                         |                               |          |
|                                         |                      |              |               |             | <u> </u> | <b> </b>                                         | H            |                       |          |                         |                         |                               |          |
|                                         |                      |              |               |             |          |                                                  |              |                       |          |                         |                         |                               |          |
|                                         |                      |              |               |             |          | ļ                                                |              |                       |          |                         |                         | <del> </del>                  |          |
|                                         |                      |              |               |             |          |                                                  |              |                       |          |                         |                         |                               |          |
|                                         |                      |              |               |             |          |                                                  |              |                       |          |                         |                         |                               |          |
|                                         |                      |              |               |             |          | \                                                |              |                       |          |                         |                         |                               |          |
| DESCRIPTION OF SH                       | IIPMENT              |              |               |             | М        | ODE OF SHI                                       | PME          | NT                    |          |                         |                         |                               |          |
| PIECE(S) CC                             | NSISTING OF          |              | ROX(ES)       |             |          | COMME                                            | RCI <i>A</i> | AL C                  | ARF      | RIFR                    |                         |                               |          |
|                                         |                      |              | _ DOM(ED)     |             | _        | COURIE                                           |              | -                     |          |                         |                         |                               |          |
| ICE CHEST(                              | _                    | SAMPLE       | R C           | ONV         | EYE      | D                                                |              | (SHIPPING DOCUMENT NO | JMBER)   |                         |                         |                               |          |
| PERSONNEL CUSTO                         | DY RECORD            |              |               |             |          |                                                  |              |                       |          |                         |                         |                               |          |
| RELINQUISHED BY                         | (SAMPLER)            | DATE         | TIME          | R           | ECEI     | VED BY                                           |              |                       |          |                         |                         | REASON FOR CHANGE O           | FCUSTODY |
| SEALED ()                               | المركز بن<br>UNSEALE | 0/7/2        | 8/90 8        | 30          | SEA      | CALED (A)                                        | :            | UN                    | )<br>SEA | ر<br>المراجع<br>المالية |                         | 7 42 1241 1                   | 1 80     |
| RELINQUISHED BY                         |                      | DATE         | TIME          | R           |          | MED BY                                           |              |                       | ,        | 7                       |                         | REASON FOR CHANGE O           |          |
| Salata 1                                | Day.                 | £: \ 7/2     | 0/90 100      | 001         | 1a       | MA (V)                                           | l<br>Carpan  | G                     | 11       | 4                       |                         | Trumport la EP                | 4646     |
| SEALED RELINQUISHED BY                  | UNSEALE              | DATE         | · L           |             |          | LED IVED BY                                      | 1            | UN                    | SE/      | AL.E                    | <u> </u>                | REASON FOR CHANGE C           | FCUSTODY |
| RELINGUISHED BY                         | ) 1//                |              | /             |             |          |                                                  |              | 7                     | 1,       |                         | ,                       |                               |          |
| SEALED                                  | UNSEAL               | eod 79       | 192 150       |             | SEA      | DAGE /                                           | <u>.</u>     | UN                    | ISE      | ALE                     | ٦٥                      | Ar Mary                       |          |

7-EPA-9262(Revised 5/85)

| ACTIVITY LEADER(Print)  NAME OF SURVEY OR ACTIVITY |                                     |                           |               |          |                   |          |      |            |         |                   | DATE OF COLLECTION SHEET                                        |
|----------------------------------------------------|-------------------------------------|---------------------------|---------------|----------|-------------------|----------|------|------------|---------|-------------------|-----------------------------------------------------------------|
|                                                    | RAGE OVERFELT FUG ROVER MINETALLYST |                           |               |          |                   |          |      |            |         |                   | DAY MONTH YEAR OF                                               |
| CONTENTS OF SHIP                                   | MENT                                |                           |               | _        |                   |          |      |            |         |                   | •                                                               |
| SAMPLE                                             | 1 2 301-10-2                        | TYPE O                    | F CONTAINERS  |          | VOA SET           | S        | AMP  | LED        | MED     | ither             | RECEIVING LABORATORY REMARKS OTHER INFORMATION                  |
| NUMBER 05                                          | CUBITAINER                          | BOTTLE<br>BERS OF CONTAIN |               | OTTLE    | (2 VIALS EA)      | *ater    | sort | sediment   | đust    | ٤.,               | (condition of samples upon receipt other sample numbers   etc.) |
|                                                    |                                     | SENS OF CONTAIN           | EHS PEH SAMPL | E NUMBER |                   | *        | · ·  | -y         | ٩       | 17                |                                                                 |
| C 5 X C R - 400                                    |                                     |                           |               |          |                   | $\vdash$ |      |            | _       | 1                 | I MODGIGXAA.ZA                                                  |
| CSXC2 402                                          |                                     |                           |               |          |                   | $\sqcup$ |      | _          | _       | 1                 |                                                                 |
| CSXCD 403                                          | 1                                   |                           |               |          |                   |          |      |            |         | 4                 |                                                                 |
| CSXCE 404                                          | ÷                                   |                           |               |          |                   |          |      |            |         | \Z                |                                                                 |
| C SXCR 406                                         | eden agr                            |                           |               | _        |                   |          |      |            |         | v'                |                                                                 |
| CSXCC407                                           |                                     |                           |               |          |                   |          |      |            |         |                   |                                                                 |
| CSXCR408                                           |                                     |                           |               |          |                   |          |      |            |         | V                 |                                                                 |
| CSYCR 409                                          |                                     |                           |               |          |                   |          |      |            |         | $\mathcal{V}^{'}$ |                                                                 |
| CSXC2 410                                          |                                     |                           |               |          |                   | T        |      |            |         | V                 | /                                                               |
| C 5 X C P 411                                      | - 1                                 |                           |               |          |                   |          |      |            |         | <br>را            |                                                                 |
| C SX CD 412                                        |                                     |                           |               |          |                   |          |      |            |         | _17               |                                                                 |
| 05XCV 413                                          |                                     |                           |               |          |                   |          |      |            |         | \                 |                                                                 |
| € 5.X 08.414                                       |                                     |                           |               |          |                   |          |      |            |         | Ų                 |                                                                 |
| C SXC2415                                          |                                     |                           |               |          |                   |          |      |            |         |                   |                                                                 |
| CSXCR 416                                          | Ì                                   |                           |               |          |                   |          |      |            |         |                   |                                                                 |
| C S XCR 417                                        | 1                                   |                           |               | -        |                   |          |      |            |         | · /               |                                                                 |
| CSXCD 418                                          | į                                   |                           |               |          |                   |          |      | Ì          |         | 1.7               |                                                                 |
| CSYC2 419                                          |                                     |                           |               |          |                   |          |      |            |         | 1./               |                                                                 |
| 05 x 0 1 470                                       |                                     |                           |               |          |                   |          |      |            |         | V                 |                                                                 |
| CSXCR4ZI                                           | Ţ                                   |                           |               |          |                   |          |      |            |         | U                 |                                                                 |
| C S Y C R 477                                      |                                     |                           |               |          |                   |          |      |            |         | iz                |                                                                 |
| 05×08423                                           |                                     |                           |               |          |                   |          |      |            |         | U/                |                                                                 |
| CSXCR 474                                          | (                                   |                           |               |          |                   |          |      |            |         | V                 |                                                                 |
|                                                    |                                     |                           |               |          |                   |          |      |            |         |                   |                                                                 |
| DESCRIPTION OF SH                                  | IPMENT                              |                           |               | М        | DDE OF SHI        | PME      | NT   |            |         |                   |                                                                 |
| _=== PIECE(S) CC                                   | INSISTING OF                        | _5/_B                     | ox(ES)        | /cy -    | СОММЕ             | RCIA     | L C  | ARR        | IER     |                   |                                                                 |
|                                                    | S), OTHER                           |                           | -             | -        | COURIE            |          |      |            | _       |                   |                                                                 |
|                                                    |                                     |                           |               |          | SAMPLE            | ERC      | אע   | E Y E      | U       |                   | (SHIPPING DOCUMENT NUMBER)                                      |
| PERSONNEL CUSTO                                    |                                     | DATE                      | TIME          | DECE     | VED BY            |          |      |            |         |                   | REASON FOR CHANGE OF CUSTODY                                    |
| RELINQUISHED BY                                    | SAMPLER)                            | DATE                      |               | [        |                   |          |      | <b>x</b> 5 | ٠.      | .*                | REASON FOR CHANGE OF CUSTODY                                    |
| Jakes 1                                            | NSEALE                              | o - 134                   | 1250          | SEA      | .,( //<br>LEO //+ | /)<br>}  | UNS  | EA         | ر<br>LE | ė (C              | The light                                                       |
| RELINQUISHED BY                                    | V                                   | DATE                      | TIME          | RECEI    | VED BY            |          |      |            |         | ,                 | REASON FOR CHANGE OF CUSTODY                                    |
| <b></b>                                            |                                     |                           |               |          | . 50              |          |      |            |         | ~ r               |                                                                 |
| SEALED<br>RELINQUISHED BY                          | UNSEALE                             | DATE                      | TIME          | RECEI    | VED BY            |          | UN   | SEA        | LE      | ᄓ                 | REASON FOR CHANGE OF CUSTODY                                    |
|                                                    |                                     |                           |               |          |                   |          |      |            |         |                   |                                                                 |
| SEALED                                             | UNSEAL                              | ED                        |               | SEA      | LED               |          | UN   | SE.F       | ALE     | ٦۵                |                                                                 |

7-EPA-9262(Revised 5/85)

| ACTIVITY LEADER(Print)  NAME OF SURVEY OR ACTIVITY  DATE OF COLLECTION  SHEET  OF SURVEY OR ACTIVITY  DAY MONTH YEAR  OF SURVEY OR ACTIVITY  DAY MONTH YEAR  OF SURVEY OR ACTIVITY  DAY MONTH YEAR |                        |                       |                         |                    |               |                  |               |          |            |          |                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|-------------------------|--------------------|---------------|------------------|---------------|----------|------------|----------|-------------------------------------------------------------------|
|                                                                                                                                                                                                    |                        |                       |                         |                    |               |                  |               |          |            |          | DAY MONTH YEAR Z. OT 3                                            |
| CONTENTS OF SHIP                                                                                                                                                                                   | MENT                   |                       | 5 05 00 VI              |                    |               |                  |               |          |            |          |                                                                   |
| SAMPLE                                                                                                                                                                                             | 1 <u>4 3 4 4 4 7 1</u> |                       | E OF CONTAIN            |                    | VOA SET       | T                |               | LED      |            | other    | RECEIVING LABORATORY REMARKS OTHER INFORMATION                    |
| NUMBER n >                                                                                                                                                                                         | CUBITAINER NUME        | BOTTLE<br>BERS OF CON | BOTTLE<br>TAINERS PER S | BOTTL<br>AMPLE NUI |               | water            | los<br>Sol    | sediment | dust       | 11/10    | (condition of samples upon receipt,<br>other sample numbers etc.) |
| C SVCR 425                                                                                                                                                                                         |                        |                       |                         |                    |               |                  |               |          |            | (2       | T MO 06/6VAA, 74-                                                 |
| CSYC2476                                                                                                                                                                                           |                        |                       |                         |                    |               |                  |               |          |            | NZ.      |                                                                   |
| CSYC2 427                                                                                                                                                                                          | l                      |                       |                         |                    |               |                  |               |          |            | )        |                                                                   |
| CS XCR 428                                                                                                                                                                                         |                        |                       |                         |                    |               |                  |               |          |            | V        |                                                                   |
| C5xC2429                                                                                                                                                                                           | [ ]                    |                       |                         |                    |               |                  |               |          |            | U        |                                                                   |
| CSX(12430                                                                                                                                                                                          |                        |                       |                         |                    |               |                  |               |          |            | V        |                                                                   |
| CSYC12 431                                                                                                                                                                                         |                        |                       |                         |                    |               |                  |               |          |            | \_/      |                                                                   |
| CSYC2 432                                                                                                                                                                                          | 1                      |                       |                         |                    |               |                  |               |          |            | V        |                                                                   |
| CSXCE433                                                                                                                                                                                           | 1                      |                       |                         |                    |               |                  |               |          |            | ب        |                                                                   |
| C5×02434                                                                                                                                                                                           | 1                      |                       |                         |                    |               |                  |               |          |            | ١.       |                                                                   |
| CSYCE 435                                                                                                                                                                                          |                        |                       |                         |                    |               |                  |               |          |            | χ,,      |                                                                   |
| CSXCR436                                                                                                                                                                                           | \                      |                       |                         |                    |               |                  |               |          |            | V        |                                                                   |
| asx(2437                                                                                                                                                                                           | J                      |                       |                         |                    |               |                  |               |          |            | ١,       |                                                                   |
| C 5×CC 438                                                                                                                                                                                         | !                      |                       |                         |                    |               |                  |               |          |            | W        |                                                                   |
| C4XCQ439                                                                                                                                                                                           | ١                      |                       |                         |                    |               |                  |               |          |            | V        |                                                                   |
| C-54 CR 440                                                                                                                                                                                        | ) ]                    |                       |                         |                    |               |                  |               |          |            | 1        |                                                                   |
| c 5xcl 441                                                                                                                                                                                         | ļ                      |                       |                         |                    |               |                  |               |          |            | Γ,       |                                                                   |
| C SXCR 442                                                                                                                                                                                         |                        |                       |                         |                    |               |                  |               |          |            | Ŋ        |                                                                   |
| C SYCL 443                                                                                                                                                                                         | ţ                      |                       |                         |                    |               |                  |               |          |            | Ĺ        |                                                                   |
| < SYCK444                                                                                                                                                                                          | _ \                    |                       |                         |                    |               |                  |               |          |            | 'سل      |                                                                   |
| C S X ( 8445                                                                                                                                                                                       |                        |                       |                         |                    |               |                  |               |          |            | ١٠       |                                                                   |
| C SYCK 4-40                                                                                                                                                                                        | 1                      |                       |                         |                    |               |                  |               |          |            | Ĺ        |                                                                   |
| ( SYC) 448                                                                                                                                                                                         | Ţ                      |                       |                         |                    |               |                  | $\downarrow$  |          |            | V        |                                                                   |
| C SYCIL 449                                                                                                                                                                                        | 1                      |                       |                         |                    |               |                  |               |          |            | V        |                                                                   |
| DESCRIPTION OF SH                                                                                                                                                                                  | IIPMENT                |                       |                         |                    | MODE OF SHI   | PMEN             | ۷T            |          |            |          |                                                                   |
| 5/_ PIECE(S) CO                                                                                                                                                                                    | INSISTING OF           | _51                   | Bdx(ES)"                | C Now His          | СОММЕ         | RCIAL            | _ C/          | ARR      | IER        | _        |                                                                   |
| ICE CHEST(                                                                                                                                                                                         | S), OTHER              | 173                   | $\bigcirc X$            |                    | COURIE SAMPLE |                  | <b>4</b> 13 7 | CVC      | n          |          |                                                                   |
|                                                                                                                                                                                                    |                        |                       |                         |                    | LZ-SAMPLE     | H CU             | NV            | t Y t    | U          |          | (SHIPPING DOCUMENT NUMBER)                                        |
| PERSONNEL CUSTON                                                                                                                                                                                   |                        | DAT                   | TIME                    | RI                 | ECEIVED BY    | 7                | • /           | 2 -      | / <b>~</b> |          | REASON FOR CHANGE OF CUSTODY                                      |
| 11110                                                                                                                                                                                              | ) 111                  | 2/2                   | 6 0                     | a $b$              | Now it        |                  |               | 7.       | . ,        |          | 3 /                                                               |
| DERLEG                                                                                                                                                                                             | UNSEALE                |                       | / / / /                 |                    | SEALED //     | ٠ <sub>٠</sub> آ | JN5           | SEA      | LE         | <u> </u> | 1 halfon                                                          |
| RELINQUISHED BY                                                                                                                                                                                    |                        | DAT                   | TIME                    | R                  | ECEIVED BY    |                  |               |          |            | ,        | REASON FOR CHANGE OF CUSTODY                                      |
| SEALED                                                                                                                                                                                             | UNSEALE                | . D                   |                         | h                  | SEALED        | ເ                | JN:           | SEA      | <u>L</u> E | ٦٥       |                                                                   |
| RELINQUISHED BY                                                                                                                                                                                    |                        | DAT                   | TIME                    | R                  | ECEIVED BY    |                  |               |          |            |          | REASON FOR CHANGE OF CUSTODY                                      |
| SEALED                                                                                                                                                                                             | UNSEALI                | F D                   |                         | h                  | SEALED        |                  | UN            | SEA      | <b>ALE</b> | .p[      |                                                                   |

| ACTIVITY LEADER(Print)  NAME OF SURVEY OR ACTIVITY  DATE OF COLLECTION SHEET  TO SECURITY OF SURVEY OR ACTIVITY  DAY MONTH YEAR 3 OF |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |          |              |          |                                                |                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|----------|--------------|----------|------------------------------------------------|-------------------------------------------------------------------|
|                                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |          |              | ! .      | ٦.,                                            | DAY MONTH YEAR 3 Of 3                                             |
| CONTENTS OF SHIP                                                                                                                     | MENT                                  |                           | 4.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |          |              | w        |                                                |                                                                   |
| SAMPLE                                                                                                                               | ILNOCK!                               | TYPE                      | RS            | VOA SET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S.                                        | AMP                     | LED      |              | other    | RECEIVING LABORATORY REMARKS OTHER INFORMATION |                                                                   |
| NUMBER -                                                                                                                             | CUBITAINER                            | BOTTLE<br>BERS OF CONTAIL | BOTTLE        | BOTTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2 VIALS EA)                              | water                   | ios      | sediment     | ust      | - <b>t</b> s.                                  | (condition of samples upon receipt<br>other Sample numbers letc.) |
| C SX C 2450                                                                                                                          |                                       | ENG OF CONTAIN            | VERS FILK SAM | TE NOMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                         | -        | S            | -        | V                                              | FMOQ616XAA,24                                                     |
| C SXCE 451                                                                                                                           |                                       |                           | <del></del>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |          |              |          | レ                                              | . 10 90 37 11 11 1                                                |
| C S X C R 450                                                                                                                        |                                       |                           |               | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           | H                       | $\dashv$ |              |          | 1                                              |                                                                   |
| 65x12453                                                                                                                             |                                       |                           |               | ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | H                       | $\dashv$ |              | _        | 1                                              |                                                                   |
| 450                                                                                                                                  | !                                     |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | $\vdash$                | -        | _            |          |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                         |          |              |          |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                         |          |              |          |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | $\downarrow \downarrow$ | _        |              |          |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |          |              |          |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |          |              |          |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |          |              |          |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                         |          |              |          |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               | The state of the s |                                           |                         |          |              |          |                                                |                                                                   |
|                                                                                                                                      | :                                     |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |          |              |          |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | П                       |          |              |          |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                         |          |              |          |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |          |              |          |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         | $\dashv$ | $\dashv$     | 7        | ·                                              |                                                                   |
|                                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | $\Box$                  |          | $\neg$       |          | -                                              |                                                                   |
|                                                                                                                                      | · · · · · · · · · · · · · · · · · · · |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | $\vdash$                | -        | -            | $\dashv$ |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | H                       | -        |              |          |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         | $\dashv$ | $\dashv$     |          |                                                | · · · · · · · · · · · · · · · · · · ·                             |
|                                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | $\vdash\vdash$          | $\dashv$ | $\dashv$     | $\dashv$ |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |          | _            | _        |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         | $\dashv$ | $\dashv$     | _        |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |          |              |          |                                                |                                                                   |
| DESCRIPTION OF SH                                                                                                                    |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DDE OF SHI                                | PME                     | NT       |              |          |                                                | `                                                                 |
| 51 PIECE(S) CC                                                                                                                       | NSISTING OF                           | _\$1_,                    | OX(ES)        | 0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COMME                                     | RCIA                    | L C      | ARR          | IER      |                                                |                                                                   |
|                                                                                                                                      |                                       | 180X                      |               | l —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COURIE                                    |                         |          |              |          |                                                |                                                                   |
|                                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE                                    | R C                     | )NV      | ΕYŁ          | D        |                                                | (SHIPPING DOCUMENT NUMBER)                                        |
| PERSONNEL CUSTOI                                                                                                                     |                                       | DATE                      | TIME          | Inecei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VED BY                                    |                         | - 7.2    |              |          |                                                | DEACON FOR CHANGE OF CHELORY                                      |
| RELINGUISHED BY                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VED BY                                    |                         | F        | <b>3</b> . 1 | /        |                                                | REASON FOR CHANGE OF CUSTODY                                      |
| JACALED JAC                                                                                                                          | UNSEALE                               | D 7/201                   | 9 /200        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(\mathcal{A}_{0}) = \mathcal{A}_{1}^{0}$ |                         |          |              |          |                                                | April 64 h                                                        |
| RELINQUISHED BY                                                                                                                      | ,                                     | DATE                      | TIME          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VED BY                                    |                         |          |              |          | - 1/                                           | REASON FOR CHANGE OF CUSTODY                                      |
|                                                                                                                                      |                                       |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |          |              |          |                                                |                                                                   |
| SEALED RELINQUISHED BY                                                                                                               | UNSEALE                               | DATE                      | TIME          | SEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LED<br>VED BY                             |                         | UN       | SEA          | LE       | DΓ                                             | REASON FOR CHANGE OF CUSTODY                                      |
| RELINGOISHED BY                                                                                                                      |                                       |                           | 1,,           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <del></del> ·                           |                         |          |              |          |                                                |                                                                   |
| SEALED                                                                                                                               | UNSEAL                                | = 6                       |               | SEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LED                                       |                         | UN       | SEA          | ALE      | Ф                                              |                                                                   |

page/pages has/have been removed for confidentiality reasons.

W

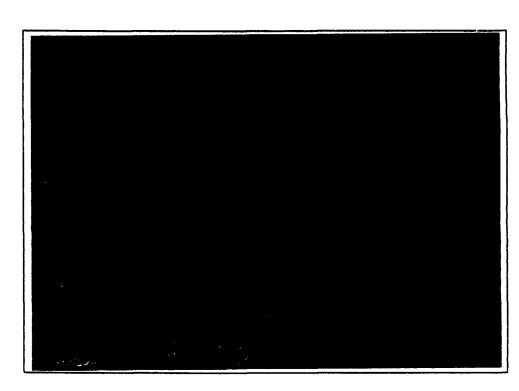
#### PHOTOGRAPHIC RECORD

SITE MARE: Big River Mine Tailings

SITE LOCATION: Desloge, Missouri

TDD/PAM4: F-07-9004-011/FM00616XA

#### No: 1 Subject


Area of 1977 major collapse. Taken from location adjacent to west bank of Big River.

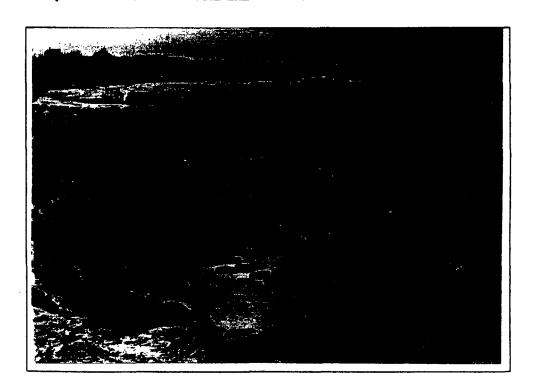
Photographer Overfelt

Witness Gene Gunn

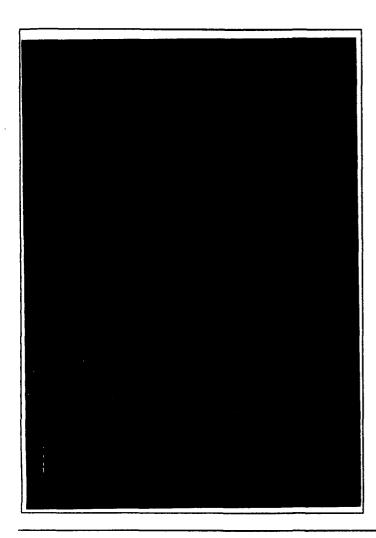
Date/Time Junuary 1988

Direction West




#### No: 2 Subject

Erosion of tailings on top of pile at major collapse area.


Photographer Overfelt

Witness Williams

7/26/90 1530 hours



#### PHOTOGRAPHIC RECORD



SITE NAME: Big River Mine Tailings

SITE LOCATION: Desloge, Missouri

TDD/PAN4: F-07-9004-011/FM00616XA

No: 3 Subject

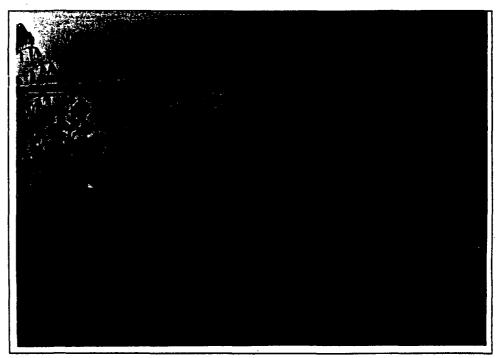
Tailings migrating via wind erosion. Proximity of site to Big River on east side of site.

Photographer Overfelt

Witness Gene Gunn

Date/Time January 1988

Direction Northwest


#### No: 4 Subject

Dune features migrating west to east in east central meander area.

Photographer Overfelt

Witness Williams

7/26/90 1540 hours



#### PHOTOGRAPHIC RECORD

SITE NAME: Big River Mine Tailings

SITE LOCATION: Desloge, Missouri

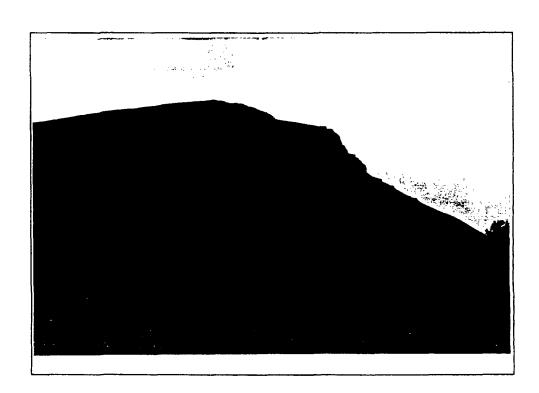
TDD/PAN4: F-07-9004-011/FM00616XA

#### **₹0:** 5 Subject

Large elevated tailings pile on St. Joe Minerals property.

### Photographer

Enos


Witness Martin

# Date/Time 7/27/91

0900 hours

#### Direction

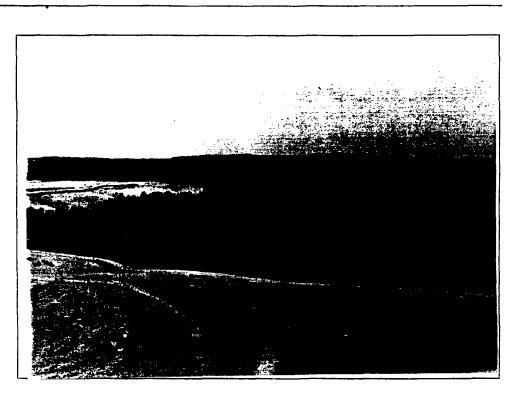
East



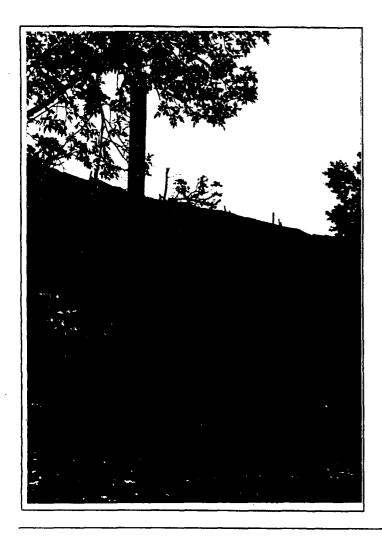
#### No: 6 Subject

Illustrates east side of meander area and farm property east of site. Taken from on top of St. Joe Minerals property pile.

#### Photographer Overfelt


√itness Williams

# 7/26/90


1755 hours

#### Direction

North/Northwest



#### PHOTOGRAPHIC RECORD



SITE NAME: Big River Mine Tailings

SITE LOCATION: Desloge, Missouri

TDD/PARS: F-07-9004-011/FM00616XA

#### No: 7 Subject

Tailings entering Big River on west side of site at sample location 105, 205. Note: drainage structure on the site.

Photographer Williams

Witness Enos

7/24/90 1000 hours

Direction East/Southeast

## Subject

Area where tailings are entering Big River on west side of site at area north of sample location 105, 205.

Photographer Williams

Witness

7/24/90 1000 hours

Direction East/Northeast



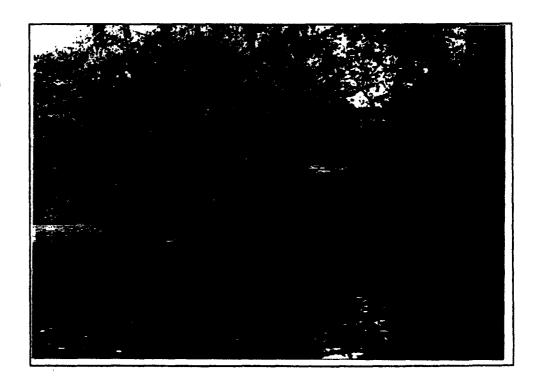
#### PHOTOGRAPHIC RECORD

SITE MARK: Big River Mine Tailings

SITE LOCATION: Desloge, Missouri

TDD/PANE: F-07-9004-011/FM00616XA

#### No: 9 Subject


Tailings entering Big River on north side of site.

Photographer Overfelt

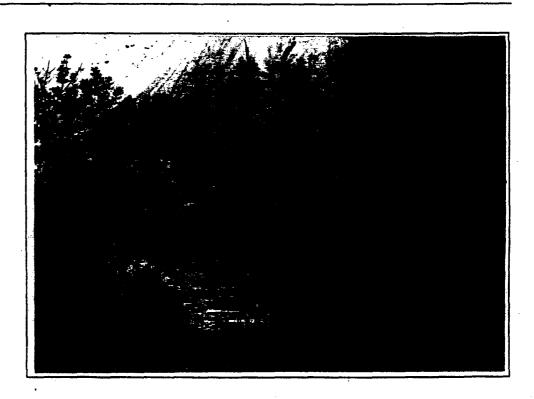
Witness Williams

7/24/90 1345 hours

Direction South



#### No: 10 Subject


Tailings entering Big River on east side of site at east bend in river.

Photographer Williams


Witness Overfelt

7/24/90 1520 hours

Direction West



#### PHOTOGRAPHIC RECORD



SITE NAME: Big River Mine Tailings

SITE LOCATION: Desloge, Missouri

TDD/PANE: F-07-9004-011/FM00616XA

No: 11 Subject

Entrance to drainage tunnel Note: tailings on bottom of tunnel and reddish leachate seep entering tunnel.

Photographer Overfelt

Witness Martin

7/26/90 1000 hours

Direction Northwest

#### No: 12 Subject

Downgradient end of drainage tunnel.

Photographer Enos

Witness Martin

7/27/90 1600 hours

Direction Southeast



#### PHOTOGRAPHIC RECORD



SITE HAME: Big River Mine Tailings

SITE LOCATION: Desloge, Missouri

TDD/PAN4: F-07-9004-011/FM00616XA

No: 13 Subject

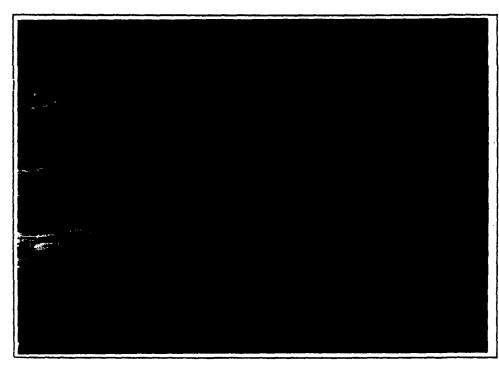
Culvert exit from landfill ponded area near drainage tunnel entrance. Note: Thickness of tailings above culvert.

Photographer Overfelt

Witness Martin

7/26/90 1005 hours

Direction Northeast


No: 14 Subject

Ponded area of landfill.

Photographer Overfelt

Witness Martin

7/26/90 1010 hours



#### PHOTOGRAPHIC RECORD



SITE HAME: Big River Mine Tailings

SITE LOCATION: Desloge, Missouri

TDD/PAM#: F-07-9004-011/FM00616XA

No: 15

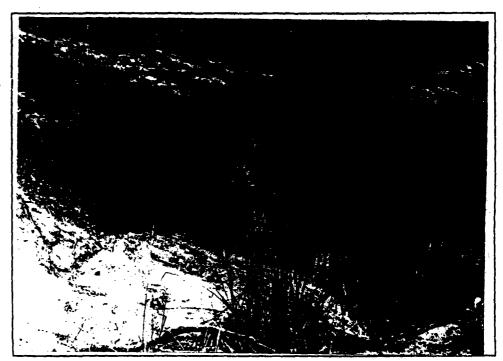
Apparent reddish landfill leachate.

Photographer Overfelt

Witness Martin

7/26/90 1005 hours

Direction West


No: 16 Subject

Opening to tower drainage tunnel.

Photographer Overfelt

Witness Martin

7/26/90 1005 hours



#### PHOTOGRAPHIC RECORD



SITE NAME: Big River Mine Tailings

SITE LOCATION: Desloge, Missouri

TDD/PAN#: F-07-9004-011/FM00616XA

No: 13 Subject

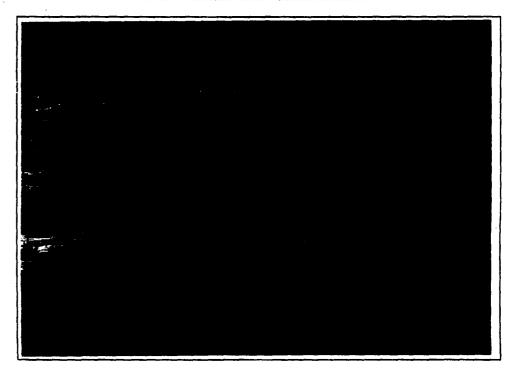
Culvert exit from landfill ponded area near drainage tunnel entrance. Note: Thickness of tailings above culvert.

Photographer Overfelt

Witness Martin

7/26/90 1005 hours

Direction Northeast


#### No: 14 Subject

Ponded area of landfill.

Photographer Overfelt

Witness Martin

7/26/90 1010 hours



#### PHOTOGRAPHIC RECORD

SITE MAME: Big River Mine Tailings

SITE LOCATION: Desloge, Missouri

TDD/PAM4: F-07-9004-011/FM00616XA

#### No: 17 Subject

Artesian well (exploratory boring in steel casing).

#### Photographer Overfelt

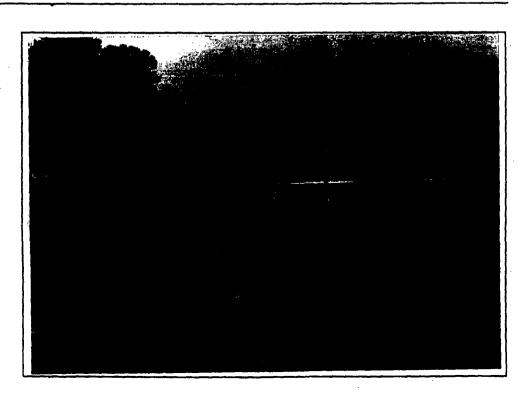
Witness Enos

7/26/90 1105 hours

Direction



#### No: 18 Subject


Drainage structure near major collapse area.

#### Photographer Overfelt

Witness Williams

7/26/90 1540 hours

Direction Northwest



# APPENDIX G WELL LOGS FOR MONITORING WELLS

# HUDWALKER & ASSOCIATES, INC.

Engineers - Surveyors P. O. Box 676 FARMINGTON, MO 63640

WE ARE SENDING YOU 🗷 Attached 🗆 Under separate cover via \_\_

∠ Prints

(314) 756-6775

ATTENTION Mr. Bow Evertett

TO Ecology & Environment Inc.

OH-05 Metalf

Building 3-3-te 404

Overland Park, KS 66201

Ref. 9 LETTER OF TRANSMITTAL

\_\_\_\_\_the following items:

☐ Resubmit \_\_\_\_\_copies for approval

□ Specifications

□ Samples

| ☐ Copy of letter |  | □ Change order □                |                                                                             |
|------------------|--|---------------------------------|-----------------------------------------------------------------------------|
| COPIES DATE NO.  |  | DESCRIPTION                     |                                                                             |
|                  |  | Plan of Montering well location |                                                                             |
|                  |  | Monitoring west Detail          |                                                                             |
|                  |  |                                 |                                                                             |
|                  |  |                                 |                                                                             |
|                  |  |                                 |                                                                             |
|                  |  |                                 |                                                                             |
|                  |  |                                 |                                                                             |
|                  |  |                                 |                                                                             |
|                  |  |                                 | DATE NO. DESCRIPTION  Plan of Montaing well (contain)  Montaing well Detail |

☐ Approved as submitted

□ Plans

THESE ARE TRANSMITTED as checked below:

For approval

COPY TO\_

☐ Shop drawings

|             | ★ For your use           | ☐ Approved as noted ☐ Submitcopies for distribution |          |
|-------------|--------------------------|-----------------------------------------------------|----------|
|             | 🗷 As requested           | ☐ Returned for corrections ☐ Returncorrected prints |          |
|             | ☐ For review and comment |                                                     |          |
|             | ☐ FOR BIDS DUE           | 19 PRINTS RETURNED AFTER LOAN TO US                 |          |
| REMARKS     |                          |                                                     |          |
|             |                          |                                                     |          |
|             |                          |                                                     |          |
|             |                          |                                                     |          |
|             |                          |                                                     |          |
|             |                          |                                                     |          |
|             |                          |                                                     |          |
| <del></del> |                          |                                                     | <u> </u> |
|             |                          |                                                     |          |
|             |                          |                                                     |          |

NO - / - - / - - x SHEAR STRENGTH, 1sf UNIT DRY WEIGHT Surface Elevation 780 Completion Date 01/16/87 **∆-**00/2 O - QU/2 **◇-5**∀ Datum \_ MSL **3PT VALUE** 05 10 2.0 2.5 STANDARD PENETRATION RESISTANCE DEPTH IN FEET (ASTM 0 1586) - BLOWS PER FOOT DESCRIPTION OF MATERIAL WATER CONTENT, % 30 40 50 Tan to gray, very loose to loose slightly silty fine SAND SS becoming gray and more silty below 14 feet -10H Grain Size SS Analysis SS -20-Grain Size SS Analysis Intermixed gray, loose to medium dense. silty clayey SAND, to sandy SS 304 clayey SILT Grain Size SS Analysis Auger refusal on SANDY DOLOMITE at -40-37.5 feet 50H 60 70-GROUNDWATER DATA DRILLING DATA ENCOUNTERED AT23. 5 FEET AUGER 9" HOLLOW STEM \_\_WASH BORING FROM \_\_\_\_\_FEET \_\_\_\_\_FEET AFTER \_\_\_\_\_HOURS LOG OF BORING FEET AFTER \_\_\_ \_\_\_\_ HOURS MM DRILLER KOO LOGGER FREE WATER NOT ENCOUNTERED DURING DRILLING CME 55 \_\_\_\_DRILL RIG UG-1 REMARKS. PYC monitoring well casing installed GEOTECHNOLOGY SEE NOTATION SHEET FOR DESCRIPTION OF ABBREVIATIONS St. Louis, Missouri

| CONT             | DG-1                                              | SURFACE ELEVATION 784                    | WEIGHT<br>LUE | ES | SHEAR STRENGTH, 1sf                                                                              |      |          |            |  |
|------------------|---------------------------------------------------|------------------------------------------|---------------|----|--------------------------------------------------------------------------------------------------|------|----------|------------|--|
| DEPTH<br>IN FEET | DESCRIPTIO                                        | N OF MATERIAL                            | P DR SAM      |    | STANDARD PENETRATION RESISTANCE (ASTM 0 1586)  A- BLOWS PER FOOT WATER CONTENT, % 10 20 30 40 50 |      |          |            |  |
|                  | Gray. very loose<br>SILT with green<br>at 99 feet | . sandy and clayey<br>and black organics |               | SS | <b>A</b>                                                                                         |      |          | Gŗaiņ Size |  |
| 90-              |                                                   |                                          |               | SS | •                                                                                                |      | <u> </u> | Analysis   |  |
| 100-             |                                                   |                                          |               | SS |                                                                                                  |      |          |            |  |
| MAY BE GR        | TERMINATED AT 100°CF TAILINGS                     | DUE TO INSTABILITY                       |               |    |                                                                                                  |      |          |            |  |
| 2                |                                                   |                                          |               |    |                                                                                                  |      |          |            |  |
| 20-              |                                                   |                                          |               |    |                                                                                                  |      |          |            |  |
| 30-              |                                                   |                                          |               |    |                                                                                                  |      | ·        |            |  |
| 40-              |                                                   |                                          |               |    |                                                                                                  |      | <u> </u> |            |  |
| 150-             |                                                   |                                          |               |    |                                                                                                  |      |          |            |  |
| 160              |                                                   |                                          |               |    |                                                                                                  |      |          |            |  |
| 70-              |                                                   |                                          |               |    |                                                                                                  |      |          |            |  |
|                  | IOTATION SHEET FOR DESCRIP                        | TION OF ARRESVIATIONS                    |               |    | GE                                                                                               | OTEC | HNO      | LOGY       |  |

|                  | face Elevation 794                            | Completion Date 01/13/87 | QH1                          |          | Δ-υυ     |                  | AR ST | RENGTH                                | , tsf<br>◇-sv          |
|------------------|-----------------------------------------------|--------------------------|------------------------------|----------|----------|------------------|-------|---------------------------------------|------------------------|
|                  | um MSL                                        |                          | T DRY WEIG                   | SAMPLES  | STAND    | 3                | 10    | 1,5                                   | ZO Z.5<br>N RESISTANCE |
| DEPTH<br>IN FEET | DESCRIPTION                                   | N OF MATERIAL            | UNIT DRY WEIGHT<br>SPT VALUE | SAME     | PL }-    |                  | (ASTE | PER FOO                               | 01                     |
|                  | Gray, loose, SAN                              | D with zones of          | 5                            |          | '0       | ·<br><del></del> | 20    | 30                                    | 40 50                  |
|                  | silty to clayey                               | SAND                     |                              | SS       | •        |                  |       |                                       |                        |
| _10-             |                                               |                          |                              | SS       | <b>.</b> |                  | •     |                                       | Grainy Size            |
|                  |                                               |                          | _                            | SS       |          |                  |       |                                       |                        |
|                  | Gray. very loose<br>clayey SILT               | , sandy to slightly      |                              | 33       |          |                  |       |                                       |                        |
| -20-             |                                               |                          |                              | SS       | <b>.</b> | <del></del>      |       | <del> </del>                          | <u> </u>               |
|                  |                                               |                          |                              | SS       |          | н                | •     |                                       | Grain Size<br>Analysis |
| -30              |                                               |                          |                              | SS<br>55 |          |                  |       |                                       | ļ                      |
|                  | Medium stiff. ddi<br>silty CLAY               | rk brown and gray.       |                              |          |          |                  |       |                                       | S~6*                   |
|                  | Split spaan refuse<br>at 30.5 feet            | il on SANDY COLOMITE     |                              |          |          |                  |       |                                       |                        |
| -40-             |                                               |                          |                              |          |          |                  |       |                                       |                        |
| 50               |                                               |                          |                              |          |          |                  |       |                                       |                        |
| - 50-            |                                               |                          |                              |          |          |                  |       |                                       |                        |
|                  |                                               |                          |                              |          |          |                  |       |                                       |                        |
| -60              |                                               |                          |                              |          |          |                  |       |                                       |                        |
|                  |                                               |                          |                              |          |          |                  |       |                                       |                        |
| -70-             |                                               |                          |                              |          |          |                  |       |                                       |                        |
| -70              |                                               |                          |                              |          |          |                  |       |                                       |                        |
|                  |                                               |                          |                              |          |          |                  |       | · · · · · · · · · · · · · · · · · · · |                        |
|                  | GROUNDWATER DATA                              | DRILLING DATA            | <u> </u>                     |          |          |                  |       |                                       |                        |
| AT_              | FEET AFTERHO                                  | AUGER 9" HOLD            | LOW STEI                     | r<br>R   | LO       | G (              | OF    | BOR                                   | ING                    |
| REM              | OURING ORILLING  IARKS: <u>PVC manitoring</u> | well cosing installed    | 1                            |          |          |                  | DG-   | -2                                    |                        |
| 366              | NOTATION SHEET FOR DESCRIPT                   | ION OF ABBREVIATIONS     |                              |          | GEO      |                  |       | INOL<br>Missouri                      | -OGY                   |

| ·                                   | Surface<br>Datum_ | Elevation 784<br>MSL                                          | Completion Date <u>C1/13/87</u>                  | UNIT DRY WEIGHT            | S        | ∆-00/2                                                                                          | O-90/2                            | ↑5↑<br>♦-5∀<br>1.0 2.5 |  |
|-------------------------------------|-------------------|---------------------------------------------------------------|--------------------------------------------------|----------------------------|----------|-------------------------------------------------------------------------------------------------|-----------------------------------|------------------------|--|
|                                     | DEPTH<br>IN FEET  | DESCRIPTION OF MATERIAL                                       |                                                  |                            | SAMPLES  | STANDARD PENETRATION RESISTANCE (ASTM D 1586)  A-8LOWS PER FOOT WATER CONTENT. % 10 20 30 40 50 |                                   |                        |  |
|                                     |                   | Tan. loose to me<br>fine to medium,                           | dium dense.<br>SILT and silty SANO               |                            | SS       |                                                                                                 |                                   |                        |  |
| BOUNDARIES<br>DUAL                  | -10-              |                                                               |                                                  |                            | SS       | • •                                                                                             |                                   | Grain Size<br>Analysis |  |
| ≾1                                  | - 20-             |                                                               |                                                  |                            | SS       |                                                                                                 |                                   |                        |  |
| E APPROXIMATI                       | - 30-             |                                                               |                                                  |                            | SS       |                                                                                                 |                                   |                        |  |
| RESENT THE THE THE THE              |                   | Brown gray. loos                                              | a. fine gravelly SAND                            |                            | SS       | •                                                                                               |                                   | Grain Size<br>Analysis |  |
| ION LINES REPI                      | -40               | Brown, medium stiff, silty CLAY with sandy DOLOMITE fragments |                                                  |                            | SS<br>SS | •                                                                                               |                                   | Grain Size             |  |
| E: STRATIFICATION<br>BETWEEN SOIL T | -50 B             | oning terminated                                              | at 45 feet                                       |                            |          |                                                                                                 |                                   |                        |  |
| - 1                                 | - 60-             |                                                               |                                                  |                            |          |                                                                                                 |                                   |                        |  |
|                                     | - 70 <del>-</del> |                                                               |                                                  |                            |          |                                                                                                 |                                   |                        |  |
|                                     |                   | ATAD RETAWDRUDS                                               | DRILLING DAT                                     |                            | <u> </u> |                                                                                                 | 1                                 | 1,                     |  |
|                                     | ATFRE             | FEET AFTER HE FEET AFTER HE EE WATER NOT ENGOUNTERS           | OURS WASH BORING FROM OURS MM DRILLER KDC CME 55 | FEE<br>]LOGGE<br>_DRILL RI | T<br>R   |                                                                                                 | OF BOR                            | ING                    |  |
|                                     |                   | (S: PVC monitoring                                            | well casing installs                             | nd                         | -<br>-   | GEOTE                                                                                           | DG-3<br>ECHNOL<br>Louis, Missouri | .ogy                   |  |

| -HOJEC            |                                                                                       |                          |                              |              |          |                                                             | 00/621                 |
|-------------------|---------------------------------------------------------------------------------------|--------------------------|------------------------------|--------------|----------|-------------------------------------------------------------|------------------------|
| Surface<br>Datum_ | Elevation 768                                                                         | Completion Date 01/19/97 | EIGHT<br>JE                  | s            |          | AR STRENGTH                                                 | ♦-sv                   |
| DEPTH<br>IN FEET  | DESCRIPTIO                                                                            | N OF MATERIAL            | UNIT DRY WEIGHT<br>SPT VALUE | SAMPLES      | STANDARD | PENETRATION<br>(ASTM 0 1586)<br>BLOWS PER FO<br>WATER CONTE | INT.%                  |
|                   | Tan. loose to me                                                                      | adium dense SAND         |                              | <u> </u>     |          | 50 30                                                       | 40 50                  |
| 10-               | GII, TODSE JD III                                                                     | adiam canse same         |                              | \$\$<br>\$\$ | •        |                                                             | Grain Size<br>Analysis |
|                   |                                                                                       |                          |                              | 55           | ▲.       |                                                             |                        |
|                   |                                                                                       |                          |                              | SS           | •        |                                                             | Grain Size<br>Analysis |
| -20               | Brown silty CLA'<br>Fragments                                                         | (with dolomite )         |                              | -55          |          | •                                                           | \$-8"                  |
| -30-              | olit spaan r <b>e</b> fus                                                             | al at 29 feet            |                              |              |          | ļ · ·                                                       |                        |
|                   |                                                                                       |                          |                              |              |          |                                                             |                        |
| -40-<br>          |                                                                                       |                          |                              |              |          |                                                             |                        |
| -50-              |                                                                                       |                          |                              |              |          |                                                             |                        |
| -60-              |                                                                                       |                          |                              |              |          |                                                             |                        |
|                   |                                                                                       |                          |                              |              |          |                                                             |                        |
| ENGOUNT<br>AT     | ROUNDWATER DATA  ERED AT 24 FEET  FEET AFTER HE  FEET AFTER HE  E WATER NOT ENGOUNTER |                          | FEE                          | T<br>R       | LOG      | OF BOR                                                      | IING                   |
|                   | ING DRILLING                                                                          | g well casing installed  |                              | ·            |          | DG-4                                                        |                        |
| SEE NOTA          | ATION SHEET FOR DESCRIP                                                               | TION OF ARBREVIATIONS    |                              | •            |          | ECHNO                                                       | <del>-</del>           |

#### APPENDIX H

DETAILED TOPOGRAPHIC MAP OF THE BIG RIVER MINE TAILINGS SITE

# Unscanned Items

A map or maps that could not be scanned exist with this document or as a document

To view the maps, please contact the Superfund Records Center

### APPENDIX I

### WASTE CHARACTERISTICS

Arsenic Cadmium Cobalt Lead Nickel Zinc Arsenic is a silver-gray, shiny, brittle, crystalline metal. It is used as an alloy additive for metals, in the manufacturing of certain types of glass, as a doping agent in geranium and silicon solid-state products in special solders, and medicine. Arsenic was used as a pesticide, but its use for this application has been discontinued (ITII 1979; Windholz 1976).

In water arsenic generally exists in the plus-three ( ${\rm As}^{3+}$ ) and plus-five ( ${\rm As}^{5+}$ ) oxidation states. It can also exist as metallic arsenic or in the minus-three ( ${\rm As}^{3-}$ ) state. Arsenic interchanges between the oxidation states and organic complexes. Under extremely reducing conditions, arsine ( ${\rm ArH}_3$ ) and methylated arsenic compounds are formed, and these compounds are volatile. However, in most environments this is not the case (EPA 1979).

Arsenic is adsorbed onto clays, aluminum, hydroxides, iron oxides, and organic material. It also can substitute for phosphate (As<sup>3-</sup>) in phosphate minerals. Arsenic is most likely to be adsorbed in aerobic, acidic, freshwater environments. It is most mobile in reducing, alkaline, and saline conditions (EPA 1979).

The overall fate of arsenic is complex and cyclical around several fate processes. Not enough data has been gathered to determine the most dominant fate process (EPA 1979). Arsenic has been shown to bioaccumulate; although concentrations bioaccumulated are limited by arsenic's toxicity. The process of bioaccumulation is more likely to occur in the marine environment than in freshwater. Arsenic is biotransformed by methylation. This may be a mechanism whereby organisms detoxify this compound. Regardless, methylation increases the mobility of arsenic in the environment (EPA 1979).

Chronic arsenic exposure symptoms generally occur one to six weeks after onset of exposure. Symptoms include brown, dry dermatitis, hyperpigmentation, conjunctivitis, edema of eyelids, corneal neurosis, nasal irritation, dryness of throat, hoarseness, brittle nails, hair loss, numbness, burning, tingling of hands and feet, tremors, loss of muscle control, shuffling locomotion, and mental confusion. Chronic exposure

Arsenic Page 2

to arsenic may also cause cancer. Gastrointestinal symptoms include nausea, vomiting, abdominal pain, diarrhea, enlarged liver, and jaundice. Many of these symptoms are also indicative of acute exposure, although acute symptoms begin within two days of exposure (ITII 1979; Windholz 1976).

The drinking water Maximum Contaminant Level (MCL) for arsenic is  $50 \mu g/l$ . The freshwater chronic Lowest Observed Effect Level (LOEL) is  $190 \mu g/l$ , indicating arsenic is somewhat toxic to aquatic life (EPA 1986a; EPA 1979).

Arsenic Bibliography Page 3

- The International Technical Information Institute, 1979, <u>Toxic</u> and <u>Hazardous Industrial Chemicals Safety Manual</u>, Tokyo, Japan.
- U.S. Environmental Protection Agency, 1979, <u>Water-Related Fate of 129</u> Priority Pollutants, Vol. 2, Washington, D.C.
- U.S. Environmental Protection Agency, 1986, "Quality Criteria for Water."
- Windholz, Martha, ed., 1976, The Merck Index, Rahway, New Jersey, Merck & Co., Inc.

#### WASTE CHARACTERISTICS (4/90)

#### Cadmium

Cadmium appears as a soft, blue-white malleable metal or as a grayish-white powder. It is combustible, and in powder form it is flammable. Cadmium is used for electroplating; in bearing and low melting point alloys, and in brazing alloys; in electrical equipment; in fire protection systems; in solar and storage batteries; in television phosphors; as a basis for pigment; in rubber and plastic products; to control atom fission in nuclear reactors; as a fungicide; and in photography and lithography processes. Cadmium also is used in the Weston Standard cell (ITII 1979; Windholz 1976).

Cadmium can exist in the aquatic environment as simple hydrated ions, as metal inorganic complexes, or as metal-organic complexes. It is less mobile in alkaline than in acidic environments because it precipitates; the concentration of cadmium in water is inversely related to the pH and the concentration of organic material. Cadmium complexes with humic substances and this phenomenon exerts the most control over the chemical state of cadmium. Cadmium also complexes with carbonates, which is the next important factor. Adsorption of cadmium onto mineral surfaces, hydrous metal oxides, and organic materials probably removes more cadmium from solution than precipitation, although this adsorption effects cadmium to a lesser extent than other heavy metals. All studies show that the concentration of cadmium in bed sediments is an order of magnitude higher than in overlying waters (EPA 1979). Cadmium may become an airborne contaminant if it is attached to soil or dust particles.

Cadmium is fairly toxic to both human and freshwater aquatic life. The Maximum Contaminant Level (MCL) for cadmium in drinking water is 10  $\mu$ g/L; the freshwater chronic Lowest Observed Effect Level (LOEL) is 1.1  $\mu$ g/L. Cadmium has been shown to bioaccumulate in aquatic life (EPA 1979; EPA 1986; EPA 1987).

Acute symptoms resulting from the inhalation of cadmium usually do not appear until 12 to 30 hours after exposure. These symptoms include headache, dizziness, and irritability; gastrointestinal disturbances;

#### Cadmium

#### Page 2

severe chest pain and constriction, cough, shortness of breath, and pulmonary edema; and profuse sweating and fever. Chronic exposure symptoms are indicated by nose and throat inflammation, soreness, bleeding, and loss of sense of smell; sleeplessness; loss of appetite, nausea, and weight loss; damage to liver and anemia; yellow cadmium fringe on teeth; pulmonary emphysema; and fibrosis. Ingestion symptoms appear approximately 15 to 30 minutes after exposure and are characterized by salivation, nausea, vomiting, abdominal pain, diarrhea, dizziness, and unconsciousness (ITII 1979; Windholz 1976).

Cadmium Bibliography Page 3

- The International Technical Information Institute, 1979, <u>Toxic and Hazardous Industrial Chemicals Safety Manual</u>, Tokyo, Japan.
- U.S. Environmental Protection Agency, 1979, <u>Water Related Fate of 129</u> Priority Pollutants, Vol. 2, Washington, D.C.
- U.S. Environmental Protection Agency, 1986, "Quality Criteria for Water."
- U.S. Environmental Protection Agency, July 1987, "EPA Regulatory Status for Chemicals in Drinking Water."
- Windholz, Martha, ed., 1976, The Merck Index, Merck & Co., Inc., Rahway, New Jersey.

# WASTE CHARACTERISTICS (4/90) Cobalt

Cobalt is a hard, gray, magnetic metal. It is stable to air and water at room temperature. Hydrated cobalt salts are red in color and produce red solutions when dissolved in liquids; these solutions turn blue upon addition of hydrochloric acid. Alloys of cobalt with nickel, aluminum, copper, beryllium, chromium, and molybdenum are used in the electrical, automobile, and aircraft industries. Permanent magnets are made from nickel-aluminum-cobalt alloys. Cobalt is also added to tool steels to improve their cutting qualities, and is added as a binder in the manufacture of tungsten carbide tools (Sittig 1985).

Normal valence states for cobalt are the +1, +2, and +3. Cobalt compounds are used as pigments in enamels, glazes, and paints; as catalysts in afterburners; in glass and pottery; and in the photographic and electroplating industries. Radioactive 60 Cobalt is used in cancer treatment. Previously, cobalt was added to beer to promote the formation of foam; however, cobalt acts with alcohol to produce severe cardiac effects in humans at concentrations as low as 1.2 to 1.5 mg of cobalt per liter of beer (Sittig 1985).

Human exposure to cobalt dust may result in pulmonary symptoms. Dermal contact with cobalt powder may produce dermatitis. Ingestion of the soluble cobalt salts can cause nausea and vomiting. Cobalt is an essential human nutrient. No freshwater aquatic Lowest Observed Effect Level (LOEL) or drinking water Maximum Contaminant Level (MCL) has been established for cobalt. Its concentration in natural waters and in drinking water is generally an order of magnitude below that which causes any adverse health effects (Sittig 1985).

Cobalt Bibliography Page 2

Sittig, Marshall, 1985, <u>Handbook of Toxic and Hazardous Chemicals and Carcinogens</u>, 2nd. ed., Noyes Publications, Park Ridge, New Jersey.

#### WASTE CHARACTERISTICS (2/90) Lead

Lead is a soft, bluish-white, silvery-gray metal. It has numerous uses including as a construction material for lining tanks, pipes, and other equipment that handles corrosive gases and liquids; in petroleum refining; in pigments for paints; in metal alloys, storage batteries, and ceramics; and in plastics (Windholz 1976). Lead also is used as a shielding material for x-rays and atomic radiation (Sittig 1985).

Automobile exhaust contains halogenated lead products such as lead chloride and bromide, which are photooxidized in the atmosphere. This process forms lead oxide by releasing the halogen (EPA 1979). Lead is more mobile in acidic and weakly acid oxidizing environments than in neutral and alkaline waters (Perel'man 1967). Lead generally exists in the aqueous environment in the divalent state. Its solubility is controlled by the concentrations of anions such as carbonate, hydroxide, sulfide, and sulfate. Organic complexes with humic acids are stable to pH 3. Bacteria transform inorganic lead into organic lead compounds such as tetramethyl lead, which is volatile. This phenomenon is significant in the environmental transport process for lead; it allows lead that is sorbed to bed sediments to partition into the aqueous or atmospheric phases. Lead is sorbed to soil and sediment organic matter. However, the degree of sorption depends on the initial lead concentration and the presence of other complexes; the geologic setting and the type of surrounding soil and sediment; the pH, Eh, and salinity; and the dissolved and particulate iron concentration. Lead is bioaccumulated, but most natural waters make lead relatively unavailable for uptake by aquatic biota (EPA 1979).

Lead is very toxic, especially to young children in whom exposure may cause permanent brain damage (Windholz 1976). Early exposure symptoms include decreased physical fitness, fatigue, and sleep disorders; headache and aching bones and muscles; abdominal pain, and decreased appetite. Chronic exposure leads to anemia, skin pallor, lead line on gums, decreased handgrip strength, and kidney damage. Acute

Lead Page 2

ingestion and inhalation of large amounts of lead can cause severe headache, convulsion, coma, and death (Sittig 1985). The current drinking water Maximum Contaminant Level (MCL) for lead is 50  $\mu$ g/l. The proposed MCL is 5  $\mu$ g/l at the beginning of the water distribution system and 10  $\mu$ g/l at the tap (EPA 1987; 1988). The chronic freshwater Lowest Observed Effect Level (LOEL) is 3.2  $\mu$ g/l (EPA 1986).

Lead Page 2 Bibliography

- Perel'man, Alexsandr I., 1967, <u>Geochemistry of Epigenesis</u>, Plenum Press, New York, New York.
- Sittig, Marshall, 1985, <u>Handbook of Toxic and Hazardous Chemicals and Carcinogens</u>, 2nd. ed., Noyes Publications, Park Ridge, New Jersey.
- U.S. Environmental Protection Agency, 1979, <u>Water Related Fate of 129 Priority Pollutants</u>, Vol. 2, Washington, D.C.
- U.S. Environmental Protection Agency, 1986, "Quality Criteria for Water."
- U.S. Environmental Protection Agency, July 1987, "EPA Regulatory Status for Chemicals in Drinking Water."
- U.S. Environmental Protection Agency, August 18, 1988, "Drinking Water Regulations and Maximum Contaminant Level Goals and National Primary Drinking Water Regulations for Lead and Copper, Federal Register," Vol. 53, No. 16.
- Windholz, Martha, ed., 1976, The Merck Index, Rahway, New Jersey, Merck & Co., Inc.

#### Nickel

Nickel is a hard, ductile, magnetic, insoluble metal which exists as silvery-white cubic solids. It is used in the manufacture of steel and other alloys; and is a component of coins, ceramics, storage batteries, electrical circuits, and colored glass. Nickel is also used as a hardener for edible oils, and as a catalyst in other chemical reactions. Two processes are used to produce nickel: the Oxford process uses sodium sulfide and electrolysis; the Mond process reacts nickel powder with carbon monoxide to produce nickel carbonyl. The nickel carbonyl is then treated to deposit metallic nickel (Sittig 1985).

Nickel occurs free in meteorites and in ores combines with sulfur, antimony, and arsenic. Nickel is divalent in aquatic systems. It is the most mobile of all the heavy metals. In aquatic systems below pH 9.0, nickel is soluble; above pH 9.0 it precipitates as carbonates and hydroxides. Nickel forms soluble complexes with fulvic and humic acids present in natural waters, a characteristic that increases its mobility in the aquatic environment. It can be sorbed onto hydrous iron and magnesium oxides in organic material, but sorption is likely to inhibit the mobility of nickel only in unpolluted waters (EPA 1979).

The nickel refining process is considered carcinogenic to humans. Epidemiologic studies show a higher incidence of nasal cavity and lung cancers in nickel refinery workers. Other nickel compounds are known to produce cancer in rats, mice, and hamsters. It is not known which specific nickel compounds are carcinogenic. However, evidence suggests that the toxicity and carcinogenic risk posed by a metal is more a property of the metal than of its specific form. Therefore, because some nickel compounds are carcinogenic, all nickel compounds are suspected carcinogens (DHHS 1985). Non-carcinogenic exposure effects include 'nickel itch', chronic eczema, and eye and upper respiratory tract irritation (Sittig 1985).

Other potential exposures to nickel occur through cigarette smoke; emissions from coal and ore-fired boilers, coke ovens, and grey iron foundries; and from burning diesel fuel. Nickel can also be leached

Nickel Page 2

from nickel alloys during food processing (Sittig 1985).

There is no drinking water Maximum Contaminant Level (MCL) for nickel. Most natural waters contain less than 10  $\mu$ g/l. The freshwater chronic lowest observed effect level (LOEL) for nickel is 96  $\mu$ g/l (EPA 1986). Generally, freshwater bioconcentration factors range from 40 to 100 and are less than  $10^3$  (EPA 1979).

Nickel Page 3 Bibliography

- Sittig, Marshall, 1985, <u>Handbook of Toxic and Hazardous Chemicals and Carcinogens</u>, 2nd. ed., Noyes Publications, New Jersey.
- U.S. Department of Health and Human Services, 1985, Fourth Annual Report on Carcinogens Summary, Public Health Service, Washington, D.C.
- U.S. Environmental Protection Agency, <u>Water-Related Fate of 129 Priority</u> Pollutants, Vol. 2, Washington, D.C.
- U.S. Environmental Protection Agency, 1986, "Water Quality Criteria for Water."

# WASTE CHARACTERISTICS Zinc

Zinc is a bluish-white, lustrous metal used in metal refining, dye manufacturing, rustproofing paints, electroplating, and for galvanizing iron and other metals (ITII 1979; Windholz 1976). Like lead, zinc is more mobile in acidic and mildly acidic waters than in neutral or basic waters.

Zinc is a nutritional trace element (Windholz 1976). It has a recommended drinking water Maximum Contaminant Level (MCL) of 5,000  $\mu$ g/l. This value is recommended because zinc levels above this concentration impart a metallic taste to drinking water. Drinking water concentrations of up to 40,000  $\mu$ g/l of zinc do not cause deleterious health effects in humans. However, 20  $\mu$ g/l zinc is toxic to fish (Freeze and Cherry 1979). Zinc fumes are toxic when inhaled, causing throat dryness, coughing, weakness, dizziness, achiness, chills, fever, nausea, and vomiting (Windholz 1976).

Zinc Bibliography Page 2

- Freeze, Allen R. and John A. Cherry, 1979, Groundwater, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- International Technical Information Institute, 1979, Toxic and Hazardous Industrial Chemicals Safety Manual, Tokyo, Japan.
- Windholz, Martha, ed., 1976, The Merck Index, Rahway, New Jersey, Merck & Co., Inc.

# APPENDIX J AIR CALCULATIONS AND WIND ROSES

#### EXPLANATION OF STANDARD VOLUME OF AMBIENT AIR

The initial flow rate (QRI), final flow rate (QRF), and average flow rate (QR) of each Hi-Vol air sampler was calculated for each day of sampling in Ref. 33, p. 2. The flow rates of the Hi-Vol samplers were calculated in the field and recorded in the air sampling log book under QR (Ref. 38, pp. 2-17). The initial flow rate (QRI) for the first day of sampling that is recorded in Ref. 33, p. 2, is the same as the flow rate (QR) for the first day of sampling that is recorded in Ref. 38, pp. 2-17. The final flow rate (QRF) for the first day of sampling that is recorded in Ref. 33, p. 2, is the same as the flow rate (QR) for the second day of sampling that is recorded in Ref. 38, pp. 2-17. In other words, the final flow rate for the first day of sampling is the same as the initial flow rate for the second day of sampling. The final flow rate for the last day of sampling (July 28) is recorded as QR in Ref. 38a, pp. 2-8. The average flow rate (QR) in Ref. 33, p. 2, is calculated by averaging the QRI and QRF.

The total sample time (in minutes) for every sample is recorded in Ref. 38, pp. 2-17, and it is also recorded as 't' in Ref. 33, p. 2. The temperature (in degrees Celsius) for every day of sampling is recorded in Ref. 38, pp. 2-17, and it is also recorded as 'Ta' in Ref. 33, p. 2. The barometric pressure (in mm. Hg) is recorded in Ref. 38, pp. 2-17, and it is converted to in. Hg and recorded as 'Pa' in Ref. 33, p. 2.

The volume of ambient air (Vs) and the Standard volume of ambient air (Vstd) that flowed through each sample is calculated in Ref. 33, p. 2. The equation for Vs is:

 $Vs = QR \times t$ 

The equation for Vstd is:

Vstd = Vs x 25.4 x Pa / 760 x (298 /  $\langle Ta + 273 \rangle$ )

The values 25.4, 760, 298, and 273 are constants. Ref. 33, p. 3 explains how the Standard volume of ambient air is used to calculate the concentration of heavy metals in the air samples.

|      |                            |        |                |        |        |        |       |                 |                 |               | •           |
|------|----------------------------|--------|----------------|--------|--------|--------|-------|-----------------|-----------------|---------------|-------------|
| DATE | SPAPLE &                   | t      | 7a             | ۶a     | 2R1    | GROF - | GR.   | Vs              | Vstd            | Conversion o  | i pressure- |
| 1330 |                            | min    | den. C         | in his | CHN    | C200   | CX84- | cu. Ħ           | cro. H          | from me Hy to | o inches-   |
| •••• |                            |        | •              | •      |        |        |       |                 |                 | •             |             |
|      |                            |        |                |        |        |        |       |                 |                 | <b>m</b> -    | lingham :   |
| 7/23 | BR-600-01-1                | 745. 1 | 20.9           | 23.62  | 1.135  | 1.417  | 1.275 | 350.75          | 95A.37          | 752.40        | 23.62       |
| .,   | 58- <del>58-</del> 02-1    |        |                |        |        |        |       | 341.18          | 344.76          |               |             |
|      | b <del>r am</del> -03−1    |        |                |        |        | 1.417  |       | 895.11          | 898.53          |               |             |
|      | 58-FM-04-1                 |        |                |        |        | 1.417  |       | 309.73          | 313.26          | ~             |             |
|      | BR-AN-05-1                 |        |                |        |        | 1.417  |       | 0.00            | 0.00            |               |             |
|      | 5/R-FAH-(16-)              |        |                |        |        |        |       | 0.00            | 0.00            |               |             |
|      | 3R-AM-07-1                 |        |                |        | _      |        |       | 325.75          | 930.23          |               |             |
|      | 5R-RM-08-1                 |        |                |        |        |        |       | 957.04          | 360.63          |               |             |
|      | DIE HAT OUT 1              | 1000   |                |        |        |        |       | 701107          | 30000           | <b>**</b> *   | Inches ·    |
| 7/24 | ¥ <del>R-1M</del> -01-2    | 725 1  | 23.6           | 24     | 1 417  | 2764 1 | 1 A16 | 1026.74         | 1022.41         | 753.16        | 23.15       |
| //=4 | 58-69-02-2                 |        |                |        |        |        |       | 1012.30         | 1008.02         | ,000.0        |             |
|      | BR-FM-(C3-€                |        |                |        |        |        |       | 362.42          | 378.27          |               |             |
|      | 5R-FM-04-2                 |        |                |        |        |        |       | 1050.96         | 1046.52         |               |             |
|      | 37-78-56-2                 |        |                |        |        | 1.415  |       | 1063.27         | 1058.79         |               |             |
|      | 88-84-06-2                 |        |                | 29.85  | 1.417  |        |       |                 |                 |               |             |
|      |                            |        |                |        |        | 1.415  |       | 1017.96         | 1013.66         |               |             |
|      | 8 <del>8-89-</del> 07-2    |        |                | 23.65  | 1.417  |        | 1.416 | 1004.73         | 1000.55         |               |             |
|      | 58 <del>-181-</del> 08-2   | 120.0  | 52.5           | 23.63  | 7.417  | 1.410  | 1.416 | 1019.52         | 1015.22         |               | 1han        |
|      | V                          |        |                | 10.10  |        |        |       |                 | 1001 50         | 787 02        | Inches      |
| 7/25 | 88-AM-01-3                 |        |                |        |        |        |       | 1011.87         | 1004.51         | 753.32        | 29.68       |
|      | 8R-FM-02-3                 |        |                |        |        | 1.415  |       | 1023.47         | 1018.03         |               |             |
|      | BR-AN-03-3                 |        |                |        | 1.415  |        | 1.415 | 389.51          | 362,32          |               |             |
|      | 5R-RM-04-3                 |        |                |        | 1.415  |        | 1.415 | 0.00            | 0.00            |               |             |
|      | BR-FN-65-3                 |        |                |        |        | 1.415  |       | 1010.73         | 1003.33         |               |             |
|      | BR-FM-06-3                 |        |                |        |        | 1.415  |       | 1013.85         | 1006, 48        |               |             |
|      | 38-A1-07-3                 |        |                | 29.68  |        | 1.415  |       | 1048.03         | 1040, 47        |               |             |
|      | <b>58-199-</b> 08-3        | 720.1  | 24.8           | 23, 58 | 1.415  | 1.415  | 1.415 | 1018.80         | 1011.40         |               | •           |
|      |                            |        |                |        |        |        |       |                 |                 | <b>:::</b>    | Inches      |
| 7/26 | BR-184-01-4                |        |                |        |        |        |       | 1090.01         | 1061.64         | 755. 44       | 29574       |
|      | BR-AM-U2-4                 | -      |                | 23.74  |        |        | 1.415 | 1027.07         | 1019.37         |               |             |
|      | BR-144-03-4                |        |                | 29.74  | 1.415  |        | 1.415 | 364.26          | 957.US          |               |             |
|      | BR-FIN-04-4                |        |                | 29.74  |        |        |       | 1017.87         | 1010.24         |               |             |
|      | 317-114-115-4              |        |                |        |        |        |       | 1105.70         | 1058.41         |               |             |
|      | 59-4H-06-4                 |        |                |        |        |        |       | 1055.50         | 1047.58         |               |             |
|      | BR-AM-07-4                 |        |                |        |        |        |       | 1011.51         | 1003, 52        |               |             |
|      | 58-AM-08-4                 | /20.1  | 0 23.3         | 23.74  | 1.415  | 1. 414 | 1.415 | 1018.44         | 1010.80         |               | 1           |
|      |                            | 315    |                | (0.0)  |        |        |       |                 |                 | <b>187</b> *  | Inches      |
| 7/27 | 58-AH-01-5                 |        |                |        |        |        |       | 1014.87         | 1006, 68        | 755.44        | 23.74       |
|      | 58-58-02-5                 |        |                |        |        |        |       | 990.53          | 362.50          |               |             |
|      | 3 <del>17-141-1</del> 03-5 |        |                |        |        |        |       | 391.16          | 983.16          |               |             |
|      | 5R-1H-04-5                 |        |                |        |        |        |       | 1032.73         | 1024.47         |               |             |
|      | 5R-FH-05-5                 |        |                |        |        |        |       | 1104.38         | 1095.45         |               |             |
|      | 5R-114-06-5                |        |                |        |        |        |       | 1050.16         | 1041.63         |               |             |
|      | BR-144-07-5                |        |                |        |        |        |       | 1054.33         | 1045.89         |               |             |
|      | 5R-FM-CB-5                 | /21.   | 8 <u>25.</u> 6 | 29.74  | 1. +14 | 1.409  | 1.412 | 1018.78         | 1010.56         |               |             |
|      |                            |        |                |        |        |        |       |                 |                 | <b>18</b> 17  | Inches      |
| 7/26 | 3R-f#-01-6                 |        |                |        |        |        |       | 311.18          | 696.78          | 754.68        | 29.71       |
|      | 58-4H-02-6                 |        |                |        |        |        |       | 888.56          | 876.46          |               |             |
|      | BR-181-03-6                |        |                |        |        |        | 1.271 | 391.38          | 377.68          |               |             |
|      | 59-FM-C4-6                 |        |                |        |        |        |       | 8 <b>38.</b> 60 | 8 <b>86.</b> 36 |               |             |
|      | 5R-FN-45-6                 |        |                |        |        |        |       | 362.93          | <b>369.</b> 61  |               |             |
|      | 5R-7#-06-6                 |        |                |        |        |        |       | 331.30          | 319.21          |               |             |
|      | BR-FM-67-6                 |        |                |        |        |        |       | 87 <b>8.</b> 01 | 966. US         |               |             |
|      | 58-4M-08-6                 | 721.   | 0 27.3         | 29.74  | 1.403  | 1.133  | 1.271 | 916.33          | 303.32          |               |             |

#### EXPLANATION OF AIR DATA CALCULATIONS

The concentration of heavy metals in the air samples is calculated by first subtracting the concentration of a specific heavy metal in the daily field blank from the concentration of the same heavy metal in a sample. For example, the concentration of Lead in CSXCR412 is 840 ug/filter. The concentration of lead in the daily field blank is 1.1 ug/filter. The field blank concentration is subtracted from the sample concentration for a value of 838.9 ug/filter.

This value is then divided by the standard volume of ambient air (Stdv) that flowed through the sample (1046.52 cubic meters/filter for CSXCR412). The final calculated concentration of lead for the sample is .802 ug/cubic meter. All of the sample concentrations have been rounded to the third decimal place.

The concentration of heavy metals in the daily field blanks was usually below the sample quantitation limit (SQL). The SQL is is designated in the analytical data by a U code, and the associated value is the quantitation limit. When this was the case, half of the sample quantitation limit was assigned as the daily field blank concentration.

## BIS RIVER MINE TAILINGS. PRINS FMOOSIGNER TRELE 1: ORIGINAL DATA (US/FILTER)

| DRY # 1                                | (BLSPOK)             |                      |                      |                       |                       |                      |                      |                       |
|----------------------------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|----------------------|----------------------|-----------------------|
| 7 <i>123/1</i> 90                      | er-rm-ce<br>Centrage | BR-AM-01<br>CSXCR400 | 58-84-02<br>CSXCR402 | 5/R-RM-03<br>CSXCR403 | SR-FIN-04<br>CSXCR404 | 58-84-05<br>CSXCR405 | BR-89-06<br>CSXCR406 | ER-644-07<br>CSXER407 |
| lumanum                                | 20.00                | 73.00                | 90.00                | 83.00                 | 340,00                | *****                | 150.00               | 67,00                 |
| int i mony                             | 5.00                 | 12.00                | 12.00                | 12.00                 | 12.00                 | *****                | 12.00                | 12.00                 |
| r <b>se</b> me                         | 1.00                 | 2,00                 | 2.00                 | 2.00                  | 3.50                  | 50000                | 2.00                 | 2.00                  |
| ari w                                  | 20.00                | 40,00                | 40.00                | 40,00                 | 7.90                  | 11111                | 40,00                | 40,00                 |
| eryiliza                               | <b>0.50</b>          | 1.00                 | 1.00                 | 1.00                  | 1.00                  | ####                 |                      | 1.00                  |
| cron                                   | ******               | *****                | 50000                | *****                 | *****                 | *****                | 1100                 | 19900                 |
| ades un                                | <b>0.50</b>          | 1.00                 | 1.00                 | 1.00                  | 6, 10                 | *****                |                      | 1.00                  |
| alcim .                                | 500.00               | 1000.00              | 1300.00              | 1000.00               | 15000,00              | *****                |                      | 1000.00               |
| iron: um                               | 1.00                 | 2.00                 | 2.00                 | 2.10                  | 1.80                  | *****                |                      | 2,50                  |
| zbalt                                  | 5.00                 | 10.00                | 10.00                | 10.00                 | 10.00                 | *****                | 10.00                | 10,00                 |
| :::::::::::::::::::::::::::::::::::::: | 2.50                 | 97.00                | 66.00                | 81.00                 | 44.00                 | #####·               |                      | 140.00                |
| ron                                    | 22.00                | 140.00               | 170.00               | 120.00                | 2500.00               | \$2000               | 258.00               | 120.00                |
| .ead                                   | 0.50                 | 7.80                 | 19.00                | 14.00                 | 520,00                | 11000                |                      | 8.00                  |
| lagras i un                            | 500.00               | 1000,00              | 1000,00              | 1000,00               | 7800.00               | ****                 | 1000.00              | 1000.00               |
| anganesa                               | 1.50                 | 9.30                 | 11.00                | 6.70                  | 320.00                | *****                |                      | 7,00                  |
| STEWY                                  | 10000                | *****                | *****                | 59994                 | #####                 | 10000                | 135.00               | *****                 |
| olyburnum                              | *****                | *****                | *****                | 55555                 | 99999                 | +++++                |                      |                       |
| tickel                                 | 5.00                 | 10.00                | 10.00                | 10.00                 | 10.00                 | 50000                |                      |                       |
| otassium                               | 500.00               | 1000,00              | 1000,00              | 1000,00               | 1000.00               | 10000                |                      | 10.00                 |
| alansus                                | 0.50                 | 1.20                 | 1.60                 | 1.50                  | 1.00                  | 19999                | 1000.00              | 1000.00               |
| ilicon                                 | ****                 | ****                 | ****                 | 99999                 | 11.00                 | 10000                |                      | 1.00                  |
| ilver                                  | 1.00                 | 2.00                 | 2.00                 | 2.00                  | 2.00                  | *****                | -                    |                       |
| odium                                  | 500.00               | 1000,00              | 1000,00              | 1000,00               | 1000.00               | 10000                | 2.00<br>1000.00      | 2.00<br>1000.00       |
| hallim                                 | 1.00                 | 2.00                 | 2.00                 | 2.00                  | 2.00                  | 10001                |                      |                       |
| anadi w                                | 5.00                 | 10.00                | 10.00                | 10,00                 | 10.00                 | 11000                | 2.00<br>10.00        | 2.00<br>افرون         |
| ine                                    | 2.00                 | 15.00                | 20.00                | 12.00                 | 2 <b>40.</b> 00       |                      |                      |                       |
|                                        | 2,00                 |                      | 25.30                | 15.00                 | 210.00                | *****                | 44.00                | 15.00                 |
| ILM. /FILTER                           | •                    | <b>354.</b> 37       | 944.76               | 8 <b>96.</b> 53       | 913.26                | 0.00                 | 0.00                 | 900.29                |

/015 BIG RIVER WINE TAILINGS. PANN FMOOSIGHB
TABLE 2: CONCENTRATION IN AIR (UG/CU.N)

| DAY \$ 1<br>7/23/90 | (Blank)<br>Br-an-ob<br>Csycraob | 78 <del>-64-</del> 01<br>CSXCR400 | BR-FFF-02<br>CSXCR402 | BR-RM-63<br>CSXCR463 | BR-RM-04<br>CSXCR404 | BR-AM-U5<br>ESXERAUS | Br-rm-06<br>CSZCR406 | 58-784-07<br>CSXCR407 |
|---------------------|---------------------------------|-----------------------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|
| Aluminum            | <b>\$</b> -                     | 0.062                             | 0.074                 | 0.070                | 0.350                | ERR                  | EROR                 | 0.051                 |
| Antimony            | <b>.</b> -                      | 0.006                             | 0.006                 | 0.007                | 0.007                | ERM                  | ERR .                | 0.006                 |
| Arsumc              | •                               | 0.001                             | 0.001                 | 0.001                | 0.003                | ERR                  | ERR                  | 0.001                 |
| Bari un             | •                               | 0.021                             | 0,021                 | 0.022                | -0.013               | ERR                  | ERR                  | 0.021                 |
| Buryllius           | •                               | 0.001                             | 0.001                 | 0.001                | 0.001                | ERR                  | ERR                  | 0.001                 |
| Boron               | •                               | 0.000                             | 0.000                 | 0.000                | 0.000                | ERR                  | ERR                  | 0.000                 |
| Cacterium           | <b>.</b> •                      | 0.001                             | 0,001                 | 0.001                | 0.006                | ERR                  | ERR                  | 0.001                 |
| Calcius             | •                               | 0.524                             | 0.847                 | 0.526                | 15.877               | ERR                  | ERR                  | 0.537                 |
| Chromaum            | •                               | 0.001                             | 0.001                 | 0.001                | 0.001                | ERR                  | ERR                  | 0.001                 |
| Cobalt              | •                               | 0.005                             | U. 005                | 0.006                | 0.005                | EROR                 | ERR                  | 0.005                 |
| Copper              | •                               | 0 <b>. 099</b>                    | 0.067                 | 0.087                | 0.045                | ERR                  | ERR                  | 0.148                 |
| lr <del>on</del>    | •                               | 0.124                             | 0. 157                | 0.103                | 2.823                | ERR                  | ERR                  | 0.105                 |
| Lead                | •                               | 0.008                             | 0.020                 | 0.015                | 0.569                | ERR                  | · ERR                | 0.008                 |
| Magnesium           | •                               | 0.524                             | 0.529                 | 0.556                | 7.993                | ERR                  | ERR                  | 0.537                 |
| Mangazese           | •                               | 0.006                             | 0.010                 | 0.006                | 0.349                | ERR                  | ERR                  | 0.006                 |
| Hereury             | •                               | 0.000                             | 0.000                 | 0.000                | 0.000                | ERR                  | ERR                  | 0.000                 |
| Holyboanus          | •                               | 0.000                             | 0.000                 | 0.000                | 0.000                | ERR                  | ERR                  | 0.000                 |
| Mickel              | <b>6</b> -                      | 0.005                             | 0.005                 | 0.006                | 0.005                | ERR                  | ERR                  | 0.005                 |
| Potassium           | <b>.</b>                        | 0.524                             | 0.523                 | 0.526                | 0.547                | ERR                  | ERR                  | 0.537                 |
| Selemine            | <b>g</b> -                      | 0.001                             | 0.001                 | 0,001                | 0.001                | ERR                  | ERR                  | 0.001                 |
| 9ilicon             | <b>#</b> •                      | 0,000                             | 0,000                 | 0.000                | 0.000                |                      |                      | 0.000                 |
| Silver              | <b>g</b> -                      | 0.001                             | 0.001                 | 0.001                | 0.000                | ERR                  | ERR                  |                       |
| Sedium              | •                               | 0.524                             | 0.529                 | 0.536                | -                    | ERR                  | ERR                  | 0.001                 |
| Thallium            | •                               | 0.001                             | 0.001                 | 0.001                | 0.547                | ERR                  | ERR                  | 0.537                 |
| Vanadius            | •                               | ú.005                             | 0.005                 | 0.002                | 0.001                | ERR                  | EXR                  | 0.001                 |
| line                | •                               | 0.014                             | 0.019                 | 0.011                | 0.005<br>0.261       | ERR<br>ERR           | err<br>err           | 0.005<br>0.015        |

TABLE 1: CRIBINAL DATA (UB/FILTER)

Zine

| DAT # 2    | (SCARK)      |          |                        |                   |                        |                    |                       |          |
|------------|--------------|----------|------------------------|-------------------|------------------------|--------------------|-----------------------|----------|
| 7/24/90    | BR-RH-08-2   | BR-84-01 | 5 <del>8-101-</del> 62 | BR- <b>FM-</b> 03 | 87 <del>-181-</del> 04 | 6R- <b>704-</b> 05 | 59 <del>-84-</del> 05 | 5R-AN-07 |
|            | CSXCR416     | CSXCR409 | CSXCR410               | CSXCR411          | CSTCR412               | CSXCR413           | CSXCR414              | CSXCR415 |
| Alumirum   | 20.00        | 40,00    | 140.00                 | 160.00            | 580.00                 | 140.00             | 120.00                | 58.00    |
| Hrit imony | 5.00         | 12.00    | 12.00                  | 12.00             | 12.00                  | 12.00              | 12.00                 | 12.00    |
| Hrsamc     | 1.00         | 2.00     | 2.00                   | 2.00              | 2.00                   | 2.00               | 2.00                  | 2.00     |
| Barrus     | 20.00        | 40.00    | 10.00                  | 40.00             | 40.00                  | 12.00              | 3.20                  | 40.00    |
| Beryllium  | 0 <b>.50</b> | 1.00     | 1.00                   | 1.00              | 1.00                   | 1.00               | 1.00                  | 1.00     |
| Boron      | *****        | - 19994  | *****                  | 19901             | - <del>11111</del>     | 10000              | *****                 | 10000    |
| Cadenium   | 0.50         | 1.10     | 1.00                   | 1.10              | 8.50                   | 1.40               | 1.50                  | 1.00     |
| Calcius    | 500,00       | 1500.00  | 2200.00                | 2300.00           | 24000.00               | 1200,00            | 1000.00               | 1000,00  |
|            |              | 2.00     | 2 66                   | 2 66              | > 40                   | 2 44               | 2 66                  | 2 00     |

2.00 Chromium 1.00 2.00 2,00 2.00 2.40 2.00 2.00 5.00 10,00 10.00 6.50 10,00 10.00 10,00 10.00 Cobelt 2.50 110.00 120,00 83.00 67.00 120,00 100.00 190,00 Copper 10,00 230.00 320.00 430.00 4300.00 310.00 190.00 136,00 Iron 47.00 57.00 32.00 56.00 28,00 21.00 Lead 1.10 840,00 500.00 1300.00 3100.00 1300.00 12000.00 1000.00 250.00 1000,00 Hagran 2 un 23,00 33.00 16.00 530,00 17.00 11.00 . 1.50 5.60 Harmarasa \*\*\*\* \*\*\*\*\* -\*\*\*\* .... \*\*\*\* \*\*\*\*\* \*\*\*\*\* METCULY \*\*\*\*\* ---\*\*\*\* \*\*\*\* \*\*\*\* \*\*\*\* MOLYDORNIE 5.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 **Nickel** 1000.00 1000.00 1000.00 1000.00 1000,00 190.00 1000.00 500,00 Potassium 1.20 1.00 0.50 1.50 1.40 1.70 1.20 1.20 Selemus \*\*\*\*\* ----19944 -\*\*\*\* 1101# 11111 \*\*\*\*\* Silicon 2.00 200 2.00 Silver 1.00 2.00 2.00 2.00 2.00 1000,00 1000.00 1000.00 230.00 1000.00 250.00 1000.00 500,00 Sodium 2.00 2.00 2.00 2,00 2.00 2.00 1.00 200 Thallium 5.00 10.00 10.00 10,00 2.10 10.00 10,00 10,00 Vaneorum 2,00 27.00 30.00 36. W 400.00 63.00 22.00 24.00

1008.02 378.27 CU. N. /FILTE 1022.41 1045.52 1056.73 1013.56 1000, 52

U. 005

0.022

Zirc

#### SIB RIVER NINE TAILINGS. FAND FYDOGISHS TABLE 2: CONCENTRATION IN AIR (UB/CU.N)

0.024

0.028

0.005

0.380

0.008

0.020

DAY # 2 (BLANK) 7/24/90 ER-FIN-OBIB ER-FIN-OL ER-FIN-OL ER-FIN-OL ER-FIN-OL ER-FIN-OL ER-FIN-OL CENTRALE CENTRALE CENTRALE CENTRALE CENTRALE CENTRALE Alumn 0.020 0.119 0.143 0.535 0.113 U. 099 0.038 0.005 0.006 0.006 HITE 2 MOTHY 0.006 0.006 0.005 0.005 Arsemic 0.001 0.001 0.001 0.001 0.001 U. 001 0.001 Barrun 0.020 U. 020 0.020 0.019 -U. 008 -U.017 0.020 Beryllium 0.000 4.000 0.001 0.000 U. 000 0.000 0.000 0,000 0.000 0.000 Boron ERR 0.000 0.000 0.000 Caderion 0.001 U. 000 0.001 0.008 0.001 0,001 0.000 Calcius 0. 978 1.686 1.840 22.455 0.861 0.433 0.500 Chroman 0.001 0.001 0.001 0.001 0.001 0.001 0.001 Cobelt 0.005 0.005 0.005 0.001 0.005 0.005 0.005 Copper 0.165 a 117 U. 082 CL 062 0.111 0.096 U. 187 Iron 0.215 0.308 U. 429 4.093 0.283 0.178 0.120 Lead 0.030 0.046 U. UST V. 802 0.054 0.027 0.020 Magnesius 1.353 2.579 1.431 10.989 0.472 -U. 237 0.500 Manganese 0.014 4.021 0.032 V. 305 0.015 U. 009 0.005 0.000 Hercury 0.000 0.000 U. 000 0.000 0.000 0.000 Molybdenum U. 000 0.000 0.000 ERR 0.000 0.000 U. 000 Nickel 0.005 0.005 0.005 0.005 0.005 0.005 0.005 Potassium 0. 489 **0.496** 0.511 **U. 478** 0.472 ₩, 306 0.500 Selem us 0.001 0.001 0.001 **(L,000**) 0.001 0.001 0.001 Silicon 0.000 U. 000 0.000 ERR 0.000 0.000 0.000 Silver 0.001 0.001 0.001 0.001 0.001 0.001 0.001 Sodium 0.489 0.496 0.511 -0. £56 0.472 -0.247 U. 300 Thallium 0.001 0.001 0.001 0.001 0.001 0.001 0.001 Variatiz um 0.005 0.005 0.005 **-0.003** 0.005 0.005

#### BIG RIVER MINE TAILINGS. SAME PROOFIENDA TABLE 1: ORIGINAL DATA (UB/FILTER)

| DAY # 3          | (BLANK)              |          |                   |                        |                       |          |                   |                        |
|------------------|----------------------|----------|-------------------|------------------------|-----------------------|----------|-------------------|------------------------|
| 7/25/30          | 3R <del>-84-08</del> | BR-RM-UL | 58 <b>-84</b> -02 | 5R- <del>fri</del> -03 | 68- <del>88-</del> 88 | BR-AN-US | 58- <b>64-</b> 06 | 5R <del>-124-</del> 07 |
|                  | CSXCR424             | CSXCR417 | CSXCR416          | CSXCR419               | CSXCR420              | CSXCR421 | CSXCR422          | CSTCR423               |
| Aluminum         | 20.00                | 200.00   | 230.00            | 220.00                 | 330,00                | 150.00   | 130.00            | 110.00                 |
| Antizony         | 5.00                 | 12.00    | 12.00             | 12,00                  | 12,00                 | 12.00    | 12.00             | 12.00                  |
| Arsense          | 1.00                 | 2.00     | 2.00              | 2.00                   | 6.00                  | 2,00     | 2.00              | 2.00                   |
| Barrum           | 20.00                | 40.00    | 40.00             | 40.00                  | 40.00                 | 40.00    | 40,00             | 40.00                  |
| Beryilium        | U. 50                | 1.00     | 1.00              | 1.00                   | 1.00                  | 1.00     | 1.00              | 1.00                   |
| Baron            | ****                 | *****    | - 10000           | *****                  | *****                 | *****    | *****             | *****                  |
| Cadesum          | 0.50                 | 1.50     | 1.70              | 3.00                   | 12.00                 | 1.00     | 1.00              | 1.00                   |
| Calcium          | 500.00               | 1200,00  | 1400,00           | 1900,00                | 37000,00              | 1500.00  | 1100.00           | 1000.00                |
| Chromius         | 1.00                 | 2.00     | 2.00              | 2, 10                  | 2,90                  | 2.00     | 2.00              | 2.00                   |
| Cobalt           | 5.00                 | 10.00    | 10.00             | 10.00                  | 10.00                 | 10.00    | 10.00             | 10,00                  |
| Copper           | 2.50                 | 270.00   | 110.00            | 49.00                  | 91.00                 | 110.00   | 75.00             | 220.00                 |
| 1r <del>on</del> | 10.00                | 330,00   | 370.00            | 450.00                 | 5800.00               | 360.00   | 310.00            | 180.00                 |
| Lead             | 2.70                 | 14,00    | 25.00             | 46.00                  | 1400.00               | 130,00   | 23.00             | 8.60                   |
| Magnes 202       | 500,00               | 1000.00  | 1000.00           | 1400.00                | 18000,00              | 1000.00  | 1000.00           | 1000.00                |
| Hancaresa        | 1.50                 | 22,00    | 25.00             | 30.00                  | 790.00                | 24.00    | 18.00             | 10.00                  |
| Mercury          | 11111                | 10000    | *****             | 14404                  | *****                 | 15555    | *****             | ****                   |
| Molybdernum      | ****                 | 10000    | 55555             | 10000                  | 10000                 | *****    |                   |                        |
| Nickel           | 5.00                 | 10.00    | 10.00             | 10.00                  | 10.00                 | 10.00    | 10.00             | 10.00                  |
| Potassium        | 500.00               | 1000.00  | 1000.00           | 1000,00                | 1000,00               | 1000,00  | 1000.00           | 1000,00                |
| Selemus          | 0.50                 | 1.90     | 2,20              | 2.50                   | 3.50                  | 2.00     | 2.10              | 2.00                   |
| Silicon          | ****                 | +++++    | ******            | *****                  | *****                 | *****    | *****             | 10001                  |
| Silver           | 1.00                 | 2,00     | 2.00              | 2.00                   | 2.00                  | 2.00     | 2.00              | 2.00                   |
| Sodium           | 500.00               | 1000.00  | 1000.00           | 1000.00                | 1000.00               | 1000.00  | 1000.00           | 1000.00                |
| Thallium         | 1.00                 | 2.00     | 2.00              | 2.00                   | 2.00                  | 2.00     | 2.00              | 2,00                   |
| Varnacium        | 5.00                 | 3, 10    | 10.00             | 10.00                  | 10.00                 | 10,00    | 10.00             | 10.00                  |
| line             | 2.00                 | 28.00    | 27.00             | 37.00                  | 5 <b>50.</b> 00       | 337.00   | 22.00             | 38.00                  |
| CULW./FILT       | £ #                  | 1004, 51 | 1016.03           | <b>782.</b> 32         | 0.00                  | 1003, 53 | 1006.48           | 1040. 47               |

| DBM # 2        | (SLANK)     |               |                        |                 |          |          |           |                       |
|----------------|-------------|---------------|------------------------|-----------------|----------|----------|-----------|-----------------------|
| 7/25/90        | br-fm-c8    | BR-RM-01      | 58- <del>101</del> -02 | 5R-FM-03        | 3R-RH-04 | BR-RH-(5 | 5R-AH-05  | 5 <del>8-84-</del> 67 |
|                | CSICR424    | CSXCR417      | CSXCR418               | CSECR419        | CSICR420 | CSXCR421 | CSIICR422 | CSARTIKED             |
| Alumninum      | \$ -        | 0, 173        | 0.207                  | 0,204           | ERR      | 0, 130   | 0, 169    | 0.086                 |
| Antimony       | ₽.          | 0.006         | 0.006                  | Ú. <b>COS</b>   | ERR      | 0.006    | 0,006     | 0.006                 |
| <b>Premi</b> c | <b>+</b> -  | 0.001         | 0.001                  | 0.001           | ERR      | 0.001    | 0.001     | 0.001                 |
| Barius         | •           | 0.020         | 0.020                  | 0.020           | ERR      | 0.020    | 0.020     | 0.019                 |
| Beryllium      | •           | U. 000        | 0.000                  | 0.001           | ERR      | 0.000    | 0.000     | U. 000                |
| Boron          | •           | 0.000         | 0 <b>. 000</b>         | 0.000           | ERR      | 0.000    | 0.000     | 0.000                 |
| Caderum        | •           | 0.001         | 0.001                  | 0.003           | ERR      | 0.000    | 0.000     | 0.000                 |
| Calcium        | f           | 0.697         | 0.886                  | 1.425           | ERR      | 1.096    | 0.596     | 0.481                 |
| Chromium       | •           | 0.001         | 0.001                  | 0.001           | ERR      | 0.001    | 0.001     | 0.001                 |
| Cobelt         | •           | 0.005         | ú <b>. 005</b>         | 0.005           | ERR      | 0.005    | 0.005     | 0.005                 |
| Copper         | • -         | 0.256         | 0.106                  | 0.047           | ERR      | 0.107    | 0.073     | 0.209                 |
| iron           | <b>4</b> -  | 0.319         | 0.354                  | 0.448           | ERR      | 0.349    | 0.238     | 0.163                 |
| Lead           | <b>+-</b>   | 0.011         | 0.023                  | 0.044           | ERR      | 0.127    | 0.020     | 0.006                 |
| Nagres 1 uz    | • -         | 0.498         | 0.492                  | 0.916           | ERR      | 0.498    | 0.497     | 0.481                 |
| Hangarasa      | #           | 0,020         | 0.023                  | 0.029           | ERR      | 0.022    | 0.016     | 0.006                 |
| Hercury        | <b>#-</b> - | 0.000         | 0.000                  | 0.000           | ERR      | 0.000    | 0.000     | 0.000                 |
| Notybdenus     | #-          | 0.000         | 0.000                  | 0.000           | ERR      | 0.000    | 0.000     | 0.000                 |
| Nickel         | •           | 0.005         | U. 005                 | 0.005           | ERR      | 0.005    | 0.005     | 0.005                 |
| Potassium      | <b>#</b> -  | 0.498         | 0.492                  | 0.509           | ERR      | 0, 498   | 0. 497    | 0.481                 |
| Selemus        | •           | 0.001         | 0. <b>00</b> 2         | ٥ <b>. ۵۵</b> ۵ | ERR      | 0.001    | 0.002     | 0.001                 |
| Silicon        | •           | 0 <b>.000</b> | 0.000                  | 0.000           | ERR      | 0.000    | 0.000     | 0 <b>. 000</b>        |
| Silver         | •           | 0.001         | 0.001                  | 0.001           | ERR      | Ú. 001   | 0.001     | 0.001                 |
| Sodium         | •           | <b>0.498</b>  | 0.492                  | 0.509           | ERR      | 0.438    | 0. 497    | 0.481                 |
| Thallium       | •           | 0.001         | 0.001                  | 0.001           | ERR      | 0.001    | 0.001     | 0.001                 |
| Vanadzum       | •           | <b>-0.002</b> | 0.005                  | 0.005           | ERR      | 0.005    | 0.005     | 0.005                 |
| Zinc           | •           | 0.025         | 0. <b>0</b> 25         | 0.006           | ERR      | 0.031    | 0.020     | 0.033                 |
|                |             |               |                        |                 |          |          |           | 4. 422                |

### 7015 BIB RIVER WINE TRILINGS, PANN FWOOGISHS TRELE 1: ORISINGL DATA (UG/FILTER)

| DRY # 4     | (BLEWK)              |                       |                      | •              |                      |                      |                       |                                   |
|-------------|----------------------|-----------------------|----------------------|----------------|----------------------|----------------------|-----------------------|-----------------------------------|
| 7/26/90     | BR-AM-08<br>CSXCRA32 | <b>5</b> , <b>5 5</b> | er-pa-de<br>Ceneraes |                | er-rm-ca<br>Cexerabb | er-rm-co<br>Csecraes | er-fin-06<br>Ceneraco | er <del>-on-</del> ct<br>CSICR431 |
| Aluminum    | 6.90                 | 130.00                | 140,00               | 160.00         | 610.00               | 150.00               | 150.00                | 110.00                            |
| fint i mony | 5.00                 | 12.00                 | 12.00                | 12.00          | 12.00                | 12.00                | 12.00                 | 12.00                             |
| Arsento     | 1.00                 | 2.00                  | 2.00                 | 2.00           | 2.00                 | 2.00                 | 2.00                  | 2.00                              |
| Sarius      | 20.00                | 40.00                 | 10.00                | 40.00          | 40.00                | 40.00                | 40.00                 | 40.00                             |
| Beryllium   | 0.50                 | 1.00                  | 1.00                 | 1.00           | 1.00                 | 1.00                 | 1.00                  | 1.00                              |
| Boron       | \$500H               | 9- 9-9-9-P            | - 10000              | *****          | 11111                | - 19999              | *****                 | 11111                             |
| Caderium    | 0.50                 | 1.20                  | 1.40                 | 1.30           | 3.20                 | 1.00                 | 1.40                  | 1.00                              |
| Calcium     | 500.00               | 1500.00               | 1400,00              | 2500.00        | 28000.00             | 1100.00              | 1000.00               | 1000.00                           |
| Chromson    | 1.00                 | 2.00                  | 2.00                 | 2.00           | 3, 10                | 2.00                 | 2,00                  | 2.00                              |
| Cobalt      | 5.00                 | 10.00                 | 10.00                | 10.00          | 10,00                | 10.00                | 10.00                 | 10.00                             |
| Copper      | 2.50                 | 300.00                | 88.00                | 63.00          | 66.00                | 100.00               | 38.00                 | 250.00                            |
| Iron        | 11.00                | 340.00                | 3 <b>30.</b> 00      | 560.00         | 4800,00              | 400.00               | 250.00                | 210.00                            |
| Lead        | 0.50                 | 38.00                 | 70.00                | 73.00          | 1100.00              | 110.00               | 38.00                 | 14.00                             |
| Hagres 102  | 500. W               | 2300.00               | 2000.00              | 1300.00        | 14000,00             | 1000.00              | 1000.00               | 1000.00                           |
| Hampanese   | 1.50                 | 28,00                 | 26.00                | 53.00          | 570.00               | 25.00                | 14.00                 | 10.00                             |
| Hercury     | 1000                 | 4 - 15966             | - 10000              | 19000          | *****                | - ####               | - 55550               | *****                             |
| Molybdanua  | ****                 | + +++++               | *****                | *****          | *****                | ******               | 90001                 | 19880                             |
| Mickel      | 5.00                 | 10.00                 | 10.00                | 10.00          | 10.00                | 10.00                | 10.00                 | 10.00                             |
| Potassium   | 500.00               | 1000.00               | 1000.00              | 1000.00        | 1000.00              | 1000.00              | 1000.00               | 1000.00                           |
| Selemus     | 0.50                 | 2.40                  | 1,90                 | 2.80           | 1.00                 | 2.50                 | 2.30                  | 1.60                              |
| Silicon     | ++++                 | + 11111               | 19844                | *****          | *****                | *****                | #####                 | *****                             |
| Silver      | 1.00                 | 2.00                  | 2.00                 | 2.00           | 2.00                 | 2.00                 | 2.00                  | 2.00                              |
| Sodium      | 500.00               | 1000.00               | 1000,00              | 1000.00        | 1000.00              | 1000,00              | 1000.00               | 1000.00                           |
| Thallium    | 1.00                 | 2.00                  | <b>2.00</b>          | 2.00           | 2.00                 | 200                  | 2.00                  | 2.00                              |
| Vanetium    | 5.00                 | 10.00                 | 10.00                | 10.00          | 10.00                | 10.00                | 10.00                 | 10.00                             |
| line        | 2.00                 | 55.00                 | 50.00                | 53.00          | 480.00               | <b>55.00</b>         | 27.00                 | 23.00                             |
| CLN. /FILT  | E +                  | 1081.84               | 1019.37              | <b>757.0</b> 3 | 1010, 24             | 1096.41              | 1047.58               | 1003, 32                          |

0.027

#### STE RIVER NINE TAILINGS. PANS PHOOSISHS TABLE 2: CONCENTRATION IN AIR (UG/CULN)

| DAY # 4          | (SELSON)           |                        |                    |          |               |           |                 |                        |
|------------------|--------------------|------------------------|--------------------|----------|---------------|-----------|-----------------|------------------------|
| 7 <b>/25/9</b> 0 | 58 <b>-191</b> -08 | 5 <del>7-701-</del> 01 | 58- <b>181</b> -02 | BR-PM-03 | BR-F84-04     | BR-FM-05  | 5R-194-06       | 53 <del>-411-</del> 67 |
|                  | CSXCR432           | CSYDRAKS               | CSTCR426           | CSXCR427 | CSXCR428      | CSXCR429  | CSXCRAGO        | CSXCR431               |
| אטת נשט Al       | •                  | 0.114                  | 0, 131             | 0. 160   | 0.597         | 0, 133    | 0, 146          | 0, 103                 |
| Parit i morny    | f                  | 0.005                  | 0,006              | 0.006    | 0.006         | 0.005     | 0.006           | 0,006                  |
| Arsensc          | •                  | 0.001                  | 0.001              | 0.001    | 0.001         | 0.001     | 0.001           | U, 001                 |
| Sara we          | •                  | 0,018                  | 0.020              | 0.021    | 0.020         | 0,018     | 0.019           | 0.020                  |
| Bervilium        | <b>#</b> ~         | 0.000                  | <b>0.000</b>       | U. 001   | Ø. <b>000</b> | 0.000     | U, 000          | 0.000                  |
| ชับทบก           | •                  | 0.000                  | 0.000              | 0.000    | 0.000         | 0,000     | 0.000           | 0.000                  |
| Cacina           | <b>.</b> -         | 0,001                  | 0.001              | 0.001    | 0.009         | 0.000     | 100.0           | U. 000                 |
| Calcium          | <b>#</b> -         | 0.924                  | 0.883              | 2.090    | 27.221        | 0.546     | U. 477          | 0.498                  |
| Chromaum         | •                  | 0.001                  | 0,001              | 0.001    | 0.002         | 0.001     | 0.001           | U. 001                 |
| Cobalt           | •                  | 0 <b>. 005</b>         | 0,005              | 0.005    | 0.005         | 0.005     | 0.005           | 0.005                  |
| Cooper           | •                  | 0.275                  |                    | 0.063    | 0.063         | U. 089    | 0. <b>09</b> 1  | 0.256                  |
| 1 <del>ron</del> | f                  | 0.304                  | 0.313              | 0.574    | 4.740         | 0.354     | 0.223           | 0. 138                 |
| _89C             | •                  | 0.053                  | 0.068              | 0.082    | 1.068         | 0.100     | ઇ. ઇઉઠ          | 0.013                  |
| #aur:e51122      | •                  | 1.564                  | 1.471              | 0.835    | 13.383        | 0. 455    | 0.477           |                        |
| Hancarese        | •                  | 0.024                  | 0.024              | 0.654    | 0.363         | હે. ઇસ્ટા |                 | 0.498                  |
| Mercury          | f                  | 0.000                  | 0,000              | 0.000    | 0.000         | 0.000     | 0.012           | 0.008                  |
| Molyboarrom      |                    | 0.000                  | Ú. 000             | 0.000    | 0 <b>.000</b> |           | 0.000           | 0.000                  |
| Nickel           | *                  | 0.005                  | 0.00E              | 0.005    | 0 <b>.005</b> | 0.000     | 0,000           | 0 <b>.000</b>          |
| Potassium        | •                  | 0.462                  | 0.450              | 0.522    |               | 0.005     | 0.005           | 0.005                  |
| Sejenow          | •                  | 0.002                  | 0.001              |          | 0.495         | 0.453     | <b>0.477</b>    | 0.498                  |
| Silicon          | *                  | 0.000                  | J. 000             | 0.002    | Ú. 000        | 0.002     | 0.002           | 0.001                  |
| Silver           | ,                  | 0.000                  |                    | 0.000    | 0.000         | 0.000     | 0.000           | 0.000                  |
| Social           | •                  |                        | 0.001              | 0.001    | 0.001         | 0.001     | 0.001           | 0.001                  |
|                  | _                  | 0.462                  | 0. <b>49</b> 0     | 0.522    | 0.495         | 0.455     | 0.477           | 0.456                  |
| Thallium         | •                  | 0.001                  | 0.001              | 0.001    | 0.001         | 0.001     | 0.001           | 0.001                  |
| Variant un       | •                  | 0.005                  | 0.005              | 0.005    | 0.005         | 0.005     | . 0 <b>.005</b> | 0.005                  |
| line             | # -                | 0.150                  | 0 <b>. 047</b>     | 0.053    | U 473         | 0.043     | 0.024           | 0.027                  |

318 RIVER MINE TAILINGS. SAME F\*30516MS
TABLE 1: CRIBINAL DATA RESPECTED

DAY # 5 (BLANK)

| DHYES                   | (SCHOOL)       |                         |                  |                       |                  |                       |                |                       |
|-------------------------|----------------|-------------------------|------------------|-----------------------|------------------|-----------------------|----------------|-----------------------|
| 7 <i>12<b>713</b></i> 0 | 37-04-08       | 5.7 <del>-7.4-0</del> 1 | BR-174-02        | BR <del>-RH-</del> 03 | 49-44-RE         | 5 <del>7-44-</del> 05 | 39-PH-06       | 57 <del>-44-</del> 07 |
|                         | CEXCR440       | CSXCR433                | CSXCR434         | esadrase              | CEXCRAGE         | CSXCR437              | CSXCR438       | CSXCR439              |
| 2) uz 17000             | 20.00          | 7 <b>50.</b> 00         | 840.00           | 1000,00               | 330. CO          | 6 <b>80.</b> 60       | 720.00         | 740,00                |
| Aris 12000y             | 6.00           | 12.00                   | 12,00            | 12.00                 | 12.00            | 12.00                 | 12.00          | 12.00                 |
| Arsemic                 | :.00           | 2.00                    | 2.00             | 2.70                  | 2. <i>0</i> 0    | 2.00                  | 2.00           | 2.00                  |
| Barr un                 | 20.00          | 40.00                   | 40.00            | 40.00                 | 40.00            | 40.00                 | 40.00          | 40.00                 |
| SETVI IND               | 0 <b>.50</b>   | 1.00                    | 1.00             | 1.00                  | 1.00             | 1.00                  | 1.00           | 1.00                  |
| ווטיוטיו                | £2000          | *****                   | 11000            | *****                 | 18000            | 10000                 | *****          | 19999                 |
| Cacra va                | v. <b>3</b> 0  | 1.30                    | 1.00             | 4.70                  | 5.00             | 1.00                  | 1.00           | 1.00                  |
| Calcium                 | 500.00         | 3700.00                 | 3300.00          | 18000,00              | :3000.00         | 2500.00               | 1200.00        | 1000.00               |
| Chronsma                | 1.00           | 3.20                    | 2.80             | ۵,70                  | 2.10             | 2.40                  | 2.00           | 2.00                  |
| Cobait                  | 5.00           | 10.00                   | 10.00            | 10.00                 | 10.00            | 10.00                 | 10.00          | 10.60                 |
| Serber                  | 2.50           | 176.00                  | 140.00           | 130.00                | 40,00            | 110.00                | 8 <b>8.</b> 00 | 240,00                |
| lren -                  | 10.00          | <b>320.</b> 00          | 750. UU          | 3.90                  | 2500,00          | 350.00                | 320.00         | 760.00                |
| Lead                    | 0.76           | 28.00                   | 24.00            | 290.00                | 440,00           | 56.00                 | 24.00          | 17.00                 |
| Magres 1 va             | 500.00         | 3100.00                 | 3 <b>200,</b> 00 | 8 <b>300.</b> 00      | 3 <b>600,</b> 00 | 1100.00               | 440.00         | 1000.00               |
| Hampanese               | 1.50           | 36.00                   | 36.00            | 400,00                | 250,00           | 33.00                 | 23.00          | 13.00                 |
| PERCURY                 | \$666          | *****                   | 11111            | *****                 | 10000            | - 50001               | *****          | *****                 |
| Molytoanum              | 3500           | * *****                 | ··· 54449        | *****                 |                  | * *****               | *****          | - 10000               |
| Nickel                  | 5 <b>. 0</b> 0 | 10.00                   | 10.00            | 3.30                  | 10.00            | 10.00                 | 10.00          | 10,00                 |
| Potassium               | 500,00         | 1000.00                 | :000,00          | 540.00                | 1000,00          | 1000.00               | 1000.00        | 1000.00               |
| Selemus                 | 0.50           | 1.30                    | 3.00             | 3.40                  | 1.70             | 1.80                  | 1.30           | 1.10                  |
| Silicon                 | F994           | * *****                 | *****            | 10000                 | 10000            | 19001                 | <b>1000</b>    | *****                 |
| Silver                  | 1.00           | 2.00                    | 2.00             | 2.50                  | 2.00             | 2.00                  | 2.00           | 2.00                  |
| Scrive                  | 500.00         | 1000.00                 | :000.00          | 1000.00               | 1000.00          | 1000,00               | 1000.00        | :000.00               |
| Thallium                | 1.00           | 2.00                    | 2.00             | 2.00                  | 2.00             | 2.00                  | 2.00           | 2.00                  |
| שעומפהפע                | 3.00           | 36.00                   | 37.00            | 3 <b>8. 0</b> 0       | 10.00            | 10.00                 | 10.00          | 10.00                 |
| line                    | <u>د.</u> 30   | 42.00                   | 38.00            | 170.00                | 240.00           | 530.00                | 27.00          | 31.00                 |
| DLE./FILT               | <b>क</b> क     | 1 <b>006.</b> 53        | 2 <b>82.</b> 50  | <b>363.</b> 16        | 1024.47          | 1095, 45              | :041.63        | 1045.83               |

TRBLE 2: CONCENTRATION IN AIR (LG/CULN)

| DAY + 5      | (SC.FHR()             |                        |                       |                        |                |                    |                       |                   |
|--------------|-----------------------|------------------------|-----------------------|------------------------|----------------|--------------------|-----------------------|-------------------|
| 7/27/30      | 37 <del>-781-08</del> | er <del>-211</del> -01 | 50 <del>-ma-</del> 02 | 57 <del>-141-</del> 03 | BR-98-04       | 5 <b>7-774-</b> 05 | 67 <del>-84-</del> 06 | BR- <b>AM</b> -67 |
|              | CSICRAM               | CSXCR43G               | CSECRASA              | CSXCRASS               | CSICRASE       | CSXCR437           | ESXER438              | (SICRAS)          |
| Aluminum     | •                     | 0.735                  | 0 <b>. 63</b> 5       | 0.337                  | V. 866         | 0.802              | 0.672                 | <b>0.668</b>      |
| And I morry  | •                     | ů <b>. 006</b>         | 0 <b>.00</b> 6        | ن <b>. ۵۵۵</b>         | 0.006          | 0 <b>. 005</b>     | 0 <b>. 006</b>        | 0. <b>00</b> 5    |
| Arsenac      | •                     | 0.001                  | 0.001                 | 0. <b>102</b>          | 0,001          | 0.001              | 0 <b>. 0</b> 01       | 0 <b>. 00</b> 1   |
| Bara um      | •                     | 0.020                  | 0.020                 | ં <b>. ઇટ0</b>         | 0 <b>. 020</b> | 0.018              | 0.019                 | 0.013             |
| Seryilium    | •                     | 0.000                  | 0.001                 | 0.001                  | 0.000          | 0.000              | 0.000                 | 0.000             |
| Boron        | <b>#</b> -            | 0.000                  | 0.000                 | Ů. <b>000</b>          | 0 <b>. 000</b> | 0.000              | 0 <b>. 000</b>        | 0.000             |
| Caderius     | <b>*</b> -            | 0.001                  | 0.001                 | 0.004                  | 0.004          | 0.000              | 0.000                 | 0 <b>. 00</b> 0   |
| Calcius      | <b>6</b> ···          | 3, 179                 | 3, 350                | 17.800                 | 12,201         | 1.825              | 0.572                 | U. 478            |
| Chrom um     | <b>9</b> -            | 0,002                  | 0.002                 | 0,002                  | 0.001          | 0.001              | 0.001                 | O. 00             |
| Cobalt       | •                     | 0,005                  | U. <b>005</b>         | 0 <b>.005</b>          | 0 <b>, 005</b> | 0.005              | 0. <b>005</b>         | ù <b>. 00</b>     |
| Copper       | <b>+</b> -            | 0.166                  | 0.140                 | ٥ <b>. 130</b>         | 0.037          | 0.036              | 0.082                 | U. 22             |
| iron         | •                     | 0.904                  | 0.957                 | - <b>∪.00</b> 6        | 2,528          | 0.858              | 0.778                 | 0.71              |
| Lead         | •                     | 0.027                  | 0.024                 | U. 294                 | 0.429          | 0.050              | 0.022                 | Ø. <b>0</b> 1     |
| Flantes 2 VB | •                     | ۷. <b>583</b>          | 2.748                 | 8.544                  | 5, 954         | 0.548              | - <b>∀. (538</b>      | U. 47             |
| Haromese     | •                     | U. 634                 | 0. <b>03</b> 5        | 0. <b>405</b>          | 0.252          | U. 034             | 0.021                 | 0.01              |
| PARCULY      | •                     | 0,000                  | 0 <b>.000</b>         | 0.000                  | 0 <b>.000</b>  | 0.000              | 0 <b>.000</b>         | Ú <b>. 0</b> 0    |
| Molyocenum   | • ~                   | 0 <b>. 000</b>         | 0 <b>. 000</b>        | 0.000                  | 0.000          | 0.000              | 0.000                 | 0.00              |
| Nickel       | •                     | 0.005                  | 0.005                 | U. 004                 | 0 <b>.005</b>  | 0.005              | 0.005                 | 0.00              |
| Potassium    | •                     | 0.497                  | 0.509                 | 0.041                  | <b>0.488</b>   | 0.456              | U. 460                | 0.47              |
| Selemous     | ¥                     | 0.001                  | 0.003                 | ψ <b>. 003</b>         | 0.001          | 0.001              | 0.001                 | 0.00              |
| Silicon      | <b>#</b> ~            | U. 000                 | 0.000                 | 0.000                  | 0.000          | U. 000             | 0.000                 | 0.00              |
| Silver       | <b>f</b> -            | 0.001                  | 0.001                 | 0.001                  | 0.001          | 0.001              | 0.001                 | 0.0               |
| Sodium       | #~                    | 0.497                  | 0.509                 | 0.503                  | 0.468          | 0.456              | 0.480                 | 0.47              |
| Thallium     | # ~                   | 0.001                  | 0-001                 | 0.001                  | 0.001          | 0.001              | U. 001                | 0. D              |
| Variati 1 UE | •-                    | 0.031                  | 0.033                 | Ø. <b>03</b> 4         | 0.005          | 0.00               | 0.00                  | 0.0               |
| line         | #                     | 0.040                  | 0.037                 | 0.171                  | ં હ. ટક્ક      | 0.482              | 0.02                  | 0.0               |

DAY # 6 (MARJE) SR-FM-08 BR-FM-01 BR-FM-02 BR-FM-03 BR-FM-04 BR-FM-05 BR-FM-05 BR-FM-07 7/28/90 CSNER449 CSNER441 ESNER442 ESNER443 ESNER444 ESNER445 ESNER446 ESNER446 Alumetrum 20.00 670.00 760.00 720.00 780,00 300,00 780.00 820.00 Antimony 5.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 Arsenz C 1.00 2.00 2.00 2.00 2.10 200 200 2.40 40,00 Barrina 20.00 40.00 40.00 40.00 40.00 11.00 40.00 beryilium 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 \*\*\*\* Boron \*\*\*\*\* **F####** -------\*\*\*\* Cades on 0.50 1.00 1.00 1.00 1.00 1.00 1.00 7.30 Calcius 500.00 :500.00 :500,00 2200.00 3500.00 2300.00 1500,00 1500.00 Chrom ve 1.00 2.00 2.50 2.00 3.10 2.20 2.10 2.30 Cobalt 5.00 10.00 10,00 10.00 10.00 10.00 10,00 10.00 Cooper 2.50 250.00 36.00 81.00 43.00 86.00 54.00 140.00 17071 40.00 830.00 890, to 380,00 1200.00 1200.00 890,00 750. W Lead 1.40 29.00 15.00 24.00 170.00 59.00 34.00 76.00 Hagras 1 Um 500.00 1000.00 1000,00 1000,00 1500.00 1000,00 1000.00 1000,00 Hangarasa 1.50 30.00 30,00 49.00 67.00 49.00 32.00 32.00 MATCUTY \*\*\*\* \*\*\*\* \*\*\*\* \*\*\*\* \*\*\*\* <del>\*\*\*\*\*</del> \*\*\*\* \*\*\*\*\* Folyboarna \*\*\*\* **fees** \*\*\*\* \*\*\*\*\* \*\*\*\* \*\*\*\* -Nickel 5.00 :0.00 10,00 10.00 10,00 10.00 10,00 10.00 Potassame 500.00 1000.00 1000,00 1000,00 1000.00 1000,00 1000.00 1000,00 Selemous 0.50 1.70 2,20 2.20 200 1.90 1.50 1.50 Silicon \*\*\*\* \*\*\*\* \*\*\*\*\* -----Silver 1.00 200 2,00 2.00 2.00 2.00 200 2.00 SCOLUM 500.00 :000.00 1000,00 1000.00 :000,00 1000,00 1000.00 1000.00 Thalling 1.00 上の 2,00 2.00 2.00 2.00 200 2.00 Variatizum 5.00 :0.00 10,00 10.00 10,00 10.00 10.00 10.00 line 2.00 30.00 23.00 27.00 50.00 64.00 25.00 62,00 898.78 CL. X. /FILTE 876.46 377.68 866, 56 369.61 313.21 866. 亿

DAY # 6 (SLANK) 58-84-08 58-84-01 58-84-02 58-84-03 58-84-04 58-84-05 58-84-05 58-84-07 7/28/90 CSICS449 CSICR441 CSICR442 CSICR443 CSICR444 CSICR445 CSICR446 CSICR446 Alumiyam **0.723** 0.844 0.716 U. 857 0.908 U. 805 U. 924 **Arres** monv U. UU7 Ú. 007 0.006 0.007 0.005 U. 007 0.007 HYSEMIC U. 001 0.001 0.001 0.001 0.001 0.001 0.002 Berius 0.022 0.023 0.020 0.023 0.021 ₩.010 0.023 Beryllium 0.001 0.001 0.001 0.001 0.001 0.001 0.001 Boron Ú. 000 0.000 **U. 000** 0.000 0.000 0.000 0.000 Cadenue 0.001 0.001 U. 001 0.001 0,001 0.001 0.008 Calcius 1.113 1.141 1.738 3,385 1.856 1.088 1.155 Chroms um 0.001 0.002 0.001 0.002 0.001 0.001 0.002 Cobalt 0.006 0.006 0.005 0.006 0.005 0.005 0.005 Copper 0.275 0.061 0.080 12.046 0.066 **0.067** U. 159 Iron 0.873 0.970 0.961 1.309 1.196 0.925 1.051 0.031 0.016 0.023 0.190 0.059 0.035 0.086 **Hagnes** 200 0.326 0.570 0.511 1.123 0.516 0.544 0.577 Sargarese 0.032 0.033 0.043 0.074 0.049 U. U33 0.005 **0.000 TETCUTY** 0,000 Ů. **000** ۵,000 0.000 0.000 **0.000** Molyoderna U. 000 0.000 Ú. 000 0.000 0.000 0.000 U. 000 Nickel 0.006 **0.006** 0.005 4,006 0.005 0.005 0.006 Potassium 0.526 0.570 0.511 0.564 0.516 0.544 0.577 Selemane 0.001 0.002 0.002 0.002 0.001 0.002 0.001 Silicon U. 000 0.000 0.000 0.000 U. 000 0.000 0.000 Silver 0.001 0.001 0.001 0.001 0,001 0.001 0.001 Sodium 0.526 0.570 4.511 0.564 0.516 0.544 0.577 Thallium 0.001 U. 001 0.001 0,001 0.001 0.001 0.001 Vaneouva 0.006 0.006 0,005 0.006 0,005 0.005 0.006 line 0.031 0.024

U. 025

0.054

0.064

0.025

0.069

#### EXPLANATION OF THE DATA UTILIZED TO GENERATE THE WIND ROSES

Wind direction and wind speed data recorded by the portable meteorological station were used to generate a wind rose for each day of air sampling. The data from 12:00 noon to 12:00 midnight was used because that was the time interval in which the air samples were collected.

Wind direction was divided into the following sixteen categories (based on compass degrees):

```
.0 to 22.49
 22.50 to 44.99
 45.00 to 67.49
 67.50 to 89.99
 90.00 to 112.49
112.50 to 134.99
135.00 to 157.49
157.50 to 179.99
180.00 to 202.49
202.50 to 224.99
225.00 to 247.49
247.50 to 269.99
270.00 to 292.49
292.50 to 314.99
315.00 to 337.49
337.50 to 360.00
```

Wind speed was divided into the following classes:

```
Class 1 = 0 to 1.8 meters/second
Class 2 = 1.8 to 3.3 meters/second
Class 3 = 3.3 to 5.4 meters/second
```

No wind speeds over 5.4 meters/second were recorded during the Big River air sampling event.

The wind direction and wind speed was recorded every fifteen minutes, for a total of 49 wind direction and wind speed recordings (between 12:00 noon and 12:00 midnight) each day. The summary table of wind rose data (Reference # 40) consists of sixteen wind directions with three possible corresponding wind speed classes. There is a total of 48 different wind direction/wind speed categories. A tally was kept from the portable meteorological station data (Reference # 39) of the number of times the wind direction and corresponding wind speed fell into each of the 48 categories. Each day's tally was entered into the WROSE program and wind roses were generated.

On site Meteorological Station Data

Big River Mine Tailings Site Desloge, Missouri July 23-28,1990

#### SECTION 5. PRGRMG & DATA RETRIEVAL USING A COMPUTER

```
Recovery Call Interval #2 (minutes):
Maximum Time Call Will Take (minutes):
                     Next Time To Call:
      Interface Devices:
     COM1
                           Baud Rate: 9600
     End
SPLIT parameter file:
15MIN.PAR
     Name(s) of input DATA FILE(s): PSD.DAT
   Name of OUTPUT FILE to generate: 15MIN.PRN/R
          START reading in PSD.DAT:
            STOP reading in PSD.DAT:
                  Copy from PSD.DAT: 1[1]
    SELECT element #(s) in PSD.DAT: DATE (2:1989.0), 3..11
HEADING for report: 15 MINUTE METEOROLOGICAL DATA
      HEADINGS for PSD.DAT col #1: DATE
                           column #2: HR/MIN
                           column #3: WIND\M/S
                           column #4: WIND\DEG
                           column #5: STD DEV\DIREC
                           column #6: TEMP\DEG C
                           column #7: RH\%
                           column #8: BARO\PRESS
                           column #9: BATTERY\VOLTS
                          column #10: PRECIP\.01"
```

|      |             |               |                            |                             |                           |                        | Ve             | 1. 11 as               | P. " | ,, |
|------|-------------|---------------|----------------------------|-----------------------------|---------------------------|------------------------|----------------|------------------------|------|----|
|      | Date<br>204 | Hr/Min<br>815 | wind<br>m/ <b>S</b><br>.68 | wind<br><b>Oeg</b><br>274.6 | STO DEV<br>DIREC<br>16.27 | TEMP<br>Deg C<br>20.78 | RH% 82         | BARO<br>PRESS<br>12.03 |      |    |
|      | 204         | 830           | . 541                      | 307.1                       | 43.59                     | 21.17                  | 78.4           | 12.03                  |      |    |
|      |             |               | . 954                      | 1.946                       | 25.97                     | 21.66                  | 71.5           | 12.02                  |      |    |
|      | 204         | 845           |                            | 349.8                       | 20.7                      | 21.95                  | 69.08          | 12.02                  |      |    |
|      | 204         | 900           | 1.05                       |                             |                           |                        |                | 12.03                  |      |    |
|      | 204         | 915           | 1.033                      | 355.4                       | 27.06                     | 22.44                  | 66.38          |                        |      |    |
|      | 204         | 930           | 1.129                      | 35.47                       | 34.78                     | 22.73                  | 65.24          | 12.02                  |      |    |
|      | 204         | 945           | 1.607                      | 20.81                       | 15.68                     | 22.96                  | 62.15          | 12.04                  |      |    |
|      | 204         | 1000          | 1.155                      | 27.83                       | 23.63                     | 23.57                  | 59.88          | 12.05                  |      |    |
|      | 204         | 1015          | 1.451                      | 24.83                       | 29.71                     | 23.63                  | 57.65          | 12.04                  |      |    |
|      | 204         | 1030          | 1.544                      | 13.39                       | 37.67                     | 24                     | 55.38          | 12.05                  |      |    |
|      | 204         | 1045          | 1.28                       | 345.9                       | 31.65                     | 23.98                  | 54.06          | 12.05                  |      |    |
|      | 204         | 1100          | 1.048                      | 7.15                        | 56.64                     | 24.62                  | <b>53</b> .6   | 12.04                  |      |    |
|      | 204         | 1115          | . 969                      | 31.37                       | 50.17                     | 24.71                  | 51.58          | 12.04                  |      |    |
| 00.4 | 204         | 1130          | 2.017                      | 6.877                       | 23.59                     | 24.32                  | 52.42          | 12.04                  |      |    |
| Day  |             | 1145          | 1.936                      | 3.059                       | 29.41                     | 24.64                  | 48.6           | 12.04                  |      |    |
| Star |             | 1200          | 2.107                      | 18.85                       | 26.89                     | 24.99                  | 48.88          | 12.04                  |      |    |
|      | 204         | 1215          | 1.994                      | 13.24                       | 24.9                      | 24.89                  | 47.52          | 12.04                  |      |    |
|      | 204         | 1230          | 2.064                      | 31.99                       | 30.08                     | 25.41                  | 46.2           | 12.04                  |      |    |
|      | 204         | 1245          | 1.882                      | 43.83                       | 50.05                     | 25.49                  | 45.23          | 12.04                  |      |    |
|      | 204         | 1300          | 2.054                      | 359.7                       | 30.12                     | 25.57                  | 46.11          | 12.04                  |      |    |
|      | 204         | 1315          | 2.064                      | 13.42                       | 24.63                     | 25.69                  | 45.45          | 12.04                  |      |    |
|      | 204         | 1330          | 1.96                       | 357.8                       | 28.76                     | 26.03                  | 43.68          | 12.04                  |      |    |
|      | 204         | 1345          | 1.896                      | 8.23                        | 36.77                     | 26.14                  | 42.98          | 12.04                  |      |    |
|      | 204         | 1400          | 1.98                       | 11.06                       | 31.11                     | 26.07                  | 43.5           | 12.04                  |      |    |
|      | 204         | 1415          | 2.413                      | <b>338</b> .9               | 27.11                     | 26.26                  | 43.19          | 12.04                  |      |    |
|      | 204         | 1430          | 1.856                      | 331.9                       | 33.08                     | 26.28                  | 43.09          | 12.04                  |      |    |
|      | 204         | 1445          | 2.212                      | 54.96                       | 24.11                     | 25.95                  | 45.33          | 12.04                  |      |    |
|      | 204         | 1500          | 2.15                       | 326.7                       | 23.57                     | 26.41                  | 42.72          | 12.03                  |      |    |
|      | 204         | 1515          | 2.086                      | <b>324</b> .5               | 25.56                     | 26.7                   | 41.9           | 12.04                  |      |    |
|      | 204         | 1530          | 2.381                      | <b>337</b> .6               | 20.51                     | 26.65                  | 41.3           | 12.04                  |      |    |
|      | 204         | 1545          | 1.992                      | 329.7                       | 21.54                     | 26.7                   | 40.64          | 12.04                  |      |    |
|      | 204         | 1600          | 2.008<br>2.551             | 3 <b>35</b> .3<br>5.86      | 31.23<br>24.84            | 26.84<br>26.72         | 40.69<br>40.27 | 12.04<br>12.03         |      |    |
|      | 204         | 1615<br>1630  | 1.974                      | 4.514                       | 28.33                     | 26.72                  | 40.27          | 12.03                  |      |    |
|      | 204<br>204  | 1645          | 1.773                      | 317.3                       | 31.42                     | 27.1                   | 39.48          | 12.03                  |      |    |
|      | 204         | 1700          | 1.74                       | 331.9                       | 24.14                     | 27.22                  | 38.88          | 12.03                  |      |    |
|      | 204         | 1715          | 1.923                      | 331.3                       | 21.32                     | 26.82                  | <b>30</b> .30  | 12.03                  |      |    |
|      | 204         | 1730          | 1.806                      | 342                         | 15.12                     | 26.15                  | 40.3           | 12.03                  |      |    |
|      | 204         | 1745          | 1,809                      | 43.05                       | 32.91                     | 26.36                  | 43.19          | 12.03                  |      |    |
|      | 204         | 1800          | 2.389                      | 35,98                       | 16.42                     | 26.32                  | 44.08          | 12.02                  |      |    |
|      | 204         | 1815          | 2.025                      | 54.61                       | 25.9                      | 26.1                   | 45.29          | 12.02                  |      |    |
|      | 204         | 1830          | 1.56                       | 45.52                       | 20                        | 26.15                  | 45.59          | 12.02                  |      |    |
|      | 204         | 1845          | 1.892                      | 31,37                       | 18.29                     | 26.16                  | 45.06          | 12.02                  |      |    |
|      | 204         | 1900          | 1.991                      | 30.94                       | 13.15                     | 26.06                  | 45.5           | 12.02                  |      |    |
|      | 204         | 1915          | 1.909                      | 28.63                       | 13.82                     | 25.71                  | 47.17          | 12.02                  |      |    |
|      | 204         | 1930          | 1.62                       | 40.53                       | 9.8                       | 25.27                  | 48.4           | 12.02                  |      |    |
|      | 204         | 1945          | 1.113                      | 41.38                       | 7.18                      | 24.94                  | 49.84          | 12                     |      |    |
|      | 204         | 2000          | .813                       | 31,74                       | 9.72                      | 24.29                  | 55.62          | 12.01                  |      |    |
|      | 204         | 2015          | .094                       | 300.9                       | 12.79                     | 22.87                  | 73.6           | 12                     |      |    |
|      | 204         | 2030          | 0                          | 329.7                       | 0                         | 21.64                  | 83.7           | 12                     |      |    |
|      | 204         | 2045          | . 03                       | 262.3                       | 11.28                     | 20.73                  | 90.9           | 11.98                  |      |    |
|      | 204         | 2100          | . 806                      | 256.6                       | 3.875                     | 19.97                  | 94.4           | 11.98                  |      |    |
|      | 204         | 2115          | .685                       | 243.7                       | 7.6                       | 19.56                  | 96.5           | 11.97                  |      |    |
|      | 204         | 2130          | 1.022                      | 243.5                       | 9.08                      | 19.15                  | 9 <b>7</b> .2  | 11.98                  |      |    |
|      | 204         | 2145          | .505                       | 249.6                       | 5.648                     | 18.78                  | 98.7           | 11.96                  |      |    |
|      | 204         | 2200          | . 235                      | 252.3                       | 1.237                     | 18.34                  | 101            | 11.96                  |      |    |
|      | 204         | 2215          | .731                       | 256.7                       | 6.931                     | 17.92                  | 102.3          | 11.95                  |      |    |
|      | 204         | 2230          | . 508                      | 255.2                       | 8.88                      | 17.59                  | 102.9          | 11.95                  |      |    |
|      | 204         | 2245          | . 61                       | 251.5                       | 14.66                     | 17.33                  | 103.3          | 11.94                  |      |    |
|      | 204         | 2300          | . 486                      | 234.1                       | 7.25                      | 17.2                   | 103.4          | 11.95                  |      |    |
|      | 204         | 2 <b>3</b> 15 | . 546                      | 230.2                       | 6.328                     | 17.19                  | 103.4          |                        |      |    |
|      |             |               |                            |                             |                           |                        |                |                        |      |    |

| 205 15 30 912 209 55.97 16.51 104.3 11.93 205 16 30 912 209 55.97 16.51 104.3 11.93 205 16 15 .517 256.6 25.87 16.51 104.3 11.93 205 17 256.6 25.87 16.51 104.3 11.93 205 18 .517 256.6 25.87 16.51 104.3 11.93 205 18 .933 237.9 12.79 15.84 104.8 11.93 205 18 .933 237.9 12.79 15.84 104.8 11.93 205 18 .933 237.9 12.79 15.84 104.8 11.93 205 18 .933 237.9 12.79 15.84 104.8 11.93 205 18 .931 28 .931 15.76 105 11.92 205 200 1.144 24.1 10.9 91 5.82 105 11.92 205 205 18 1.076 241.2 10.42 15.87 105 11.92 205 230 1.093 242 9.23 15.85 105.5 11.92 205 230 1.093 242 9.23 15.85 105.1 11.91 205 300 81 233.7 10.61 15.33 105.3 11.91 205 315 .635 234.5 9.38 10.4 15.38 105.3 11.91 205 315 .635 234.5 9.38 10.4 15.38 105.3 11.91 205 315 .635 234.5 9.38 10.4 15.38 105.3 11.91 205 316 .635 234.5 9.8 10.4 15.38 105.3 11.91 205 316 .635 234.5 9.8 14.8 10.5 10.6 105.3 11.91 205 316 .635 234.5 9.8 14.8 10.6 105.3 11.91 205 316 .635 234.5 9.8 14.8 10.6 105.3 11.91 205 316 .635 234.5 9.8 14.8 10.6 105.3 11.91 205 416 .72 247 9.8 14.68 105.5 11.31 205 410 .195 189.3 20.09 14.58 105.5 11.31 205 410 .195 189.3 20.09 14.58 105.5 11.91 205 435 .722 241.8 10.28 14.01 105.7 11.91 205 435 .722 241.8 10.28 14.01 105.7 11.91 205 530 1.006 236.7 9.03 14.14 105.8 11.91 205 530 1.006 236.7 9.03 14.14 105.8 11.91 205 545 .745 238.9 6.934 13.98 105.8 11.91 205 645 .931 230.7 13.2 14.46 105.8 11.91 205 645 .931 230.7 13.2 14.46 105.8 11.91 205 746 654 291 235.8 11.73 14.2 105.8 11.91 205 746 654 291 282.8 12.48 18.25 92.5 11.92 205 915 318 92.5 28.9 12.8 11.9 14.03 105.8 11.91 205 945 915 318 90.5 55.5 11.9 19.9 14.0 105.8 11.91 205 945 915 318 90.5 55.5 11.9 19.9 14.9 19.9 19.9 19.9 19.9 19.9                                                                                                                                                                                                                                                                                                                                                                                    | 204       | 2345 | 1.535 | 246            | 9.2            | 16.94 | 103.8 | 11.93 | Ref. #23<br>p. 5 of 26 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|-------|----------------|----------------|-------|-------|-------|------------------------|
| 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |      |       |                |                |       | _     |       | p. 5 of 26             |
| 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 205       | 15   | . 363 | 2 <b>28.</b> 6 | 8.59           | 16.61 | 104.1 |       |                        |
| 205 100 7.17 231.7 14.62 16.05 104.7 11.93 205 115 .933 237.9 12.79 15.84 104.8 11.93 205 130 1.288 250.1 8.19 15.67 105 11.93 205 145 1.325 244.4 8.01 15.76 105 11.92 205 200 1.144 243.1 10.89 15.82 105 11.92 205 220 1.093 242 9.23 15.56 105.2 11.92 205 230 1.093 242 9.23 15.56 105.2 11.92 205 230 1.093 242 9.23 15.56 105.2 11.92 205 300 81 238.7 10.81 15.3 105.3 11.92 205 300 81 238.7 10.81 15.3 105.3 11.91 205 330 .958 243 8.3 238.7 10.81 15.3 105.3 11.91 205 330 .958 243 8.44 14.9 105.4 11.91 205 400 1.95 189.3 20.09 14.68 105.5 11.31 205 400 .195 189.3 20.09 14.68 105.5 11.31 205 430 .901 236.5 10.37 14.01 105.7 11.91 205 430 .901 236.5 10.37 14.01 105.7 11.91 205 500 1.006 236.7 9.03 14.01 105.7 11.91 205 500 1.006 236.7 9.03 14.08 105.8 11.91 205 500 1.006 238.7 7.23 14.08 105.8 11.91 205 500 1.006 238.7 7.03 14.14 105.8 11.91 205 500 1.006 238.7 7.03 14.01 105.7 11.91 205 530 889 239.1 10.55 14.10 105.7 11.91 205 500 1.006 238.7 7.03 14.14 105.8 11.91 205 500 1.006 238.7 7.03 14.14 105.8 11.91 205 500 1.006 238.7 7.03 14.14 105.8 11.91 205 500 1.006 238.7 7.03 14.14 105.8 11.91 205 500 1.006 238.7 7.03 14.14 105.8 11.91 205 500 1.006 238.7 7.03 14.14 105.8 11.91 205 500 1.006 238.7 7.03 14.14 105.8 11.91 205 500 1.006 238.7 7.03 14.14 105.8 11.91 205 500 1.006 238.7 7.03 14.14 105.8 11.91 205 500 1.006 238.7 7.03 14.14 105.8 11.91 205 500 500 1.006 238.7 7.03 14.14 105.8 11.91 205 500 1.006 238.7 9.03 14.08 105.9 11.91 205 630 7.41 235.8 11.73 14.2 105.6 11.91 205 630 7.42 235.8 11.73 14.2 105.8 11.91 205 630 7.43 239 1 10.05 14.1 105.3 11.91 205 630 7.44 235.8 11.73 14.2 105.6 11.91 205 700 582 238.3 26.5 1.08 26.9 14.08 105.9 11.91 205 700 582 238.3 26.8 26.8 24.8 19.15 88.4 11.91 205 700 582 238.3 26.8 24.8 12.4 15.06 104.1 11.91 205 700 1.15 584 60.9 29.5 55.5 21.8 20.9 11.9 11.9 11.9 11.9 11.9 11.9 11.9 1                                                                                                                                                                                                      |           |      |       |                |                |       |       |       |                        |
| 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |      |       |                |                |       |       |       |                        |
| 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |      |       |                |                |       |       |       |                        |
| 205 206 1.144 243.1 10.89 15.82 105 11.92 205 215 1.076 241.2 10.42 15.87 105.1 11.91 205 230 1.093 242 9.23 15.58 105.2 11.92 205 245 825 236.8 11.04 15.36 105.3 11.92 205 330 .81 238.7 10.81 15.3 105.3 11.91 205 315 .635 234.5 9.35 15.06 105.3 11.91 205 316 .635 234.5 9.35 15.06 105.3 11.91 205 330 .958 243 8.44 14.9 105.4 11.91 205 345 .417 237 8.98 14.68 105.5 11.91 205 345 .417 237 8.98 14.68 105.5 11.91 205 400 .195 189.3 20.9 14.58 105.5 11.91 205 400 .91 236.5 10.37 14.01 105.7 11.91 205 430 .901 236.5 10.37 14.01 105.7 11.91 205 445 .722 241.8 10.28 14.08 105.8 11.91 205 500 1.006 236.7 9.03 14.14 105.8 11.91 205 510 1.077 234.8 7.28 14.2 105.8 11.91 205 543 .889 239.1 10.55 14.1 105.8 11.91 205 543 .745 238.9 6.934 13.98 105.8 11.91 205 615 .743 239 11.99 14.03 105.8 11.91 205 615 .743 239 11.99 14.03 105.8 11.91 205 645 931 230.7 13.2 14.6 105.3 11.91 205 645 931 230.7 13.2 14.6 105.3 11.91 205 645 931 230.7 13.2 14.8 10.19 10.5 11.91 205 645 931 230.7 13.2 14.96 105.3 11.91 205 645 931 230.7 13.2 14.96 105.3 11.91 205 700 .502 231.3 10.83 14.84 104.8 11.91 205 745 .654 203.8 12.43 15.06 104.1 11.91 205 800 .14 236.6 35.84 16.97 98 11.91 205 745 .654 203.8 238.3 12.63 15.53 103.3 11.91 205 745 .654 203.8 238.3 12.63 15.53 103.3 11.91 205 800 .14 236.6 35.84 16.97 98 11.91 205 945 .935 238.3 12.63 15.53 103.3 11.91 205 745 .654 201 8.29 16.24 101.4 11.91 205 945 .935 238.3 12.63 15.53 103.3 11.91 205 945 .935 238.3 12.63 15.53 103.3 11.91 205 945 .935 238.3 12.63 15.53 103.3 11.91 205 945 .936 238 268 12.48 18.25 92.6 11.93 205 945 .936 238.5 268 12.48 18.25 92.6 11.93 205 945 .936 238.5 268 12.48 18.25 92.6 11.93 205 100 .345 13.3 3.1 6.6 24.7 101.4 11.91 205 945 .948 20.55 4.28 19.55 21.98 75.5 11.99 205 105 .948 .958 20.55 4.28 19.55 88.4 11.93 205 105 .948 .958 20.55 4.28 19.55 88.4 11.93 205 105 .948 .958 20.55 4.28 19.55 88.4 11.93 205 105 .948 .928 20.55 14.28 19.55 88.4 11.93 205 105 .948 .928 20.55 14.28 19.55 88.4 11.99 205 105 105 .948 105 16.6 17.4 20.98 26.6 24.7 11.99 205 105 106 .968 1  | 205       |      | 1.288 |                |                | 15.67 |       |       |                        |
| 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |      |       |                |                |       |       |       |                        |
| 205 230 1.093 242 9.23 15.56 105.2 11.92 205 245 825 236.8 11.04 15.06 105.3 11.92 205 300 .81 238.7 10.61 15.36 105.3 11.91 205 315 .635 234.5 9.35 15.06 105.3 11.91 205 330 .958 243 8.44 14.9 105.4 11.91 205 345 .417 237 8.98 14.68 105.5 11.91 205 400 .195 189.3 20.99 14.68 105.5 11.91 205 400 .195 189.3 20.99 14.68 105.5 11.91 205 415 .62 247.9 5.487 14.43 105.6 11.91 205 430 .901 236.5 10.37 14.01 105.7 11.91 205 440 .722 241.8 10.28 14.08 105.8 11.91 205 500 1.006 236.7 9.03 14.14 105.8 11.91 205 500 1.006 236.7 9.03 14.14 105.8 11.91 205 515 1.077 234.8 7.28 14.2 105.8 11.91 205 530 889 239.1 10.05 14.1 105.8 11.91 205 640 .745 238.9 6.934 13.98 105.8 11.91 205 645 .745 238.9 6.834 13.98 105.8 11.91 205 645 .745 238.9 6.834 13.98 105.8 11.91 205 645 .743 239 11.99 14.03 105.8 11.91 205 645 .931 230.7 13.2 14.46 105.8 11.91 205 645 .931 230.7 13.2 14.46 105.8 11.91 205 715 .581 244.8 12.28 14.96 105.3 11.91 205 715 .581 244.8 12.28 14.96 105.3 11.91 205 715 .581 244.8 10.89 14.93 10.83 11.91 205 745 .654 203.9 11.99 14.03 105.8 11.91 205 715 .581 244.8 12.41 15.06 104.1 11.91 205 715 .581 244.8 12.41 15.06 104.1 11.91 205 715 .581 243.8 12.41 15.06 104.1 11.91 205 715 .581 243.8 12.41 15.06 104.1 11.91 205 715 .581 243.8 12.41 15.06 104.1 11.91 205 700 .502 231.3 10.83 15.58 103.3 11.91 205 815 .509 231.7 77.23 17.51 94.9 11.93 205 815 .509 231.7 77.23 17.51 94.9 11.93 205 815 .509 231.7 77.23 17.51 94.9 11.93 205 815 .509 231.7 77.23 17.51 94.9 11.93 205 945 .058 397.6 75.4 28.9 95.77 20.88 79.9 11.99 205 100 .345 133.3 31.06 24.79 95.31 11.99 205 1015 .981 206.5 32.75 24.99 53.17 11.96 205 1016 .1.96 181.5 39.69 25.86 46.65 11.98 205 1015 .981 206.5 32.75 24.99 53.17 11.99 205 1025 1036 .1.15 36.5 32.89 26.62 43.16 11.99 205 1030 .1.69 17.69 17.4 20.98 26.62 43.16 11.99 205 1030 .1.69 17.69 17.4 20.98 26.62 43.16 11.99 205 1030 .1.966 181.5 39.69 25.86 46.65 11.99 205 1315 1.691 1333.3 55.66 26.73 45.66 12 205 1315 1.997 199.4 22.7 26.67 46.18 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1301 .967 13  |           |      |       |                |                |       |       |       |                        |
| 205 245 825 286.8 11.04 15.36 105.3 11.92 205 300 81 238.7 10.61 15.3 105.3 11.91 205 315 6835 234.5 9.35 15.06 105.3 11.91 205 330 958 243 8.44 14.9 105.4 11.91 205 345 417 237 8.98 14.68 105.5 11.91 205 415 6.2 247.9 5.487 14.68 105.5 11.91 205 415 6.2 247.9 5.487 14.01 105.7 11.91 205 415 6.2 247.9 5.487 14.01 105.7 11.91 205 445 7722 241.8 10.28 14.08 105.8 11.91 205 500 1.006 236.7 9.03 14.14 105.8 11.91 205 515 1.077 234.8 7.28 14.2 105.8 11.91 205 530 889 239.1 10.05 14.1 105.8 11.91 205 545 7.743 239 11.99 14.03 105.8 11.91 205 600 1.118 236.5 8.36 13.91 105.8 11.91 205 630 741 235.8 11.73 14.2 105.6 11.91 205 630 741 235.8 11.73 14.2 105.6 11.91 205 750 500 500 1.006 236.7 8.36 13.91 105.8 11.91 205 645 931 230.7 13.2 14.46 105.3 11.91 205 630 741 235.8 11.73 14.2 105.6 11.91 205 730 582 231.3 10.83 14.84 104.8 11.91 205 730 582 238.3 12.63 15.58 103.3 11.91 205 745 664 201 18.29 16.24 101.4 11.91 205 800 1.4 230.6 35.84 16.97 98 11.91 205 800 1.4 230.6 35.84 16.97 98 11.91 205 801 590 590 591.7 17.23 18.5 58 20.3 11.91 205 800 1.4 230.8 12.63 15.58 103.3 11.91 205 745 684 201 18.29 16.24 101.4 11.91 205 805 10.5 80 231.3 10.83 14.84 104.8 11.91 205 805 806 1.4 230.6 35.84 16.97 98 11.91 205 807 15 581 243.8 12.41 15.06 104.1 11.91 205 805 105 338 208.5 55.5 21.86 75.5 11.95 205 900 564 19.8 20.99 19.4 86.1 11.93 205 807 14.9 230.8 79.9 11.94 205 807 14.9 230.8 79.9 11.94 205 808 11.5 509 291.7 17.23 17.51 94.9 11.94 205 807 10.5 881 133.3 51.06 24.78 61.55 11.96 205 915 318 90 35.77 20.88 79.9 11.94 205 105 105 881 133.3 51.06 24.78 61.55 11.99 205 105 105 881 133.3 51.06 24.78 61.55 11.99 205 105 105 886 17.8 89.9 26.6 24.3.18 11.99 205 105 115 1.687 169.6 30.32 26.5 45.2 21.99 205 105 115 1.687 169.6 30.32 26.5 45.2 21.99 205 105 116 1.987 169.4 20.98 26.5 45.1 21.99 205 125 1210 1.977 199.4 22.7 26.8 45.1 21.99 205 125 125 1.977 199.4 22.7 26.8 45.1 21.99 205 126 127 1.986 176.2 27.7 26.8 45.1 21.99 205 126 127 1.997 199.4 22.7 26.8 45.1 21.99 205 126 127 1.997 199.4 22.7 26.95 43.16 11.99 205 126  |           |      |       |                |                |       |       |       |                        |
| 205 315 .635 234.5 9.35 15.06 105.3 11.91 205 320 .958 243 8.44 14.9 105.1 11.91 205 345 .417 237 8.98 14.68 105.5 11.91 205 400 .195 189.3 20.09 14.58 105.5 11.91 205 415 .62 247.9 5.487 14.43 105.6 11.91 205 430 .901 236.5 10.37 14.01 105.7 11.91 205 445 .722 241.8 10.28 14.08 105.8 11.91 205 545 .745 238.8 10.28 14.08 105.8 11.91 205 5500 1.006 236.7 9.03 14.14 105.8 11.91 205 530 .889 239.1 10.05 14.1 105.8 11.91 205 545 .745 238.9 6.934 13.98 105.8 11.91 205 650 1.118 236.5 8.36 13.91 105.8 11.91 205 600 1.118 236.5 8.36 13.91 105.8 11.91 205 615 .743 239 11.99 14.03 105.8 11.91 205 630 .741 235.8 11.73 14.2 105.6 11.91 205 635 .750 231.3 10.83 14.84 104.8 11.91 205 700 .502 231.3 10.83 14.84 104.8 11.91 205 715 .581 243.8 12.41 15.06 104.1 11.91 205 745 664 201 18.29 16.24 104.1 11.91 205 745 664 201 18.29 16.24 101.4 11.91 205 830 .238 268 12.48 18.25 92.6 11.93 205 845 .058 20.55 14.28 18.25 92.6 11.93 205 845 .058 20.55 14.28 18.25 92.6 11.93 205 900 .564 19.8 20.99 19.4 86.1 11.93 205 915 318 90 35.77 20.88 79.9 11.93 205 930 .096 299.5 55.5 21.96 75.5 11.95 205 945 .083 97.6 75.4 23.95 68.1 11.93 205 1000 .345 133.3 51.06 24.78 61.55 11.96 205 1000 .345 133.3 51.06 24.78 61.55 11.96 205 1000 .345 133.3 51.06 24.78 61.55 11.96 205 1000 .345 133.3 51.06 24.78 61.55 11.96 205 1000 .345 133.3 51.06 24.78 61.55 11.96 205 1000 .345 133.3 51.06 24.78 61.55 11.96 205 1000 .345 133.3 51.06 24.78 61.55 11.96 205 1000 .345 133.3 51.06 24.78 61.55 11.99 205 1000 .345 133.3 51.06 24.78 61.55 11.99 205 1000 .345 133.3 51.06 24.78 61.55 11.99 205 1000 .345 133.3 39.08 25.28 49.97 11.97 205 1000 .345 133.3 39.08 25.28 49.97 11.97 205 1000 .345 133.3 31.08 26.65 26.73 45.66 12 205 1000 .345 133.3 345.56 26.73 45.66 12 205 1000 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1345 1.977 19 |           | 245  | . 825 |                |                | 15.36 |       |       |                        |
| 205 330 .958 243 8.44 14.9 105.5 11.91 205 345 .417 237 8.98 14.68 105.5 11.91 205 400 .195 189.3 20.09 14.58 105.5 11.91 205 430 .901 236.5 10.37 14.01 105.7 11.91 205 430 .901 236.5 10.37 14.01 105.7 11.91 205 430 .901 236.5 10.37 14.01 105.7 11.91 205 500 1.006 236.7 9.03 14.14 105.8 11.91 205 500 1.006 236.7 9.03 14.14 105.8 11.91 205 515 1.077 234.8 7.28 14.2 105.8 11.91 205 530 .889 239.1 10.05 14.1 105.8 11.91 205 545 .745 238.9 6.934 13.98 105.8 11.91 205 600 1.118 236.5 8.36 13.91 105.8 11.91 205 615 .743 239 11.99 14.03 105.8 11.91 205 630 .741 235.8 11.73 14.2 105.6 11.91 205 645 .931 230.7 13.2 14.46 105.3 11.91 205 700 .502 231.3 10.83 14.84 104.8 11.91 205 715 .581 243.8 12.41 15.06 104.1 11.91 205 730 .582 238.3 12.63 15.58 103.3 11.91 205 800 .14 230.6 35.84 16.97 98 11.91 205 800 .14 230.6 35.84 16.97 98 11.91 205 800 .14 230.6 35.84 18.97 98 11.91 205 800 .15 .581 243.8 12.41 15.06 104.1 11.91 205 715 .581 243.8 12.41 15.06 104.1 11.91 205 725 800 .14 230.6 35.84 16.97 98 11.91 205 800 .14 230.6 35.84 16.97 98 11.91 205 800 .15 20.55 14.28 19.15 88.4 11.93 205 800 .14 230.6 35.84 18.97 98 11.93 205 815 .058 291.7 17.23 17.51 94.9 11.93 205 800 .364 19.8 20.99 19.44 86.1 11.93 205 915 318 90 35.77 20.88 79.9 11.94 205 915 900 .564 19.8 20.99 19.44 86.1 11.93 205 915 900 .564 19.8 20.99 19.44 86.1 11.93 205 915 900 .564 19.8 20.99 19.44 86.1 11.93 205 915 900 .564 19.8 20.99 19.44 86.1 11.93 205 915 900 .564 19.8 20.99 19.44 86.1 11.93 205 915 900 .564 19.8 20.99 19.44 86.1 11.93 205 915 900 .564 19.8 20.99 19.44 86.1 11.99 205 915 900 .156 41.98 30.08 25.28 49.97 11.97 205 916 900 .156 19.91 19.94 22.7 26.66 45.13 11.99 205 1000 .115 209.8 39.08 25.28 49.97 11.97 205 1000 .1.15 50.98 30.08 25.28 49.97 11.97 205 1000 .1.15 50.98 30.08 26.28 49.97 11.99 205 1130 1.169 186.5 32.75 24.99 53.17 11.99 205 1200 1.415 54.57 13.43 22.41 26.97 46.18 12 205 1315 1.651 133.3 45.56 26.73 45.66 12 205 1315 1.651 133.3 45.56 26.73 45.66 12 205 1315 1.651 133.3 45.56 26.73 45.66 12 205 1316 1.651 133.3 45.56 2 |           |      |       |                |                |       |       |       |                        |
| 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |      |       |                |                |       |       |       |                        |
| 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |      |       |                |                |       |       |       |                        |
| 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |      |       |                |                |       |       |       |                        |
| 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |      |       |                |                |       |       |       |                        |
| 205 500 1.006 236.7 9.03 14.14 105.8 11.91 205 515 1.077 234.8 7.28 14.2 105.8 11.91 205 530 889 239.1 10.05 14.1 105.8 11.91 205 545 .745 238.9 6.934 13.98 105.8 11.91 205 600 1.118 236.5 8.36 13.91 105.8 11.91 205 630 .741 235.8 11.73 14.2 105.6 11.91 205 630 .741 235.8 11.73 14.2 105.6 11.91 205 645 .931 230.7 13.2 14.46 105.3 11.91 205 700 .502 231.3 10.83 14.84 104.8 11.91 205 715 .581 243.8 12.3 10.83 14.84 104.8 11.91 205 730 .582 238.3 12.63 15.58 103.3 11.91 205 745 654 201 18.29 16.24 101.4 11.91 205 800 .14 230.6 35.84 16.97 98 11.91 205 815 .509 291.7 17.23 17.51 94.9 11.93 205 830 238 268 12.48 18.25 92.6 11.93 205 845 .058 20.55 14.28 19.15 88.4 11.93 205 900 .564 19.8 20.99 19.44 86.1 11.93 205 915 318 90 35.77 20.88 79.9 11.94 205 930 .096 299.5 55.5 21.96 75.5 11.96 205 930 .096 299.7 6 75.4 23.96 68.5 11.96 205 1015 981 206.5 32.75 24.99 53.17 11.96 205 1015 981 206.5 32.75 24.99 53.17 11.96 205 1030 1.15 209.8 39.08 25.28 49.97 11.97 205 1030 1.169 176 68.01 22.95 68.14 11.99 205 1030 1.169 176 68.01 22.4 3.37 11.99 205 1030 1.169 176 68.01 22.4 3.37 11.99 205 1030 1.169 176 68.01 26.03 45.66 11.98 205 1030 1.697 169.6 30.32 26.15 45.2 11.99 205 1205 1.45 1.977 199.4 22.7 26.6 45.13 11.99 205 1205 1.45 1.57 1.99.4 20.98 26.5 46.42 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1301 .967 134.3 32.41 20.98 12.67 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |      |       |                |                |       |       |       |                        |
| 205   530   .889   239.1   10.05   14.1   105.8   11.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |      |       |                |                |       |       |       |                        |
| 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |      |       |                |                |       |       |       |                        |
| 205 600 1.118 236.5 8.36 13.91 105.8 11.91 205 630 .741 235.8 11.73 14.2 105.6 11.91 205 630 .741 235.8 11.73 14.2 105.6 11.91 205 645 .931 230.7 13.2 14.46 105.3 11.91 205 700 .502 231.3 10.83 14.84 104.8 11.91 205 715 .581 243.8 12.41 15.06 104.1 11.91 205 730 .582 238.3 12.63 15.58 103.3 11.91 205 745 .654 201 18.29 16.24 101.4 11.91 205 800 .14 230.6 35.84 16.97 98 11.91 205 815 .509 291.7 17.23 17.51 94.9 11.93 205 830 .238 268 12.48 18.25 92.6 11.93 205 845 .058 20.55 14.28 19.15 88.4 11.93 205 900 .564 19.8 20.99 19.44 86.1 11.93 205 915 .318 90 35.77 20.88 79.9 11.94 205 930 .096 299.5 55.5 21.96 75.5 11.95 205 945 .083 97.6 75.4 23.95 68.14 11.95 205 1015 .981 206.5 32.75 24.99 53.17 11.96 205 1030 1.15 209.8 38.08 25.28 49.97 11.97 205 1030 1.169 181.5 39.18 26.01 46.04 11.98 205 1100 1.196 181.5 39.18 26.01 46.04 11.98 205 1130 1.169 176 69.01 26.32 43.37 11.99 205 1230 1.892 207.7 16.42 26.37 46.18 12 205 1200 1.415 54.57 43.72 26.95 43.26 11.99 205 1230 1.892 207.7 16.42 26.37 46.18 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1345 1.595 167.9 48.59 27.38 42.67 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |      |       |                |                |       |       |       |                        |
| 205 615 743 239 11.99 14.03 105.8 11.91 205 630 741 235.8 11.73 14.2 105.6 11.91 205 645 .931 230.7 13.2 14.46 105.3 11.91 205 700 .502 231.3 10.83 14.84 104.8 11.91 205 715 .581 243.8 12.41 15.06 104.1 11.91 205 730 .582 238.3 12.63 15.58 103.3 11.91 205 745 .654 201 18.29 16.24 101.4 11.91 205 810 .14 230.6 35.84 16.97 98 11.91 205 815 .509 291.7 17.23 17.51 94.9 11.93 205 830 .238 268 12.48 18.25 92.6 11.93 205 845 .058 20.55 14.28 19.15 88.4 11.93 205 900 .564 19.8 20.99 19.44 86.1 11.93 205 900 .564 19.8 20.99 19.44 86.1 11.93 205 930 .096 299.5 55.5 21.96 75.5 11.95 205 945 .083 97.6 75.4 23.95 68.14 11.95 205 1000 .345 133.3 51.06 24.78 61.55 11.96 205 1030 1.15 298 20.65 32.75 24.99 53.17 11.96 205 1045 .92 163.5 39.69 25.86 46.65 11.98 205 100 1.196 181.5 39.08 26.01 46.04 11.98 205 1130 1.169 176 69.01 26.32 43.37 11.99 207 208 1130 1.169 176 69.01 26.32 43.26 11.99 207 208 1230 1.892 207.7 16.42 26.37 46.18 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1315 1.651 133.3 45.56 26.73 45.66 12 205 1330 1.967 134.3 32.41 26.91 43.16 12 205 1345 1.595 167.9 48.59 27.38 42.67 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |      |       |                |                |       |       |       |                        |
| 205 645 .931 230.7 13.2 14.46 105.3 11.91 205 700 .502 231.3 10.83 14.84 104.8 11.91 205 715 .581 243.8 12.41 15.06 104.1 11.91 205 730 .582 238.3 12.63 15.58 103.3 11.91 205 745 .654 201 18.29 16.24 101.4 11.91 205 800 .14 230.6 35.84 16.97 98 11.91 205 815 .509 291.7 17.23 17.51 94.9 11.93 205 830 .238 268 12.48 18.25 92.6 11.93 205 845 .058 20.55 14.28 19.15 88.4 11.93 205 900 .564 19.8 20.99 19.44 86.1 11.93 205 915 .318 90 35.77 20.88 79.9 11.94 205 930 .096 299.5 55.5 21.96 75.5 11.95 205 945 .083 97.6 75.4 23.95 68.14 11.95 205 1000 .345 133.3 51.06 24.78 61.55 11.96 205 1015 .981 206.5 32.75 24.99 53.17 11.96 205 1030 1.15 209.8 39.08 25.28 49.97 11.97 205 1045 .92 163.5 39.69 25.86 46.65 11.98 205 1100 1.196 181.5 39.18 26.01 46.04 11.98 205 1135 1.697 169.6 30.32 26.15 45.2 11.99 205 125 1200 1.415 54.57 43.72 26.95 43.26 11.99 205 1230 1.892 207.7 16.42 26.95 46.42 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1315 1.651 133.3 45.56 26.73 45.66 12 205 1330 1.967 134.3 32.41 26.91 43.16 12 205 1345 1.595 167.9 48.59 27.38 42.67 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |      | .743  | 239            | 11.99          | 14.03 | 105.8 | 11.91 |                        |
| 205 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |      |       |                |                |       |       |       |                        |
| 205 715 .581 243.8 12.41 15.06 104.1 11.91 205 730 .582 238.3 12.63 15.58 103.3 11.91 205 745 .654 201 18.29 16.24 101.4 11.91 205 800 .14 230.6 35.84 16.97 98 11.91 205 815 .509 291.7 17.23 17.51 94.9 11.93 205 830 .238 268 12.48 18.25 92.6 11.93 205 845 .058 20.55 14.28 19.15 88.4 11.93 205 900 .564 19.8 20.99 19.44 86.1 11.93 205 915 .318 90 35.77 20.88 79.9 11.94 205 930 .096 299.5 55.5 21.96 75.5 11.95 205 930 .096 299.5 55.5 21.96 75.5 11.95 205 930 .096 299.5 55.5 21.96 75.5 11.95 205 1000 .345 133.3 51.06 24.78 61.55 11.96 205 1015 .981 206.5 32.75 24.99 53.17 11.96 205 1030 1.15 209.8 39.08 25.28 49.97 11.97 205 1045 .92 163.5 39.69 25.86 46.65 11.98 205 1100 1.196 181.5 39.18 26.01 46.04 11.98 205 1115 1.697 169.6 30.32 26.15 45.2 11.99 205 1230 1.967 169.6 30.32 26.15 45.2 11.99 205 1245 1.415 54.57 43.72 26.95 43.26 11.99 205 1230 1.882 207.7 16.42 26.37 46.18 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1330 1.967 134.3 32.41 26.97 43.16 12 205 1330 1.967 134.3 32.41 26.97 43.16 12 205 1330 1.967 134.3 32.41 26.91 43.16 12 205 1345 1.595 167.9 48.59 27.38 42.67 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |      |       |                |                |       |       |       |                        |
| 205 730 .582 238.3 12.63 15.58 103.3 11.91 205 745 .654 201 18.29 16.24 101.4 11.91 205 800 .14 230.6 35.84 16.97 98 11.91 205 815 .509 291.7 17.23 17.51 94.9 11.93 205 830 .238 268 12.48 18.25 92.6 11.93 205 845 .058 20.55 14.28 19.15 88.4 11.93 205 900 .564 19.8 20.99 19.44 86.1 11.93 205 915 .318 90 35.77 20.88 79.9 11.94 205 930 .096 299.5 55.5 21.96 75.5 11.95 205 345 .083 97.6 75.4 23.95 68.14 11.95 205 1000 .345 133.3 51.06 24.78 61.55 11.96 205 1015 .981 206.5 32.75 24.99 53.17 11.96 205 1030 1.15 209.8 39.08 25.28 49.97 11.97 205 1045 .92 163.5 39.69 25.86 46.65 11.98 205 1100 1.196 181.5 39.18 26.01 46.04 11.98 205 1115 1.697 169.6 30.32 26.15 45.2 11.99 205 1230 1.169 176 69.01 26.32 43.37 11.99 205 1245 1.51 86.5 32.89 26.62 43.16 11.99 205 1230 1.892 207.7 16.42 26.95 43.26 11.99 205 1230 1.892 207.7 16.42 26.37 46.18 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1300 .967 134.3 32.41 26.91 43.16 12 205 1300 .967 134.3 32.41 26.91 43.16 12 205 1345 1.595 167.9 48.59 27.38 42.67 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |      |       |                |                |       |       |       |                        |
| 205 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 205       | 730  | . 582 | 238.3          | 12.63          | 15.58 | 103.3 |       |                        |
| 205 815 .509 291.7 17.23 17.51 94.9 11.93 205 830 .238 268 12.48 18.25 92.6 11.93 205 845 .058 20.55 14.28 19.15 88.4 11.93 205 900 .564 19.8 20.99 19.44 86.1 11.93 205 915 .318 90 35.77 20.88 79.9 11.94 205 930 .096 299.5 55.5 21.96 75.5 11.95 205 945 .083 97.6 75.4 23.95 68.14 11.95 205 1000 .345 133.3 51.06 24.78 61.55 11.96 205 1015 .981 206.5 32.75 24.99 53.17 11.96 205 1030 1.15 209.8 39.08 25.28 49.97 11.97 205 1045 .92 163.5 39.69 25.86 46.65 11.98 205 1100 1.196 181.5 39.18 26.01 46.04 11.98 205 1100 1.196 181.5 39.18 26.01 46.04 11.98 205 1130 1.169 176 69.01 26.32 43.37 11.99 205 1205 1200 1.415 54.57 43.72 26.95 43.26 11.99 205 1230 1.892 207.7 16.42 26.37 46.18 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1315 1.651 133.3 45.56 26.73 45.66 12 205 1330 1.967 134.3 32.41 26.91 43.16 12 205 1330 1.967 134.3 32.41 26.91 43.16 12 205 1330 1.967 134.3 32.41 26.91 43.16 12 205 1330 1.967 134.3 32.41 26.91 43.16 12 205 1330 1.967 134.3 32.41 26.91 43.16 12 205 1345 1.595 167.9 48.59 27.38 42.67 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |      |       |                |                |       |       |       |                        |
| 205 830 .238 268 12.48 18.25 92.6 11.93 205 845 .058 20.55 14.28 19.15 88.4 11.93 205 900 .564 19.8 20.99 19.44 86.1 11.93 205 915 .318 90 35.77 20.88 79.9 11.94 205 930 .096 299.5 55.5 21.96 75.5 11.95 205 945 .083 97.6 75.4 23.95 68.14 11.95 205 1000 .345 133.3 51.06 24.78 61.55 11.96 205 1015 .981 206.5 32.75 24.99 53.17 11.96 205 1030 1.15 209.8 39.08 25.28 49.97 11.97 205 1045 .92 163.5 39.69 25.86 46.65 11.98 205 1100 1.196 181.5 39.18 26.01 46.04 11.98 205 1130 1.169 181.5 39.18 26.01 46.04 11.98 205 1130 1.169 176 69.01 26.32 43.37 11.99 205 1205 1200 1.415 54.57 43.72 26.95 43.26 11.99 205 1230 1.892 207.7 16.42 26.95 43.26 11.99 205 1230 1.892 207.7 16.42 26.37 46.18 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1315 1.651 133.3 45.56 26.73 45.66 12 205 1330 1.967 134.3 32.41 26.91 43.16 12 205 1330 1.967 134.3 32.41 26.91 43.16 12 205 1345 1.595 167.9 48.59 27.38 42.67 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |      |       |                |                |       |       |       |                        |
| 205 845 .058 20.55 14.28 19.15 88.4 11.93 205 900 .564 19.8 20.99 19.44 86.1 11.93 205 915 .318 90 35.77 20.88 79.9 11.94 205 930 .096 299.5 55.5 21.96 75.5 11.95 205 945 .083 97.6 75.4 23.95 68.14 11.95 205 1000 .345 133.3 51.06 24.78 61.55 11.96 205 1015 .981 206.5 32.75 24.99 53.17 11.96 205 1030 1.15 209.8 39.08 25.28 49.97 11.97 205 1045 .92 163.5 39.69 25.86 46.65 11.98 205 1100 1.196 181.5 39.18 26.01 46.04 11.98 205 1115 1.697 169.6 30.32 26.15 45.2 11.99 205 1130 1.169 176 69.01 26.32 43.37 11.99 205 1130 1.169 176 69.01 26.32 43.37 11.99 205 125 1200 1.415 54.57 43.72 26.95 43.26 11.99 205 1215 1.977 199.4 22.7 26.6 45.13 11.99 205 1230 1.892 207.7 16.42 26.37 46.18 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1315 1.651 133.3 45.56 26.73 45.66 12 205 1315 1.651 133.3 45.56 26.73 45.66 12 205 1330 1.967 134.3 32.41 26.91 43.16 12 205 1345 1.595 167.9 48.59 27.38 42.67 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |      |       |                |                |       |       |       |                        |
| 205 915 .318 90 35.77 20.88 79.9 11.94 205 930 .096 299.5 55.5 21.96 75.5 11.95 205 945 .083 97.6 75.4 23.95 68.14 11.95 205 1000 .345 133.3 51.06 24.78 61.55 11.96 205 1015 .981 206.5 32.75 24.99 53.17 11.96 205 1030 1.15 209.8 39.08 25.28 49.97 11.97 205 1045 .92 163.5 39.69 25.86 46.65 11.98 205 1100 1.196 181.5 39.18 26.01 46.04 11.98 205 1115 1.697 169.6 30.32 26.15 45.2 11.99 205 1130 1.169 176 69.01 26.32 43.37 11.99 205 1230 1.45 1.51 86.5 32.89 26.62 43.16 11.99 205 1231 1.977 199.4 22.7 26.95 43.26 11.99 205 1230 1.892 207.7 16.42 26.37 46.18 12 205 1315 1.651 133.3 45.56 26.73 45.66 12 205 1315 1.651 133.3 45.56 26.73 45.66 12 205 1330 1.967 134.3 32.41 26.91 43.16 12 205 1330 1.967 134.3 32.41 26.91 43.16 12 205 1345 1.595 167.9 48.59 27.38 42.67 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 205       | 845  | .058  | 20.55          | 14.28          | 19.15 | 88.4  | 11.93 |                        |
| 205 930 .096 299.5 55.5 21.96 75.5 11.95 205 945 .083 97.6 75.4 23.95 68.14 11.95 205 1000 .345 133.3 51.06 24.78 61.55 11.96 205 1015 .981 206.5 32.75 24.99 53.17 11.96 205 1030 1.15 209.8 39.08 25.28 49.97 11.97 205 1045 .92 163.5 39.69 25.86 46.65 11.98 205 1100 1.196 181.5 39.18 26.01 46.04 11.98 205 1115 1.697 169.6 30.32 26.15 45.2 11.99 205 1130 1.169 176 69.01 26.32 43.37 11.99 205 1130 1.169 176 69.01 26.32 43.37 11.99 205 1200 1.415 54.57 43.72 26.95 43.26 11.99 205 1215 1.977 199.4 22.7 26.6 45.13 11.99 205 1230 1.892 207.7 16.42 26.37 46.18 12 205 1310 1.691 177.4 20.98 26.5 46.42 12 205 1310 1.651 133.3 45.56 26.73 45.66 12 205 1330 1.967 134.3 32.41 26.91 43.16 12 205 1345 1.595 167.9 48.59 27.38 42.67 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |      |       |                |                |       |       |       |                        |
| 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |      |       |                |                |       |       |       |                        |
| 205 1015 .981 206.5 32.75 24.99 53.17 11.96 205 1030 1.15 209.8 39.08 25.28 49.97 11.97 205 1045 .92 163.5 39.69 25.86 46.65 11.98 205 1100 1.196 181.5 39.18 26.01 46.04 11.98 205 1115 1.697 169.6 30.32 26.15 45.2 11.99 205 1130 1.169 176 69.01 26.32 43.37 11.99 205 1145 1.51 86.5 32.89 26.62 43.16 11.99 205 1200 1.415 54.57 43.72 26.95 43.26 11.99 205 1215 1.977 199.4 22.7 26.6 45.13 11.99 205 1230 1.892 207.7 16.42 26.37 46.18 12 205 1245 1.424 177.4 20.98 26.5 46.42 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1315 1.651 133.3 45.56 26.73 45.66 12 205 1330 1.967 134.3 32.41 26.91 43.16 12 205 1345 1.595 167.9 48.59 27.38 42.67 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |      | .083  |                |                |       |       |       |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |      |       |                |                |       |       |       |                        |
| 205 1045 .92 163.5 39.69 25.86 46.65 11.98 205 1100 1.196 181.5 39.18 26.01 46.04 11.98 205 1115 1.697 169.6 30.32 26.15 45.2 11.99 205 1130 1.169 176 69.01 26.32 43.37 11.99 205 1145 1.51 86.5 32.89 26.62 43.16 11.99 205 1200 1.415 54.57 43.72 26.95 43.26 11.99 205 1215 1.977 199.4 22.7 26.6 45.13 11.99 205 1230 1.892 207.7 16.42 26.37 46.18 12 205 1245 1.424 177.4 20.98 26.5 46.42 12 205 1300 .966 176.2 51.24 27.04 44.15 12 205 1315 1.651 133.3 45.56 26.73 45.66 12 205 1330 1.967 134.3 32.41 26.91 43.16 12 205 1345 1.595 167.9 48.59 27.38 42.67 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |      |       |                |                |       |       |       |                        |
| 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |      |       |                |                |       |       |       |                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 205       | 1100 | 1.196 | 181.5          | 39.18          | 26.01 |       |       |                        |
| Day 2         205         1145         1.51         86.5         32.89         26.62         43.16         11.99           3ar+         205         1200         1.415         54.57         43.72         26.95         43.26         11.99           205         1215         1.977         199.4         22.7         26.6         45.13         11.99           205         1230         1.892         207.7         16.42         26.37         46.18         12           205         1245         1.424         177.4         20.98         26.5         46.42         12           205         1300         .966         176.2         51.24         27.04         44.15         12           205         1315         1.651         133.3         45.56         26.73         45.66         12           205         1330         1.967         134.3         32.41         26.91         43.16         12           205         1345         1.595         167.9         48.59         27.38         42.67         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |      |       |                |                |       |       |       |                        |
| 3/27+       205       1200       1.415       54.57       43.72       26.95       43.26       11.99         205       1215       1.977       199.4       22.7       26.6       45.13       11.99         205       1230       1.892       207.7       16.42       26.37       46.18       12         205       1245       1.424       177.4       20.98       26.5       46.42       12         205       1300       .966       176.2       51.24       27.04       44.15       12         205       1315       1.651       133.3       45.56       26.73       45.66       12         205       1330       1.967       134.3       32.41       26.91       43.16       12         205       1345       1.595       167.9       48.59       27.38       42.67       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |      |       |                |                |       |       |       |                        |
| 205     1230     1.892     207.7     16.42     26.37     46.18     12       205     1245     1.424     177.4     20.98     26.5     46.42     12       205     1300     .966     176.2     51.24     27.04     44.15     12       205     1315     1.651     133.3     45.56     26.73     45.66     12       205     1330     1.967     134.3     32.41     26.91     43.16     12       205     1345     1.595     167.9     48.59     27.38     42.67     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | star+ 205 | 1200 | 1.415 | 54.57          | 43.72          | 26.95 | 43.26 | 11.99 |                        |
| 205     1245     1.424     177.4     20.98     26.5     46.42     12       205     1300     .966     176.2     51.24     27.04     44.15     12       205     1315     1.651     133.3     45.56     26.73     45.66     12       205     1330     1.967     134.3     32.41     26.91     43.16     12       205     1345     1.595     167.9     48.59     27.38     42.67     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |      |       |                |                |       |       |       |                        |
| 205     1300     .966     176.2     51.24     27.04     44.15     12       205     1315     1.651     133.3     45.56     26.73     45.66     12       205     1330     1.967     134.3     32.41     26.91     43.16     12       205     1345     1.595     167.9     48.59     27.38     42.67     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |      |       |                |                |       |       |       |                        |
| 205 1330 1.967 134.3 32.41 26.91 43.16 12<br>205 1345 1.595 167.9 48.59 27.38 42.67 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |      |       |                |                | 27.04 |       |       |                        |
| 205 1345 1.595 167.9 48.59 27.38 42.67 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |      |       |                |                |       |       |       |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |      |       |                |                |       |       |       |                        |
| 205 1400 1.422 179.9 35.58 27.79 40.64 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |      | 1.422 | 179.9          | 35.58          | 27.79 | 40.64 | 12    |                        |
| 205 1415 1.449 142.4 27.03 27.77 40.05 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 205       | 1415 | 1.449 | 142.4          | 2 <b>7</b> .03 | 27.77 | 40.05 | 12    |                        |
| 205 1430 2.246 169.4 22.9 27.37 41.78 11.99<br>205 1445 2.332 156.9 33.85 27.6 40.76 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |      |       |                |                |       |       |       |                        |
| 205 1445 2.332 156.9 33.85 27.6 40.76 12<br>205 1500 3.127 167.7 22.12 27.99 41.05 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |      |       |                |                |       |       |       |                        |
| 205 1515 2.508 185 11.75 27.86 40.31 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 205       | 1515 | 2.508 | 185            | 11.75          | 27.86 | 40.31 | 12    |                        |
| 205 1530 2.667 168.6 29.55 27.64 40.71 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |      |       |                | 29.55          | 27.64 | 40.71 | 12    |                        |

| •                        | 1600<br>1615<br>1630           | 2.064<br>2.877<br>2.083 | 180.2<br>178.3<br>161.9                            | 25.17<br>15.02<br>18.33 | 27.87<br>27.65<br>28.22 | 39.86<br>40.32<br>38.48        | 12<br>11.99<br>11.99    | Ref. #23<br>p. 6 of 26 |
|--------------------------|--------------------------------|-------------------------|----------------------------------------------------|-------------------------|-------------------------|--------------------------------|-------------------------|------------------------|
|                          | 1645<br>1700<br>1715           | 2.185<br>2.362<br>2.671 | 187.2<br>168.2<br>173.3                            | 20.4<br>18.2<br>16.31   | 28.17<br>28.05<br>28.03 | 38.78<br>39.63<br>39.08        | 11.98<br>11.98<br>11.98 | 1                      |
|                          | 1730<br>1745<br>1800           | 1.906<br>1.511<br>2.271 | 208.4<br>229.2<br>192.3                            | 19.66<br>16.58<br>23.27 | 27.55<br>27.46<br>27.78 | 41.51<br>42.43<br>40.52        | 11.98<br>11.98<br>11.98 |                        |
| )5<br>)5<br>)5           | 1815<br>1830<br>1845           | 2.893<br>2.25<br>2.415  | 1 <b>73</b> .5<br>1 <b>76</b> .3<br>1 <b>78</b> .9 | 8.7<br>10.4<br>9.66     | 27.85<br>27.73<br>27.52 | 40.05<br>40.25<br>41.8         | 11.98<br>11.98<br>11.97 |                        |
| 05<br>05<br>05           | 1900<br>1915<br>1930           | 2.325<br>2.11<br>1.555  | 174.1<br>168.7<br>168.8                            | 8.05<br>9.68<br>7.29    | 27.3<br>27.04<br>26.76  | 42.99<br>44.04<br>46.34        | 11.98<br>11.98<br>11.97 |                        |
| 205<br>205<br>205        | 1945<br>2000<br>2015           | 1.396<br>1.983<br>2.178 | 116.1<br>113.4<br>118.1                            | 26.32<br>12.8<br>12.14  | 25.91<br>25.27<br>25.03 | 50<br>52.09<br>52.66           | 11.97<br>11.97<br>11.96 |                        |
| 205<br>205<br>205<br>205 | 2030<br>2045<br>2100           | 2.09<br>1.527<br>2.515  | 122<br>123.4<br>131                                | 10.03<br>9.92<br>9.44   | 24.66<br>24.01<br>24.04 | 54.36<br>57.51<br>57.71        | 11.96<br>11.94<br>11.95 | Ĩ                      |
| 205<br>205               | 2115<br>2130<br>2145           | 1.842<br>.859<br>.411   | 121.7<br>112.2<br>72.1                             | 11.77<br>14.06          | 23.23<br>22.11          | 61.26<br>69.32<br>74.8         | 11.94<br>11.94<br>11.94 | 1                      |
| 205<br>205<br>205        | 2 <b>20</b> 0<br>2 <b>2</b> 15 | . 333<br>. 294          | 15.8<br>38.62                                      | 47.18<br>10.73<br>30.58 | 21.49<br>20.54<br>20.1  | 8 <b>3</b> .6<br>8 <b>8</b> .3 | 11.92<br>11.92          |                        |
| 205<br>205<br>205        | 2230<br>2245<br>2300           | .175<br>.67<br>.491     | 14.16<br>22.18<br>26.04                            | 1.132<br>21.08<br>25.58 | 19.36<br>19.07<br>18.93 | 94.1<br>96.8<br>99.6           | 11.92<br>11.91<br>11.92 |                        |
| 205<br>205<br>205<br>206 | 2315<br>2330<br>2345           | .153<br>.608<br>.281    | 357.8<br>275.1<br>.814                             | 41.33<br>11.61<br>50.95 | 18.66<br>17.93<br>17.75 | 99.5<br>100.8<br>101.9         | 11.9                    | <u> </u>               |
| 206<br>206<br>206        | 0<br>0<br>15                   | .32<br>.012<br>.047     | .026<br>289.3                                      | .012<br>6.061           | .025<br>17.43           | 102.3<br>.109<br>102.5         | 11.89<br>.3<br>11.89    |                        |
| 206<br>206               | 30<br>45                       | .347<br>.365            | 42.12<br>26.94                                     | 34.7<br>31.31           | $17.41 \\ 17.31$        | 103<br>103.3                   | 11.9<br>11.89           |                        |
| 206<br>206<br>206        | 100<br>115<br>130              | .45<br>.132<br>.177     | 26.42<br>331.5<br>271.5                            | 34.09<br>23.74<br>2.896 | 17.19<br>17.01<br>16.74 | 103.5<br>103.5<br>103.7        | 11.88<br>11.88<br>11.88 |                        |
| 206<br>206<br>206        | 145<br>200<br>215              | . 638<br>. 631<br>. 573 | 65.15<br>74.1<br>73.8                              | 15.88<br>4.241<br>5.824 | 16.61<br>16.57<br>16.47 | 103.9<br>104.1<br>104.1        | 11.89<br>11.89<br>11.88 |                        |
| 206<br>206<br>206        | 230<br>245<br>300              | .541<br>.636<br>1.08    | 61.91<br>55.58<br>266.3                            | 4.121<br>11.4<br>11.5   | 16.49<br>16.38<br>16.15 | 104.1<br>104.2<br>104.4        | 11.88<br>11.88<br>11.88 |                        |
| 206<br>206<br>206        | 315<br>330<br>345              | 1.229<br>.991<br>.611   | 258<br>243.6<br>223.7                              | 5.629<br>5.99<br>5.752  | 15.88<br>15.91<br>16.01 | 104.3<br>104<br>104.1          | 11.87<br>11.87<br>11.87 |                        |
| 206<br>206               | 400<br>415                     | .681<br>.079            | 222.7<br>209.7<br>208.3                            | 16.36<br>2.578          | 15.99<br>15.97          | 104.2<br>104.4                 | 11.87<br>11.87<br>11.87 |                        |
| 206<br>206<br>206        | 430<br>445<br>500              | .004<br>.027<br>.095    | 208.7<br>116.5                                     | .492<br>.474<br>53.87   | 15.95<br>15.68<br>15.45 | 104.5<br>104.7<br>104.7        | 11.87<br>11.87          |                        |
| 206<br>206<br>206        | 515<br>530<br>545              | .019<br>.583<br>.08     | 233<br>264.8<br>104.5                              | 61.79<br>6.552<br>43.59 | 15.41<br>15.05<br>14.93 | 104.8<br>105<br>105            | 11.87<br>11.87<br>11.87 |                        |
| 206<br>206<br>206        | 600<br>615<br>6 <b>3</b> 0     | 0<br>.159<br>0          | 93.5<br>67.63<br>311.4                             | 0<br>4.736<br>29.68     | 15.09<br>15.2<br>15.05  | 105<br>105.1<br>105.1          | 11.87<br>11.87<br>11.87 |                        |
| 206<br>206<br>206        | 645<br>700<br>715              | .301<br>.79<br>.2       | 254.5<br>237.1<br>251.9                            | 18.79<br>8.35<br>8.54   | 15.07<br>15.58<br>16.4  | 104.9<br>104.5<br>103.2        | 11.87<br>11.87<br>11.87 |                        |
| 206                      | 730                            | 293                     | 49.98                                              | 21 .10                  | 17 2                    | 00 7                           |                         |                        |

|       | 20b        | 815                            | . 513          | 44.13                            | 32.44                                      | 20.99          | 81                               | 11.89            | Ref. #23<br>p. 7 of 26 |
|-------|------------|--------------------------------|----------------|----------------------------------|--------------------------------------------|----------------|----------------------------------|------------------|------------------------|
|       | 206<br>206 | 8 <b>3</b> 0<br>8 <b>4</b> 5   | .495<br>2.378  | 9 <b>5</b> .3<br>1 <b>55</b> .6  | 32.06<br>14.77                             | 22.38<br>23.22 | 72.1<br>62.44                    | 11.89<br>11.89   | 0.7 of 26              |
|       | 206        | 900                            | 3.102          | 141.7                            | 12.02                                      | 23.74          | 5 <b>6</b> .63                   | 11.9             | <b>F</b> . • • •       |
|       | 206        | 915                            | 2.96           | 145.2                            | 13.97                                      | 24.41          | 53.58                            | 11.91            |                        |
|       | 206<br>206 | 9 <b>3</b> 0<br>9 <b>4</b> 5   | 3.774<br>4.371 | 144.5<br>147.5                   | 13.37<br>9.89                              | 24.85<br>25.07 | $49.84 \\ 47.1$                  | 11.91<br>11.92   |                        |
|       | 206        | 1000                           | 4.113          | 165                              | 10.2                                       | 25.45          | 45.95                            | 11.92            |                        |
|       | 206        | 1015                           | 4.308          | 153.3                            | 12.96                                      | 25.8           | 45.39                            | 11.92            |                        |
|       | 206        | 1030                           | 1.084          | 165.3                            | 13.36                                      | 26.04          | 45.25                            | 11.92            |                        |
|       | 206<br>206 | 1045<br>1100                   | 4.49<br>4.41   | 165.6<br>167                     | 16.88<br>10.27                             | 26.37<br>26.62 | 43.98<br>42                      | 11.92<br>11.93   |                        |
|       | 206        | 1115                           | 3.897          | 156.8                            | 14.79                                      | 26.88          | 39.85                            | 11.93            |                        |
|       | 206        | 1130                           | 3.543          | 151.8                            | 19.15                                      | 27.17          | 40.27                            | 11.94            |                        |
| Day 3 | 206        | 1145                           | 3.486          | 166.7<br>150.4                   | 18.68                                      | 26.99          | 39.81                            | 11.93            |                        |
| sart  | 206<br>206 | 1200<br>1215                   | 3.757          | 166                              | 14.45 $14.52$                              | 27.44<br>27.46 | 38.24<br>39.14                   | 11.94<br>11.94   |                        |
|       | 206        | 1230                           | 2.968          | 162.5                            | 26.82                                      | 27.5           | 39.31                            | 11.94            |                        |
|       | 206        | 1245                           | 3.108          | 181.8                            | 24.44                                      | 2 <b>7</b> .74 | 38.56                            | 11.94            |                        |
|       | 206        | 1300                           | 3.106          | 171.8                            | 19.5                                       | 27.99          | 37.85                            | 11.94            |                        |
|       | 206<br>206 | 1315<br>1 <b>33</b> 0          | 3.226<br>3.742 | 1 <b>3</b> 9.3<br>146            | 18.68<br>9.9 <b>7</b>                      | 27.94<br>27.92 | 3 <b>7</b> .72<br>3 <b>8.</b> 59 | 11.94<br>11.94   |                        |
|       | 206        | 1345                           | 2.9            | 141                              | 25.62                                      | 28.28          | 3 <b>7</b> .95                   | 11.95            |                        |
|       | 206        | 1400                           | 3.34           | 177.5                            | 20.58                                      | 28.41          | 37.62                            | 11.94            |                        |
|       | 206        | 1415                           | 2.435          | 144.9                            | 19.59                                      | 28.41          | 38.07                            | 11.94            |                        |
|       | 206<br>206 | 1430<br>1445                   | 3.828<br>2.899 | 145.3<br>166.4                   | 17.43 $24.07$                              | 28.54<br>28.67 | 39.12<br>38.17                   | 11.94 $11.94$    |                        |
|       | 206        | 1500                           | 3.134          | 154.4                            | 30.87                                      | 28.98          | 37.26                            | 11.94            |                        |
|       | 206        | 1515                           | 3.652          | 160.8                            | 21.78                                      | 29.13          | 34.59                            | 11.94            |                        |
|       | 206        | 1530                           | 3.494          | 189                              | 20.02                                      | 29.05          | 34.03                            | 11.94            |                        |
|       | 206<br>206 | 1545<br>1600                   | 2.944<br>3.623 | 158.1<br>161.7                   | 25.09<br>18.63                             | 29.16<br>29.22 | 33.88<br>33.18                   | 11.94<br>11.94   |                        |
|       | 206        | 1615                           | 3.823          | 170.9                            | 14.77                                      | 29.19          | 34.33                            | 11.94            |                        |
|       | 206        | 1630                           | 3.436          | 187.9                            | 17.39                                      | 29.05          | 34.47                            | 11.94            |                        |
|       | 206        | 1645                           | 2.863          | 159.4                            | 22.31                                      | 28.98          | 34.78                            | 11.94            |                        |
|       | 206<br>206 | 1 <b>700</b><br>1 <b>71</b> 5  | 3.249<br>3.433 | 156.7<br>166.1                   | 17.51<br>17.5                              | 29.01<br>29.07 | 37.21<br>36.67                   | 11.94<br>11.94   |                        |
|       | 206        | 1730                           | 3.546          | 175.3                            | 12.44                                      | 29.09          | 36.68                            | 11.94            |                        |
|       | 206        | 1745                           | 3.624          | 167.3                            | 17.66                                      | 28.89          | 38.83                            | 11.94            |                        |
|       | 206        | 1800                           | 3.886          | 138.9                            | 14.79                                      | 28.73          | 38.98                            | 11.94            |                        |
|       | 206<br>206 | 1815<br>1830                   | 3.712<br>3.405 | 140.2<br>155.8                   | 14.7<br>11.76                              | 28.47<br>28.39 | 39.26<br>39.28                   | $11.94 \\ 11.94$ |                        |
|       | 206        | 1845                           | 3.124          | 165.4                            |                                            | 28.16          | 42.31                            | 11.92            |                        |
|       | 206        | 1900                           | 3.222          | 171                              | 9.66                                       | 27.77          | 43.52                            | 11.93            |                        |
|       | 206        | 1915                           | 2.943          | 171.4<br>164.3                   | 8.6<br>6.851                               | 27.54          | 44.77                            | 11.92            |                        |
|       | 206<br>206 | 1930<br>1945                   | 2.899<br>2.423 |                                  | 14.1                                       | 27.15<br>26.64 | 46.45<br>48.32                   | 11.92            |                        |
|       | 206        | 2000                           | 2.008          | 125.5                            |                                            | 26.32          | 49.59                            | 11.92            |                        |
|       | 206        | 2015                           | 1.215          |                                  | 8.45                                       | 25.54          | 54.19                            | 11.92            |                        |
|       | 206<br>206 | 2030<br>2045                   | 1.169<br>1.389 |                                  | $\begin{array}{c} 11.7 \\ 7.4 \end{array}$ | 24.79<br>24.01 | 58.67<br>63.45                   | 11.91            |                        |
|       | 206        | 2100                           | 1.273          |                                  | 12.2                                       | 23.79          | 65.11                            | 11.9             |                        |
|       | 206        | 2115                           | 1.462          | 119.2                            |                                            | 23.38          | 67.45                            | 11.9             |                        |
|       | 206        | 2130                           | 2.046          |                                  | 9.12                                       | 23.78          | 66.24                            | 11.88            |                        |
|       | 206<br>206 | 2145<br>2 <b>2</b> 00          | 1.336<br>.275  | 136.1<br>295.4                   | 22.9<br>26.86                              | 23.12<br>21.47 | 69.23<br>81.4                    | 11.89<br>11.88   |                        |
|       | 206        | 2 <b>2</b> 00                  | . 273          | 349                              | 6.973                                      | 20.46          | 90                               | 11.88            |                        |
|       | 206        | 2230                           | . 193          | 80.5                             | 3.892                                      | 19.96          | 96.5                             | 11.87            |                        |
|       | 206        | 2245                           | .048           | 88.1                             | 20.67                                      | 19.84          | 9 <b>8</b> .8                    | 11.87            |                        |
|       | 206<br>206 | 2 <b>30</b> 0<br>2 <b>3</b> 15 | . 667<br>. 214 | 2 <b>72</b> .5<br>2 <b>77</b> .6 | $4.754 \\ 846$                             | 19.27<br>18.91 | 9 <b>9</b> .8                    | 11.86            |                        |
|       | 206        | 2315                           | .026           | 277.2                            | . 846                                      | 18.83          | 100.6<br>100.9                   | 11.86<br>11.86   |                        |
| 240P  | 206        | 2 <b>3</b> 45                  | . 277          | 277.4<br>277.3                   | ()                                         | 18.88          | 101.9                            | 11.35            |                        |
|       | 207<br>207 | 0 1.5                          | .001           | .007                             | .018                                       | .035           | .089                             | 2.099            |                        |

|          | 40 11                 | צט טס                 | ১৮ ৫৩          | 10 60                   | 7 645                            | 108.1                  | 9791         | 702                     |
|----------|-----------------------|-----------------------|----------------|-------------------------|----------------------------------|------------------------|--------------|-------------------------|
|          | 88.11                 | 94,88                 | 9£.72          | SS, T1                  | 9,142                            | 363.1                  | 1630         | 70Z                     |
|          | 88.11                 | 79:19                 | 16.72          | £8.72                   | 201.5                            | 788.S                  | 191          | 207                     |
|          | 68.11<br>88.11        | 74.02<br>27.03        | 1,82<br>40,82  | 89. <b>E</b> I<br>19.11 | 7.881                            | 48.1                   | 0091         | L07                     |
|          | 88.11                 | 76'87                 | 66, <b>7</b> 2 | 99.61                   | 8.081<br>7.781                   | 1.2<br>277.1           | 1242<br>1230 | 702<br>702              |
|          | 88.11                 | 48.26                 | 70.82          | 98.81                   | 2.871                            | 82.2<br>. c            | 1212         | 207                     |
|          | 68.11                 | 67.9‡                 | 88.82          | 22,76                   | 2.091                            | 116.1                  | 1200         | 702                     |
|          | 88.11                 | 18.74                 | S8.72          | 77.11                   | 8.731                            | 257.2                  | 9771         | L02                     |
|          | 68,11                 | 16.74                 | 17.72          | 6.01                    | S.ITI                            | ec.c                   | 1430         | 702                     |
|          | 88.11                 | 69.74<br>81.84        | 20.82          | £0.71                   | 1:691                            | 3,252                  | 9111         | 707                     |
|          | 68,11<br>68,11        | 68.74                 | 69.72<br>68.72 | 48.21<br>28.71          | 2.701<br>3.881                   | 170.2<br>714.2         | 1342<br>1342 | 702<br>702              |
|          | 68.11                 | £0.8‡                 | 87.72          | 12.52                   | 871                              | 180.8                  | 1330         | 202                     |
|          | 68.11                 | 40.74                 | 95.72          | 10.21                   | 8.971                            | 110.6                  | 9181         | 702                     |
|          | <b>6</b> 8.11         | 99'9t                 | ST.TS          | 13.72                   | 3.771                            | 841.6                  | 1300         | <b>LO</b> Z             |
|          | 88.11                 | 48.52                 | 69. 72         | 20.52                   | 9.081                            | IET.S                  | 1245         | 702                     |
|          | 68.11                 | 10:04                 | 19.72          | 18,25                   | 1.971                            | 46.6                   | 1230         | 207                     |
|          | 88.11<br>88.11        | 98,84<br>18,84        | 39.72<br>79.72 | 78,81<br>78,81          | 1.7 <b>9</b> 1<br>9. <b>28</b> 1 | 19.E<br>1 <b>E</b> E.E | 1512         | 207<br><b>14.</b> ₹ 207 |
|          | 88.11                 | 16.61                 | 27.36          | 88.02                   | 6.181                            | 186.2                  | 1112         | 102 H 207               |
|          | 68.11                 | 87.03                 | 81.72          | 88.E1                   | 7.171                            | 817.8                  | 1130         | ros "                   |
| ·        | 88,11                 | 58,15                 | 28.83          | 12.3                    | B. TT1                           | 804.8                  | 1112         | 702                     |
|          | 88.11                 | 71.53                 | 78.82          | 1,6                     | 8, <b>67</b> 1                   | 110.4                  | 0011         | 202                     |
|          | 88.11<br>88.11        | 54.83<br>54.02        | 61.82<br>66.82 | 62,21<br>3,01           | 6,871<br>1,871                   | 374.8<br>373.8         | 1042         | 702<br>702              |
|          | 88.11                 | £8.83                 | 26.82          | 56.01                   | 7.371                            | 307.2                  | 1030         | 702<br>702              |
|          | 78,11                 | 13.83                 | 25.62          | 33.71                   | 1.481                            | 928.2                  | 0001         | 202                     |
|          | 78.11                 | 79. <b>6</b> 3        | 25.32          | 13,26                   | 8.171                            | 3.206                  | 916          | 702                     |
|          | 78.11                 | 10.18                 | 24.83          | \$8.6                   | 3. <b>92</b> 1                   | <b>£</b> 40.£          | 930          | 207                     |
|          | 78.11                 | 80.29                 | 24.3           | <b>≱1.8</b>             | 152.2                            | 3.203                  | 916          | 207                     |
|          | 88.11<br>78.11        | 60. <b>49</b>         | 18.62<br>24.23 | 86.12<br>96.01          | 991<br>9.91                      | \$22.E                 | 006          | Z0Z                     |
|          | 38,11                 | 66.78                 | 2,62           | 77. <b>7</b> 2          | 2.821                            | 481.2<br>27.2          | 8 <b>3</b> 0 | 702<br>702              |
|          | 38,11                 | 8.ET                  | 22.33          | 80.13                   | ZE1                              | 106.                   | 218          | 202                     |
|          | 48.11                 | 6.18                  | 20.12          | 14.95                   | 96.32                            | 83.                    | 008          | 702                     |
|          | 48.11                 | 7.06                  | 29.61          | 91.41                   | £7.88                            | 178.                   | 9 t L        | 207                     |
|          | 48.11                 | <b>⊅</b> 6            | 66,81          | 98.6                    | 3.9 <i>T</i>                     | 1.03                   | 730          | 702                     |
|          | 48.11<br>48.11        | 1.86<br>5. <b>6</b> 6 | 18.44<br>92.91 | 97.8E                   | 37. <b>6</b> 9                   | 741.                   | 21 <i>L</i>  | ZOZ                     |
|          | 68.11                 | 101                   | 74.71          | 13.62<br>13.64          | 19.81<br>88.8                    | SE.<br>874.            | 5 <b>₽</b> 9 | 702<br>702              |
|          | 48.11                 | 1,601                 | 18.81          | 4, 133                  | 67,18                            | 7 <b>3</b> 8.          | 989          | 202                     |
|          | 68,11                 | 2,801                 | 98.91          | 18.01                   | S8.88                            | 900.1                  | 919          | 202                     |
|          | 48.11                 | 102.4                 | 88.81          | 88.02                   | 74.68                            | 269.                   | 009          | 702                     |
|          | 11.83                 | 102.5                 | 16.91          | 804.8                   | 17,68                            | <b>₽</b> 76.           | 242          | 702                     |
|          | <b>68,11</b><br>48,11 | 9,201                 | 97.91          | 74,82                   | 353.5                            | 385.                   | 230          | 207                     |
|          | 11.84<br>58 11        | 2,801<br>103,5        | 84.81<br>7.81  | <b>296</b> ,8<br>86,81  | 7. <b>2</b> 8<br>89.5‡           | 881.1<br>784.          | 212<br>200   | 702<br>702              |
|          | 48.11                 | 5,101                 | 16.81          | 27. <b>2</b> 8          | 76.33                            | £4.                    | 5 t t        | 702                     |
|          | <u> 18,11</u>         | 6 <b>.6</b> 6         | 91.71          | 91.45                   | 006                              | <b>97</b> 0.           | 430          | 202                     |
|          | 48.11                 | 8.001                 | 76.81          | ₽₽7.2                   | 9.292                            | 1:152                  | 917          | 702                     |
|          | 28.11                 | 6.601                 | 27.81          | 78.11                   | 2.082                            | 928,                   | 100          | L07                     |
|          | 68.11                 | 103' †                | 17.91          | 76,44                   | 2.632                            | 649'                   | 342          | 207                     |
|          | ₽8.11<br>₽8.11        | 103.6<br>103.2        | 30.71<br>47.81 | 4.0S<br>87.8            | 76.18<br>7. <b>2</b> 62          | 62.<br>140.1           | 330<br>312   | 702<br>702              |
|          | 48.II                 | 7.601                 | 68.81          | 10.01                   | 8,172                            | £ΟΥ.                   | 300          | 702<br>205              |
|          | 48.11                 | 5.501                 | SE. 71         | 91.6t                   | 91:19                            | 382.                   | 245          | 202                     |
|          | 18.11                 | 3.501                 | SZ.T1          | 50.82                   | 346                              | <b>26</b> 9 '          | 230          | 702                     |
|          | 48.11                 | 103.3                 | 20.71          | 42.68                   | ₹6°9                             | 326                    | 215          | 207                     |
|          | 48.11<br>48.11        | 103,4<br>103,4        | 8.71<br>42.71  | 50.85<br>10.02          | 7.208                            | 231.                   | 200          | 207                     |
|          | 48.11<br>48.11        | 6. <b>6</b> 01        | 85.71<br>8.71  | 30.85                   | 2,4 <b>6</b> 2<br>62,69          | 32.<br>539             | 130<br>130   | 702<br>702              |
| 1        | <b>11.84</b>          | 3.501                 | 38.71          | 26.43                   | <b>63</b> 6.                     | <b>₽</b> 02.           | 911          | 702                     |
| Rof. #33 | 38.11                 | 103.4                 | 40.81          | 624.S                   | 30.62                            | <b>₽10</b> '           | 001          | 207                     |
| Rof. #33 | 28.11                 | 103.1                 | 1.81           | \$4.SS                  | 2,18                             | 695.                   | 9†           | 202                     |
| •        | CO . T. t             | 0.201                 | 00.01          |                         | 7:117                            | 002.                   | 0.0          | , , , =                 |

|      | 207<br>207<br>207<br>207<br>207<br>207<br>207<br>207<br>207<br>207 | 1715<br>1730<br>1745<br>1800<br>1815<br>1830<br>1845<br>1900<br>1915<br>1930<br>1945<br>2000<br>2015<br>2030<br>2045<br>2100<br>2115<br>2130<br>2145<br>2200<br>2215<br>2230<br>2245<br>2300<br>2315 | 1.171 1.109 1.219 1.133 1.076 1.261 1.836 2.065 1.122 .457 .161 0 0 .02 0 .02 0 .637 .218 .138 .202 .144 .453 .011 | 243.5<br>235.5<br>221.9<br>230.2<br>230.3<br>246.4<br>219.2<br>184.4<br>168.3<br>203.6<br>262.7<br>207.1<br>206.9<br>207.2<br>207.2<br>207.2<br>207.2<br>207.3<br>10.5<br>21.49<br>7.14 | 12.7<br>16.68<br>13.8<br>16.81<br>16.64<br>11.62<br>18.94<br>13.35<br>10.14<br>19.64<br>9.26<br>18.07<br>.479<br>.46<br>.465<br>.47<br>.462<br>26.49<br>.225<br>14.32<br>.274<br>47.4<br>9.01<br>.093 | 26.9<br>27.04<br>27.22<br>27.21<br>26.96<br>26.67<br>26.39<br>26.24<br>26.11<br>25.56<br>25.32<br>24.99<br>24.64<br>24.13<br>23.42<br>23.42<br>23.42<br>21.35<br>21.38<br>21.24<br>21.35<br>21.04 | 61.95<br>62.6<br>62.34<br>62.7<br>63.65<br>66.09<br>67.67<br>67.01<br>65.36<br>64.91<br>68.15<br>69.78<br>73.3<br>75.5<br>79.5<br>86.5<br>92<br>94.4<br>98.2<br>100.1<br>100.9<br>101.1<br>101.8<br>101.5 | 11.87<br>11.88<br>11.88<br>11.87<br>11.87<br>11.87<br>11.87<br>11.86<br>11.86<br>11.86<br>11.85<br>11.85<br>11.85<br>11.85<br>11.85<br>11.85<br>11.85<br>11.85<br>11.84<br>11.84<br>11.84<br>11.83<br>11.83<br>11.83 | Ref. #23<br>p. 9 of 26 |
|------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|      | 207<br>20 <b>7</b>                                                 | 2330<br>2345                                                                                                                                                                                         | 0                                                                                                                  | 7.15<br>7.6                                                                                                                                                                             | .097<br>.088                                                                                                                                                                                          | 20.79<br>20.7                                                                                                                                                                                     | 101.8<br>102.3                                                                                                                                                                                            | 11.82<br>11.82                                                                                                                                                                                                       |                        |
| ZTOP | 208<br>208                                                         | 0                                                                                                                                                                                                    | .052                                                                                                               | .011                                                                                                                                                                                    | 11.44                                                                                                                                                                                                 | .044                                                                                                                                                                                              | .014                                                                                                                                                                                                      | .532                                                                                                                                                                                                                 |                        |
|      | 208<br>208                                                         | 15<br>30                                                                                                                                                                                             | . 63<br>. 255                                                                                                      | 274.7<br>275.2                                                                                                                                                                          | 1.483<br>0                                                                                                                                                                                            | 20.29<br>20.19                                                                                                                                                                                    | 102.7                                                                                                                                                                                                     | 11.82<br>11.82                                                                                                                                                                                                       |                        |
|      | 208<br>208                                                         | 45<br>100                                                                                                                                                                                            | . 376<br>. 346                                                                                                     | 275.3<br>275.1                                                                                                                                                                          | 0<br>. 125                                                                                                                                                                                            | 20.01<br>19.99                                                                                                                                                                                    | 103.2<br>103.3                                                                                                                                                                                            | 11.81<br>11.82                                                                                                                                                                                                       |                        |
|      | 208<br>208                                                         | 115<br>130                                                                                                                                                                                           | . 114<br>. 202                                                                                                     | 275.5<br>43.31                                                                                                                                                                          | 0<br>37.33                                                                                                                                                                                            | 20<br>19.93                                                                                                                                                                                       | 103.3<br>103.5                                                                                                                                                                                            | 11.81<br>11.82                                                                                                                                                                                                       |                        |
|      | 208                                                                | 145<br>200                                                                                                                                                                                           | 0                                                                                                                  | 47.98<br>48.46                                                                                                                                                                          | . 296<br>. 247                                                                                                                                                                                        | 19.86<br>19.78                                                                                                                                                                                    | 103.6<br>103.7                                                                                                                                                                                            | 11.81                                                                                                                                                                                                                |                        |
|      | 208<br>208                                                         | 215                                                                                                                                                                                                  | . 205                                                                                                              | 48.26                                                                                                                                                                                   | . 259                                                                                                                                                                                                 | 19.92                                                                                                                                                                                             | 103.8                                                                                                                                                                                                     | 11.81                                                                                                                                                                                                                |                        |
|      | 208<br>208                                                         | 230<br>245                                                                                                                                                                                           | . 204<br>. 453                                                                                                     | 345<br>31.09                                                                                                                                                                            | 31.51<br>15.26                                                                                                                                                                                        | 19.99<br>20.16                                                                                                                                                                                    | 1 <b>03</b> .8<br>103.8                                                                                                                                                                                   | 11.81<br>11.81                                                                                                                                                                                                       |                        |
|      | 208                                                                | 300                                                                                                                                                                                                  | .028                                                                                                               | 39.32                                                                                                                                                                                   | 36.55                                                                                                                                                                                                 | 20.44                                                                                                                                                                                             | 103.7                                                                                                                                                                                                     | 11.81                                                                                                                                                                                                                |                        |
|      | 208<br>208                                                         | 315<br>3 <b>3</b> 0                                                                                                                                                                                  | . 29<br>. 0 <b>26</b>                                                                                              | 106.6<br>26.77                                                                                                                                                                          | 12.19<br>13.75                                                                                                                                                                                        | 20.23<br>20.32                                                                                                                                                                                    | 103.5<br>103.3                                                                                                                                                                                            | 11.81<br>11.81                                                                                                                                                                                                       |                        |
|      | 208                                                                | 345                                                                                                                                                                                                  | . 176                                                                                                              | 316                                                                                                                                                                                     | 2.689                                                                                                                                                                                                 | 20.45                                                                                                                                                                                             | 103.2                                                                                                                                                                                                     | 11.8                                                                                                                                                                                                                 |                        |
|      | 208<br>208                                                         | 400<br>415                                                                                                                                                                                           | 0<br>0                                                                                                             | 316.3<br>316.1                                                                                                                                                                          | 0<br>0                                                                                                                                                                                                | 20.45<br>20.48                                                                                                                                                                                    | 103<br>102.9                                                                                                                                                                                              | 11.82<br>11.8                                                                                                                                                                                                        |                        |
|      | 208<br>208                                                         | 430<br>445                                                                                                                                                                                           | . 402<br>. 112                                                                                                     | <b>49</b> .04<br><b>35</b> .91                                                                                                                                                          | 12.85<br>51.3                                                                                                                                                                                         | 20.41<br>20.44                                                                                                                                                                                    | 102.7<br>102.9                                                                                                                                                                                            | 11.81<br>11.81                                                                                                                                                                                                       |                        |
|      | 208                                                                | 500                                                                                                                                                                                                  | . 42                                                                                                               | 119.3                                                                                                                                                                                   | 16.87                                                                                                                                                                                                 | 20.93                                                                                                                                                                                             | <b>99</b> .8                                                                                                                                                                                              | 11.81                                                                                                                                                                                                                |                        |
|      | 208<br>208                                                         | 515<br>5 <b>3</b> 0                                                                                                                                                                                  | . 207<br>. 055                                                                                                     | 113.1<br>29.58                                                                                                                                                                          | 14.69<br>1.513                                                                                                                                                                                        | 21.23<br>21.21                                                                                                                                                                                    | 94.9<br>94.9                                                                                                                                                                                              | 11.81<br>11.82                                                                                                                                                                                                       |                        |
|      | 208                                                                | 545                                                                                                                                                                                                  | .316                                                                                                               | 160.8                                                                                                                                                                                   | 16.51                                                                                                                                                                                                 | 21.07                                                                                                                                                                                             | 97.3                                                                                                                                                                                                      | 11.81                                                                                                                                                                                                                |                        |
|      | 208<br>208                                                         | 600<br>615                                                                                                                                                                                           | . 087<br>. 138                                                                                                     | 158.1<br>276.2                                                                                                                                                                          | 0<br>57.42                                                                                                                                                                                            | 20.98<br>21.02                                                                                                                                                                                    | 98.3<br>97.6                                                                                                                                                                                              | 11.81<br>11.82                                                                                                                                                                                                       |                        |
|      | 208                                                                | 630                                                                                                                                                                                                  | O                                                                                                                  | 299.9                                                                                                                                                                                   | 0                                                                                                                                                                                                     | 21.01                                                                                                                                                                                             | 99.1                                                                                                                                                                                                      | 11.81                                                                                                                                                                                                                |                        |
|      | 208<br>208                                                         | 645<br>700                                                                                                                                                                                           | . 0 <b>7</b> 9<br>0                                                                                                | 300<br>300                                                                                                                                                                              | 0<br>0                                                                                                                                                                                                | 20.88<br>20.9                                                                                                                                                                                     | 100.3<br>9 <b>9</b> .8                                                                                                                                                                                    | 11.81<br>11.81                                                                                                                                                                                                       |                        |
|      | 208                                                                | 715                                                                                                                                                                                                  | 0                                                                                                                  | 300                                                                                                                                                                                     | 0                                                                                                                                                                                                     | 21.24                                                                                                                                                                                             | 98.2                                                                                                                                                                                                      | 11.81                                                                                                                                                                                                                |                        |
|      | 208<br>208                                                         | 730<br>745                                                                                                                                                                                           | 0<br>. 112                                                                                                         | 300<br>38.11                                                                                                                                                                            | 0<br>6.621                                                                                                                                                                                            | 21.76<br>21.98                                                                                                                                                                                    | 9 <b>5</b> .8<br>9 <b>3</b> .2                                                                                                                                                                            | 11.82<br>11.81                                                                                                                                                                                                       |                        |
|      | 208                                                                | 800                                                                                                                                                                                                  | . 292                                                                                                              | 36.7                                                                                                                                                                                    | 2.284                                                                                                                                                                                                 | 22.33                                                                                                                                                                                             | 92.5                                                                                                                                                                                                      | 11.81                                                                                                                                                                                                                |                        |
|      | 208<br>208                                                         | 815<br>8 <b>30</b>                                                                                                                                                                                   | .137<br>1.144                                                                                                      | 33.13<br>1 <b>72</b> .2                                                                                                                                                                 | 1.3<br>12.56                                                                                                                                                                                          | 23.16<br>24.26                                                                                                                                                                                    | 83.7<br>75.7                                                                                                                                                                                              | 11.81<br>11.81                                                                                                                                                                                                       |                        |
|      | 208<br>208                                                         | 8 <b>4</b> 5<br>900                                                                                                                                                                                  | 2.109<br>1.958                                                                                                     | 173                                                                                                                                                                                     | 7.46<br>11.75                                                                                                                                                                                         | 24.89<br>25.49                                                                                                                                                                                    | 70.2<br>67.08                                                                                                                                                                                             | 11.32                                                                                                                                                                                                                |                        |

| 208        | 930                   | 1.992                 | 176.8                          | 8.73           | 26,21                            | 63.86                   | 11.83          | 0 0 11 000              |
|------------|-----------------------|-----------------------|--------------------------------|----------------|----------------------------------|-------------------------|----------------|-------------------------|
| 208        | 945                   | 1.571                 | 203.2                          | 28.24          | 27.06                            | 61.6 <b>3</b>           | 11.84          | Ref. #23<br>p. 10 of 26 |
| 208        | 1000                  | 2.558                 | 201.9                          | 19.53          | 27.3<br>27.47                    | 56.84<br>57.19          | 11.84<br>11.83 | p. 10 of 20             |
| 208<br>208 | 1015<br>10 <b>30</b>  | 2.668<br>2.81         | 186.3<br>187.4                 | 15.49<br>14.34 | 27.78                            | 56.29                   | 11.83          |                         |
| 208        | 1045                  | 2.611                 | 177.7                          | 14.93          | 28.26                            | 55.96                   | 11.84          |                         |
| 208        | 1100                  | 2.596                 | 189.5                          | 19.74          | 28.9                             | 53.79                   | 11.84          |                         |
| 208<br>208 | 1115                  | $2.561 \\ 2.64$       | 197.4<br>2 <b>3</b> 5.9        | 20.94<br>25.17 | 29.29<br>2 <b>9</b> .53          | 52.02<br>51.41          | 11.84<br>11.85 |                         |
| 208<br>208 | 1145                  | 2.276                 | 242.7                          | 19.31          | 29.53                            | 51.41                   | 11.85          |                         |
| ter+208    | 1200                  | 2.045                 | 201                            | 29.16          | 29.87                            | 50.88                   | 11.86          |                         |
| 208        | 1215<br>1230          | 1.69                  | 260.9                          | 32.65          | 30.41                            | 50.08                   | 11.86          |                         |
| 208<br>208 | 1245                  | 2,27<br>1,345         | 220.1<br>274.9                 | 43.21<br>28.78 | 30.6<br>31.05                    | 49.16<br>4 <b>7</b> .62 | 11.86<br>11.86 |                         |
| 208        | 1300                  | .91                   | 181.6                          | 64             | 31.69                            | 46.53                   | 11.86          |                         |
| 208        | 1315                  | 1.68                  | 271.1                          | 43.25          | 31.93                            | 45.87                   | 11.86          |                         |
| 208        | 1330                  | 1.214                 | 311                            | 73.5           | 31.81                            | 45.84                   | 11.86          |                         |
| 208<br>208 | 1345<br>1400          | 1.127<br>.951         | 210.2<br>222.7                 | 54.79<br>62.68 | 32.49<br>32.39                   | 45.19<br>44.4           | 11.86<br>11.87 |                         |
| 208        | 1415                  | 1.037                 | 262                            | 73.7           | 31.88                            | 43.82                   | 11.87          |                         |
| 208        | 1430                  | 1.147                 | 21.11                          | 42.07          | 31.57                            | 44.92                   | 11.87          |                         |
| 208        | 1445                  | 2.071                 | 295.5                          | 21.76          | 30.47                            | 49.7                    | 11.85          |                         |
| 208<br>208 | 1500<br>1515          | 2.752<br>1.276        | 2 <b>7</b> 1.7<br>306.1        | 16.53<br>21.74 | 28.14 $27.22$                    | 59.6<br>66.47           | 11.85<br>11.84 |                         |
| 208        | 1530                  | 1.34                  | 286.3                          | 19.74          | 28.12                            | 64.98                   | 11.85          |                         |
| 208        | 1545                  | 1.264                 | 271.6                          | 23.12          | 30.15                            | 61.2                    | 11.85          |                         |
| 208        | 1600                  | .752                  | 12.75                          | 64.83          | 32.26                            | 47.17                   | 11.85          |                         |
| 208<br>208 | 1615<br>1 <b>63</b> 0 | 1.336<br>1.29         | 130.2<br>135.7                 | 43.43<br>26.93 | 32.51<br>32.3                    | 42.45<br>42.12          | 11.85<br>11.85 |                         |
| 208        | 1645                  | 1.137                 | 91.8                           | 23.25          | 32.45                            | 40.64                   | 11.85          |                         |
| 208        | 1700                  | . 903                 | 88.8                           | 26.49          | 32.85                            | 38.32                   | 11.86          |                         |
| 208        | 1715                  | .752                  | 92.7                           | 37.98          | 32.97                            | 37.87                   | 11.85          |                         |
| 208<br>208 | 1730<br>1745          | 1.236<br>1.031        | 92.5<br>81.2                   | 22.24<br>15.14 | 3 <b>2</b> .53<br>3 <b>2</b> .38 | 38.81<br>39.46          | 11.86<br>11.85 |                         |
| 208        | 1800                  | 2.649                 | 152.1                          | 35.37          | 31.2                             | 45.71                   | 11.85          |                         |
| 208        | 1815                  | 3.597                 | 168                            | 9.93           | 29.67                            | 55.89                   | 11.84          |                         |
| 208<br>208 | 1830<br>1845          | 3.418                 | 154.8<br>155.9                 | 9.48           | 29.25                            | 58.99                   | 11.84          |                         |
| 208        | 1900                  | 3.267<br>3.223        | 133.9                          | 9.28<br>11.68  | 29.01<br>28.67                   | 58.88<br>61.33          | 11.84<br>11.83 |                         |
| 208        | 1915                  | 2.585                 | 154.3                          | 10.27          | 28.4                             | 62.42                   | 11.83          |                         |
| 208        | 1930                  | 2.673                 | 149.7                          | 9.45           | 28.15                            | 64.38                   | 11.83          |                         |
| 208<br>208 | 1945<br>2000          | 2.184<br>1.853        | 149.1<br>137.7                 | 10.05<br>11.58 | 27.87<br>27.9                    | 66.64<br>67.77          | 11.82          |                         |
| 208        | 2015                  | 1.413                 | 134.3                          | 18.39          | 27.72                            | 6 <b>8</b> .65          | 11.82          |                         |
| 208        | 2030                  | .453                  | 291.8                          | 6.877          | 26.22                            | 77.6                    | 11.81          |                         |
| 208        | 2045                  | .611                  | 299.6                          | 8.13           | 25.21                            | 84.6                    | 11.81          |                         |
| 208<br>208 | 2100<br>2115          | . 08<br>. 263         | 331.1<br>42.5                  | 20.44<br>65.45 | 24.58<br>24.26                   | 90<br>9 <b>3</b>        | 11.8<br>11.8   |                         |
| 208        | 2130                  | .026                  | 82.5                           | . 134          | 23,99                            | 9 <b>6</b> .2           | 11.8           |                         |
| 208        | 2145                  | 0                     | 82.6                           | . 101          | 23.71                            | 97.6                    | 11.79          |                         |
| 208<br>208 | 2200<br>2215          | 0<br>. 2 <b>7</b> 6   | 8 <b>2</b> .6<br>7 <b>7</b> .5 | .093<br>5.2    | 23.21<br>22.93                   | 9 <b>8</b> .9<br>100    | 11.8           |                         |
| 208        | 2213                  | . 407                 | 12.97                          | 51.81          | 22.79                            | 101.3                   | 11.78<br>11.79 |                         |
| 208        | 2245                  | .083                  | 262.2                          | 3.098          | 22.58                            | 101.2                   | 11.78          |                         |
| 208        | 2300                  | .081                  | 253.7                          | . 479          | 22.33                            | 101.6                   | 11.79          |                         |
| 208<br>208 | 2315<br>2330          | .0 <b>52</b><br>.012  | 253.8<br>253.8                 | . 383<br>. 381 | 22.05<br>21.87                   | 102<br>102.3            | 11.78<br>11.78 |                         |
| 208        | 2345                  | . 309                 | 253.8                          | . 395          | 21.67                            | 102.5                   | 11.78          |                         |
| top 209    | 0                     | .02                   | 253.8                          | . 381          | 21.1                             | 102.6                   | 11.78          |                         |
| 209        | ()<br>1 <b>5</b>      | . 00 <b>7</b><br>. 32 | .016<br>253.9                  | .022           | . 033                            | .038                    | . 471          |                         |
| 209<br>209 | 30                    | . 208                 | 253.9<br>252.8                 | . 38<br>. 404  | 21.17<br>21.17                   | 102.8<br>103            | 11.78<br>11.78 |                         |
| 209        | 45                    | . 538                 | 251.4                          | . 976          | 21.05                            | 103.1                   | 11.77          |                         |
| 209        | 100                   | .052                  | 175                            | 3.558          | 21.04                            | 103.3                   | 11.78          |                         |
| 209        | 115                   | . 22                  | 95.9                           | 618            | 20.89                            | 103 T                   | 11 77.         |                         |

|          | 28.11 28.11 28.11 28.11 28.11 28.11 28.11 28.11 28.11 28.11 28.11 28.11 28.11 28.11 28.11 28.11 | 28                                                         | 156 96 22 25 96 22 25 96 25 25 96 25 25 96 25 25 25 25 25 25 25 25 25 25 25 25 25 | 44<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64   | 25.8<br>25.8<br>25.8<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6 | 119<br>123<br>125<br>125<br>125<br>125<br>125<br>125<br>125<br>125         | 1300<br>1310<br>1310<br>1310<br>1310<br>1310<br>1310<br>1310      | 2009<br>2009<br>2009<br>2009<br>2009<br>2009<br>2009<br>2009 |
|----------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|
|          | 28.11<br>18.11<br>28.11<br>28.11                                                                | 52.15<br>51.33<br>49.76<br>51.33                           | 10.15<br>20.15<br>30.15<br>31.15                                                  | 14.72<br>23.84<br>17.03<br>11.95                           | 6.102<br>7.261<br>8.691<br>8.42                                                      | 2.013<br>1.671<br>588.1<br>74.1                                            | 1145<br>1200<br>1215                                              | 508<br>508<br>508<br>508                                     |
|          | 8.11<br>28.11<br>18.11<br>28.11<br>18.11<br>18.11<br>18.11                                      | 42.88<br>6.26<br>6.7.09<br>6.62<br>6.8.72<br>6.61<br>71.62 | 27.95<br>28.43<br>28.63<br>29.66<br>29.86<br>29.86<br>29.86<br>29.66<br>30.65     | 7.02<br>22.69<br>25.07<br>21.31<br>26.12<br>26.12<br>28.82 | 2.84.2<br>202.6<br>227.9<br>222<br>222<br>211.5<br>201.1<br>213                      | 292.<br>741.1<br>569.1<br>774.1<br>774.1<br>63.1<br>774.1<br>63.1<br>774.1 | 9111<br>0011<br>9701<br>0201<br>9101<br>0001<br>976<br>026<br>916 | 508<br>508<br>508<br>508<br>508<br>508<br>508<br>508         |
|          | 87.11<br>87.11<br>87.11<br>8.11<br>18.11                                                        | t. 601<br>C. 101<br>7. 88<br>1. 88<br>C. 08<br>6. 87       | 8.61<br>20.61<br>21.76<br>23.35<br>25.04<br>26.01<br>26.59                        | 994.<br>184.<br>12.82<br>5.91<br>80.25                     | 727<br>7.762<br>7.762<br>1.86.1<br>1.08.7<br>8.726<br>2.262                          | \$00.<br>00.<br>901.<br>9020.<br>\$81.<br>728.                             | 008<br>647<br>008<br>618<br>008<br>848<br>009                     | 209<br>209<br>209<br>209<br>209<br>209                       |
|          | 97.11<br>97.11<br>97.11<br>97.11<br>97.11                                                       | 6.401<br>7.401<br>7.401<br>7.401<br>7.401<br>2.401         | 18.53<br>18.53<br>18.33<br>18.33<br>18.59<br>19.09                                | 266.5<br>18.51<br>18.51<br>202.<br>2029.<br>31.71<br>29.8  | 2.54.5<br>2.43.1<br>2.60.2<br>2.03.7<br>2.03.7<br>2.03.7<br>2.745.3                  | 716,<br>866,<br>23,<br>600,<br>822,<br>104,<br>233,                        | 033<br>045<br>063<br>063<br>0645<br>07<br>07<br>017               | 508<br>508<br>508<br>508<br>508<br>508<br>508<br>508         |
|          | 87.11<br>87.11<br>87.11<br>87.11<br>87.11                                                       | 2.401<br>5.401<br>4.401<br>4.401<br>5.401<br>5.401         | 72.61<br>60.61<br>#1.61<br>68.81<br>68.81<br>16.81                                | 210.8<br>200.8<br>4.88<br>6.6<br>4.88                      | 2.172.5<br>272.5<br>272.5<br>265.6<br>238.1<br>238.1                                 | 633.<br>703.<br>800.<br>828.<br>004.                                       | 009<br>917<br>917<br>001<br>918<br>918                            | 209<br>209<br>209<br>209<br>209<br>209<br>209                |
| Ref. #33 | 77.11<br>77.11<br>77.11<br>77.11<br>77.11                                                       | 7.501<br>7.501<br>7.501<br>9.601<br>401<br>401             | 80.02<br>80.02<br>81.02<br>82.61<br>28.61<br>29.61                                | 78.7<br>77.1<br>79.68<br>79.9<br>491.8<br>11.21            | 237.6<br>243<br>243<br>243<br>243<br>243<br>243<br>243<br>243<br>243                 | 209.<br>126.<br>706.<br>206.<br>284.<br>284.                               | 330<br>330<br>312<br>330<br>330<br>330                            | 508<br>508<br>508<br>508<br>508<br>508                       |
|          | 11.11                                                                                           | 9.501                                                      | 92.02                                                                             | 10.₽1                                                      | 1.862                                                                                | 89'                                                                        | CtI                                                               | 607                                                          |

| Sta₽          | 209<br>209<br>209<br>209<br>209<br>209<br>209<br>209<br>209<br>209 | 1830<br>1845<br>1900<br>1915<br>1930<br>1945<br>2000<br>2015<br>2030<br>2045<br>2100<br>2115<br>2130<br>2145<br>2200<br>2215<br>2230<br>2245<br>2300<br>2315<br>2330<br>2345 | 2.962<br>3.172<br>3.28<br>2.282<br>1.801<br>1.824<br>1.809<br>.946<br>1.358<br>.469<br>1.433<br>1.728<br>.652<br>.257<br>.37<br>0.192<br>.437<br>.224<br>.66<br>.053<br>.031 | 124<br>125.1<br>120.3<br>126.8<br>112.5<br>111.4<br>125.6<br>130.7<br>155.8<br>216.7<br>151.7<br>157.4<br>207.9<br>274.5<br>274.5<br>205.4<br>190.1<br>189.6<br>189.5 | 14.31<br>13.81<br>11.62<br>9.93<br>12.01<br>12.75<br>12.37<br>12.02<br>17.38<br>21.41<br>25.22<br>5.184<br>4.751<br>47.58<br>19.61<br>23.62<br>.5<br>42.95<br>7.91<br>47.08<br>19.04<br>.547<br>.296<br>.37 | 31.3<br>31.28<br>31.07<br>30.79<br>30.38<br>29.96<br>29.75<br>29.51<br>28.83<br>28.54<br>27.2<br>26.89<br>25.77<br>24.97<br>25.03<br>24.62<br>24.38<br>24.41<br>24.36<br>24.37<br>23.47<br>23.09<br>22.97 | 47.24<br>49.23<br>50.9<br>52.84<br>55.3<br>58.12<br>59.36<br>59.7<br>62.91<br>64.89<br>72.3<br>76.5<br>76.8<br>83.6<br>89.7<br>92.5<br>94.6<br>93.3<br>91.3<br>95.7<br>98.6<br>100.2 | 11.8<br>11.8<br>11.8<br>11.79<br>11.79<br>11.78<br>11.78<br>11.78<br>11.77<br>11.76<br>11.77<br>11.75<br>11.75<br>11.75<br>11.75<br>11.75 | Ref. #23<br>p. 12 of 26 |
|---------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| <u> 510 P</u> | 210<br>210<br>210                                                  | 0<br>15                                                                                                                                                                      | .006                                                                                                                                                                         | .008                                                                                                                                                                  | . 022<br>. 325                                                                                                                                                                                              | .057                                                                                                                                                                                                      | .278                                                                                                                                                                                 | . 269                                                                                                                                     |                         |
|               | 210                                                                | 30                                                                                                                                                                           | . 4                                                                                                                                                                          | 255.7                                                                                                                                                                 | 40.47                                                                                                                                                                                                       | 22.62                                                                                                                                                                                                     | 100.9                                                                                                                                                                                | 11.74                                                                                                                                     |                         |
|               | 210                                                                | 45                                                                                                                                                                           | . 831                                                                                                                                                                        | 200.6                                                                                                                                                                 | 15.04                                                                                                                                                                                                       | 22.87                                                                                                                                                                                                     | 97.5                                                                                                                                                                                 | 11.74                                                                                                                                     |                         |
|               | 210                                                                | 100                                                                                                                                                                          | . 424                                                                                                                                                                        | 181.7                                                                                                                                                                 | 37.73                                                                                                                                                                                                       | 23.32                                                                                                                                                                                                     | 94.1                                                                                                                                                                                 | 11.74                                                                                                                                     |                         |
|               | 210                                                                | 115                                                                                                                                                                          | . 86                                                                                                                                                                         | 255.9                                                                                                                                                                 | 28.32                                                                                                                                                                                                       | 23.34                                                                                                                                                                                                     | 90.9                                                                                                                                                                                 | 11.75                                                                                                                                     |                         |
|               | 210                                                                | 130                                                                                                                                                                          | . 956                                                                                                                                                                        | 301.9                                                                                                                                                                 | 8.95                                                                                                                                                                                                        | 22.68                                                                                                                                                                                                     | 95.1                                                                                                                                                                                 | 11.74                                                                                                                                     |                         |
|               | 210                                                                |                                                                                                                                                                              | . 78                                                                                                                                                                         | 309.1                                                                                                                                                                 | 11.29                                                                                                                                                                                                       | 22.92                                                                                                                                                                                                     | 93                                                                                                                                                                                   | 11.74                                                                                                                                     | •                       |
|               | 210                                                                | 200                                                                                                                                                                          | . 134                                                                                                                                                                        | 308.2                                                                                                                                                                 | 0                                                                                                                                                                                                           | 22.48                                                                                                                                                                                                     | 96.5                                                                                                                                                                                 | 11.75                                                                                                                                     |                         |
|               | 210                                                                | 215                                                                                                                                                                          | .085                                                                                                                                                                         | 274                                                                                                                                                                   | 34.12                                                                                                                                                                                                       | 22.35                                                                                                                                                                                                     | 9 <b>7</b> .7                                                                                                                                                                        | 11.74                                                                                                                                     |                         |
|               | 210                                                                | 230                                                                                                                                                                          | . 176                                                                                                                                                                        | 267.6                                                                                                                                                                 | 32.78                                                                                                                                                                                                       | 22.16                                                                                                                                                                                                     | 99.7                                                                                                                                                                                 | 11.74                                                                                                                                     |                         |
|               | 210                                                                | 245                                                                                                                                                                          | .714                                                                                                                                                                         | 309.5                                                                                                                                                                 | 13.19                                                                                                                                                                                                       | 21.89                                                                                                                                                                                                     | 99.2                                                                                                                                                                                 | 11.74                                                                                                                                     |                         |
|               | 210                                                                | 300                                                                                                                                                                          | . 21                                                                                                                                                                         | <b>309</b> .6                                                                                                                                                         | 47.28                                                                                                                                                                                                       | 21.7                                                                                                                                                                                                      | 100.5                                                                                                                                                                                | 11.74                                                                                                                                     |                         |
|               | 210                                                                |                                                                                                                                                                              |                                                                                                                                                                              |                                                                                                                                                                       | 14.43                                                                                                                                                                                                       |                                                                                                                                                                                                           | 100.5                                                                                                                                                                                |                                                                                                                                           |                         |
|               | 210                                                                | 330                                                                                                                                                                          |                                                                                                                                                                              |                                                                                                                                                                       | 70.6                                                                                                                                                                                                        |                                                                                                                                                                                                           | 99.2                                                                                                                                                                                 | 11.74                                                                                                                                     |                         |
|               | 210                                                                | _                                                                                                                                                                            |                                                                                                                                                                              | 83.4                                                                                                                                                                  |                                                                                                                                                                                                             |                                                                                                                                                                                                           | 101.4                                                                                                                                                                                |                                                                                                                                           |                         |
|               | 210                                                                |                                                                                                                                                                              |                                                                                                                                                                              |                                                                                                                                                                       | . 229                                                                                                                                                                                                       |                                                                                                                                                                                                           | 101.5                                                                                                                                                                                |                                                                                                                                           |                         |
|               | 210                                                                |                                                                                                                                                                              |                                                                                                                                                                              | 347.3                                                                                                                                                                 |                                                                                                                                                                                                             |                                                                                                                                                                                                           | 101.3                                                                                                                                                                                |                                                                                                                                           |                         |
|               | 210                                                                |                                                                                                                                                                              | . 28                                                                                                                                                                         |                                                                                                                                                                       | 15.84                                                                                                                                                                                                       |                                                                                                                                                                                                           | 102.1                                                                                                                                                                                |                                                                                                                                           |                         |
|               |                                                                    |                                                                                                                                                                              |                                                                                                                                                                              | 264.8                                                                                                                                                                 |                                                                                                                                                                                                             |                                                                                                                                                                                                           | 102.8                                                                                                                                                                                | 11.74                                                                                                                                     |                         |
|               | 210                                                                |                                                                                                                                                                              |                                                                                                                                                                              |                                                                                                                                                                       | 10.83                                                                                                                                                                                                       |                                                                                                                                                                                                           | 103.1                                                                                                                                                                                |                                                                                                                                           |                         |
|               |                                                                    | _                                                                                                                                                                            |                                                                                                                                                                              | 179.1                                                                                                                                                                 | 2.222                                                                                                                                                                                                       |                                                                                                                                                                                                           | 102.3                                                                                                                                                                                |                                                                                                                                           |                         |
|               | 210                                                                |                                                                                                                                                                              | . 0 <b>2</b><br>. 011                                                                                                                                                        |                                                                                                                                                                       | . 084<br>0                                                                                                                                                                                                  | 21.05<br>20.58                                                                                                                                                                                            | 101.9<br>102.9                                                                                                                                                                       |                                                                                                                                           |                         |
|               | 210<br>210                                                         |                                                                                                                                                                              | . 011                                                                                                                                                                        |                                                                                                                                                                       | . 2                                                                                                                                                                                                         |                                                                                                                                                                                                           | 102.5                                                                                                                                                                                | 11.74                                                                                                                                     |                         |
|               | 210                                                                |                                                                                                                                                                              | 0                                                                                                                                                                            |                                                                                                                                                                       | . 056                                                                                                                                                                                                       |                                                                                                                                                                                                           | 103.5                                                                                                                                                                                | 11.74                                                                                                                                     |                         |
|               |                                                                    |                                                                                                                                                                              | 0                                                                                                                                                                            |                                                                                                                                                                       | .028                                                                                                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                      | 11.74                                                                                                                                     |                         |
|               | 210                                                                |                                                                                                                                                                              |                                                                                                                                                                              |                                                                                                                                                                       | 2.779                                                                                                                                                                                                       |                                                                                                                                                                                                           |                                                                                                                                                                                      | 11.73                                                                                                                                     |                         |
|               | 210                                                                | 700                                                                                                                                                                          |                                                                                                                                                                              |                                                                                                                                                                       | 8.18                                                                                                                                                                                                        |                                                                                                                                                                                                           | 101.7                                                                                                                                                                                |                                                                                                                                           |                         |
|               | 210                                                                | , 00                                                                                                                                                                         | , , , , ,                                                                                                                                                                    | I · ·                                                                                                                                                                 | 5.15                                                                                                                                                                                                        | 21.00                                                                                                                                                                                                     | 10117                                                                                                                                                                                | 1 1                                                                                                                                       |                         |

Kef. #23 p.

Summary Tables of Windrose Data

| BOWMAN       | ENVIRONMENTAL | ENGINEERING | Ĺ        | WROSE            | Ē       | COPYRIGHT | (C) 1988         |
|--------------|---------------|-------------|----------|------------------|---------|-----------|------------------|
|              |               | SUMMARY     | TABLE OF | WINDROSE         | DATA    | 7/23/     | 90               |
| Directi      | on Class 1    | Class 2     | Class 3  | Class 4          | Class 5 | Class 6   | TOTAL            |
| . U          | . 00000       | 7.00000     | . 00000  | . 00000          | . 00000 | . 00000   | 7.00000          |
| 22.5         | 3.00000       | 7.00000     | .00000   | . 00000          | . 00000 | .00000    | 10.00000         |
| 45.0         | 1.00000       | 2.00000     | . 00000  | . 00000          | . 00000 | .00000    | 3.00000          |
| <b>97</b> .5 | . 00000       | . 00000     | .00000   | . 00000          | . 00000 | . 00000   | . 00000          |
| 90.0         | . 00000       | . 00000     | . 00000  | . 00000          | .00000  | . 00000   | . 0 <b>000</b> C |
| 112.5        | . 00000       | .00000      | . 00000  | . 00000          | . 00000 | . 00000   | . 0 <b>000</b> C |
| 135.0        | .00000        | . 00000     | .00000   | . 00000          | .00000  | .00000    | .00000           |
| 157.5        | .00000        | . 00000     | .00000   | . 00000          | .00000  | . 00000   | .00000           |
| 180.0        | . 00000       | . 00000     | .00000   | . 00000          | . 00000 | . 00000   | .00000           |
| 202.5        | . 00000       | . 00000     | .00000   | . 00000          | . 00000 | .00000    | . 00000          |
| 225.0        | 7.00000       | .00000      | . 00000  | . 0 <b>0</b> 000 | . 00000 | .00000    | 7.00000          |
| 247.5        | 7.00000       | . 00000     | .00000   | . 0 <b>0</b> 000 | . 00000 | . 00000   | 7.00000          |
| 270.0        | .00000        | . ()0000    | .00000   | . 00000          | . 20000 | . 00000   | . 00000          |
| 292.5        | 1.00000       | .00000      | .00000   | .00000           | .00000  | . 00000   | 1.00000          |
| 315.0        | 2,00000       | 3.00000     | .00000   | . 00000          | :00000  | . 00000   | 3.00000          |
| 337.5        | . 00000       | 6.00000     | .00000   | . 0 <b>00</b> 00 | . 00000 | .00000    | 6.00000          |
| TOTAL        | 21.00000 2    | 28.00000    | . 00000  | . 00000          | . 00000 | . 00000   | 19.00000         |

BOWMAN ENVIRONMENTAL ENGINEERING

WROSE COPYRIGHT (C) 1988

|                |          | SUMMARY  | TABLE OF | WINDROSE | DATA      | 7/24/   | 70       |
|----------------|----------|----------|----------|----------|-----------|---------|----------|
| Direction      | Class !  | Class 2  | Class 3  | Class 4  | Class 5   | Class 6 | TOTAL    |
| . 0            | 4.00000  | . 00000  | . 00000  | . 00000  | . 00000   | . 00000 | 4.00000  |
| <b>22.5</b>    | 3.00000  | . 00000  | . 00000  | . 00000  | . 00000   | . 00000 | 3.00000  |
| 45.U           | 1.00000  | . 00000  | . 00000  | . 00000  | . 00000   | . 00000 | 1.0000C  |
| 6 <b>7</b> . 5 | 1.00000  | . 00000  | .00000   | . 00000  | . 00000   | . 00000 | 1.00000  |
| 90.5           | 1.00000  | . 00000  | .00000   | .00000   | . 00000   | . 00000 | 1.00000  |
| 112.5          | 3.00000  | ნ.00000  | . 00000  | . 00000  | . 00000   | . 00000 | 9.00000  |
| 135.0          | 1.00000  | 2.00000  | . 00000  | . 00000  | . 00000   | . 00000 | 3.00000  |
| 157.5          | 5.00000  | 12.00000 | . 00000  | .00000   | . 00000   | . 00000 | 17.00000 |
| 0.081          | . 00000  | 5.00000  | .00000   | . 00000  | . 00000   | . 00000 | 5.00000  |
| 202.5          | . 00000  | 2.00000  | . 00000  | .00000   | . 00000   | . 00000 | 2.00000  |
| 225.0          | 1.00000  | . 00000  | .00000   | . 00000  | . 00000   | . 00000 | 1.00000  |
| 247.5          | . 00000  | . 00000  | . 00000  | .00000   | . 00000   | . 00000 | .00000   |
| 270.0          | 1.00000  | . 00000  | . 00000  | . 00000  | . 00000   | . 00000 | 1.00000  |
| 292.5          | . 00000  | . 00000  | . 00000  | . 00000  | . 00000   | . 00000 | . 00000  |
| 315.G          | . 00000  | . 00000  | . 00000  | .00000   | . 00000   | . 00000 | .00000   |
| 337.5          | 1.00000  | . 00000  | . 00000  | .00000   | . 00000 - | . 00000 | 1.00000  |
| LTO1           | 22.00000 | 27.00000 | . 00000  | .00000   | . 00000   | . 00000 | 49.00000 |

| BOWMAN EN      | VIRONMENTAI | LENGINEER | ING         | WROS     | E       | COPYRIGHT |                  |
|----------------|-------------|-----------|-------------|----------|---------|-----------|------------------|
|                |             | SUMMA     | RY TABLE OF | WINDROSE | DATA    | 7/2       | 5/90             |
| Direction      | Class 1     | Class 2   | Class 3     | Class 4  | Class 5 | Class 6   | TOTAL            |
| . 0            | . 00000     | . 00000   | . 00000     | .00000   | .00000  | . 00000   | . 00000          |
| 22.5           | . 00000     | . 00000   | . 00000     | .00000   | .00000  | . 00000   | . 0 <b>00</b> 0C |
| 45.0           | .00000      | . 00000   | . 00000     | .00000   | .00000  | . 00000   | . 00000          |
| 67.5           | 2.00000     | . 00000   | .00000      | . 00000  | . 00000 | . 00000   | 2.00000          |
| 90.0           | 3.00000     | . 00000   | . 00000     | .00000   | . 00000 | . 00000   | 3.00000          |
| 112.5          | 2.00000     | 2.00000   | . 00000     | . 00000  | . 00000 | . 00000   | 4.00000          |
| 135.0          | 1.00000     | 6.00000   | 6.00000     | . 00000  | . 00000 | . 00000   | 13.00000         |
| 157.5          | . 00000     | 9.00000   | 8.00000     | . 00000  | . 00000 | .00000    | 17.00000         |
| 180.0          | .00000      | 1.00000   | 2.00000     | . 00000  | .00000  | . 00000   | 3.00000          |
| 202.5          | . 00000     | . 00000   | . 00000     | . 00000  | . 00000 | . 00000   | .00000           |
| 2 <b>25</b> .0 | . 00000     | . 00000   | . 00000     | . 00000  | . 00000 | . 00000   | . 00000          |
| 247.5          | . 00000     | .00000    | . 00000     | .00000   | .00000  | . 00000   | . 00000          |
| 270.0          | 5.00000     | . 00000   | . 00000     | .00000   | . 00000 | . 00000   | 5.00000          |
| <b>292</b> .5  | 1.00000     | . 00000   | . 00000     | .00000   | . 00000 | . 00000   | 1.00000          |
| 315.0          | .00000      | .00000    | . 00000     | . 00000  | .00000  | .00000    | . 00000          |
| 337.5          | 1.00000     | .00000    | . 00000     | .00000   | . 00000 | . 00000   | 1.00000          |
| TOTAL          | 15.00000    | 00000.81  | 16.00000    | . 00000  | . 00000 | . 00000   | 19.00000         |

| BOWMAN | ENVI | RONMENTAL | ENGINEERING |
|--------|------|-----------|-------------|
|--------|------|-----------|-------------|

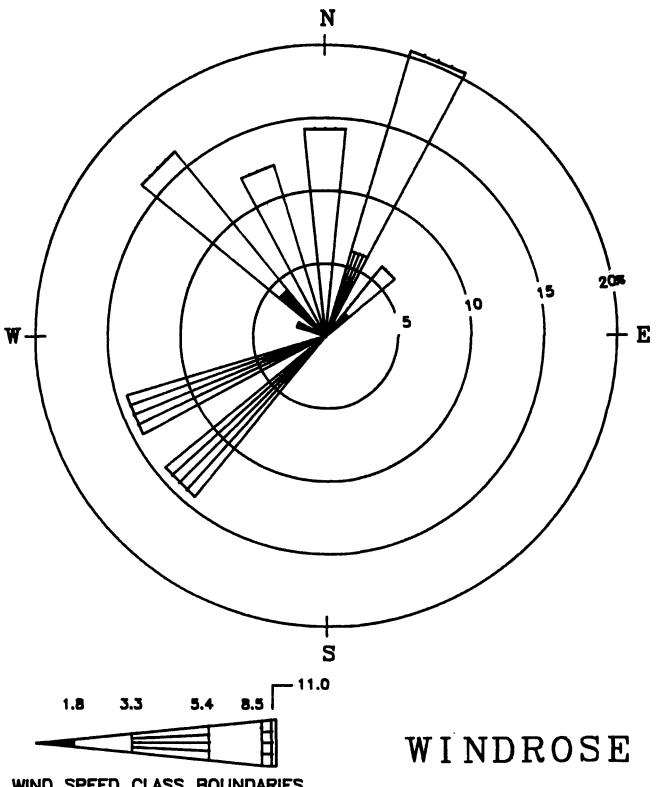
WROSE COPYRIGHT (C) 1988

|                |          | SUMMARY  | Y TABLE OF | WINDROSE | DATA 7  | 126/    | 10       |
|----------------|----------|----------|------------|----------|---------|---------|----------|
| Direction      | Class 1  | Class 2  | Class 3    | Class 4  | Class 5 | Class 6 | TOTAL    |
| . 0            | 4.00000  | . 00000  | . 00000    | . 00000  | . 00000 | . 00000 | 4.00000  |
| 2 <b>2</b> .5  | . 00000  | . 00000  | . 00000    | . 00000  | .00000  | . 00000 | . 00000  |
| 45.0           | 1.00000  | . 00000  | . 00000    | .00000   | .00000  | . 00000 | 1.00000  |
| 67.5           | 1.00000  | . 00000  | . 00000    | .00000   | . 00000 | . 00000 | 1.00000  |
| 90.0           | . 00000  | .00000   | . 00000    | . 00000  | .00000  | . 00000 | . 00000  |
| 112.5          | . 00000  | . 00000  | . 00000    | . 00000  | . 00000 | . 00000 | . 00000  |
| 135.0          | . 00000  | . 00000  | . 00000    | . 00000  | .00000  | .00000  | . 00000  |
| 157.5          | . 00000  | 8.00000  | 2.00000    | .00000   | . 00000 | . 00000 | 10.00000 |
| 180.0          | 1.00000  | 7.00000  | 2.00000    | . 00000  | .00000. | .00000  | 10.00000 |
| 2 <b>02</b> .5 | 10.00000 | . 00000  | . 00000    | . 00000  | .00000  | . 00000 | 10.00000 |
| 225.0          | 7.00000  | . 00000  | . 00000    | . 00000  | . 00000 | . 00000 | 7.00000  |
| 247.5          | 1.00000  | 1.00000  | . 00000    | .00000   | . 00000 | . 00000 | 2.00000  |
| 270.0          | 3.00000  | . 00000  | . 00000    | . 00000  | .00000  | .00000  | 3.00000  |
| <b>292</b> .5  | 1.00000  | . 00000  | . 00000    | .00000   | . 00000 | . 00000 | 1.00000  |
| 315.0          | . 00000  | . 00000  | . 00000    | . 00000  | .00000  | . 00000 | . 00000  |
| 337.5          | . 00000  | . 00000  | . 00000    | .00000   | .00000  | . 00000 | . 00000  |
| TOTAL          | 29.00000 | 16.00000 | 4.00000    | .00000   | . 00000 | . 00000 | 49.00000 |

| BOWMAN         | ENVIRONMENTAL | ENGINEERIN | :G       | WROSE    | Ē         | COPYRIGHT | (C) 1988         |
|----------------|---------------|------------|----------|----------|-----------|-----------|------------------|
|                |               | SUMMARY    | TABLE OF | WINDROSE | DATA      | July 27,  | 1990             |
| Directi        | on Class 1    | Class 2    | Class 3  | Class 4  | Class 5   | Class в   | TOTAL            |
| Ο.             | 3.00000       | . 00000    | . 00000  | .00000   | . 00000   | . 00000   | 3.0000C          |
| 22.5           | 1.00000       | . 00000    | .00000   | . 00000  | . 00000   | . 00000   | 1.0000C          |
| 45.0           | .00000        | . 00000    | .00000   | .00000   | . 00000   | . 00000   | . 0 <b>000</b> C |
| 67.5           | 6.00000       | . 00000    | . 00000  | .00000   | . 00000   | . 00000   | 6.0 <b>000</b> C |
| 9 <b>0</b> .0  | 3.00000       | . 00000    | .00000   | . 00000  | . 00000   | . 00000   | 3.00000          |
| 112.5          | 2.00000       | .00000     | .00000   | .00000   | . 00000   | . 00000   | 2.0000C          |
| 135.0          | 1.00000       | 7.00000    | 1.00000  | .00000   | . 00000   | . 00000   | 9.00000          |
| 157.5          | .00000        | .00000     | 1.00000  | . 00000  | .00000    | . 00000   | 1.00000          |
| 180.0          | 1.00000       | 1.00000    | .00000   | .00000   | . 00000   | . 00000   | 2.00000          |
| 202.5          | 2.00000       | 1.00000    | . 00000  | . 00000  | . 00000   | . 00000   | 3.00000          |
| 2 <b>25</b> .0 | . 00000       | . 00000    | .00000   | . 00000  | . 00000 - | . 00000   | . 00000          |
| 247.5          | 3.00000       | .00000     | . 00000  | .00000   | . 00000   | . ၁၀၀၀၀   | 3.00000          |
| 270.0          | 5.00000       | 1.00000    | .00000   | . 00000  | . 00000   | . 00000   | 6.00000          |
| 292.5          | 3.00000       | 1.00000    | . 00000  | .00000   | . 00000   | . 00000   | 4.00000          |
| 315.0          | 1.00000       | .00000     | .00000   | .00000   | .00000    | . 00000   | 1.00000          |
| 3 <b>37</b> .5 | . 00000       | . 00000    | . 00000  | . 00000  | .00000    | . 00000   | . 00000          |
| TOTAL          | 36.00000      | 11.00000   | 2.00000  | . 00000  | .00000    | . 00000   | 49.00000         |

BOWMAN ENVIRONMENTAL ENGINEERING

WROSE COPYRIGHT (C) 1988

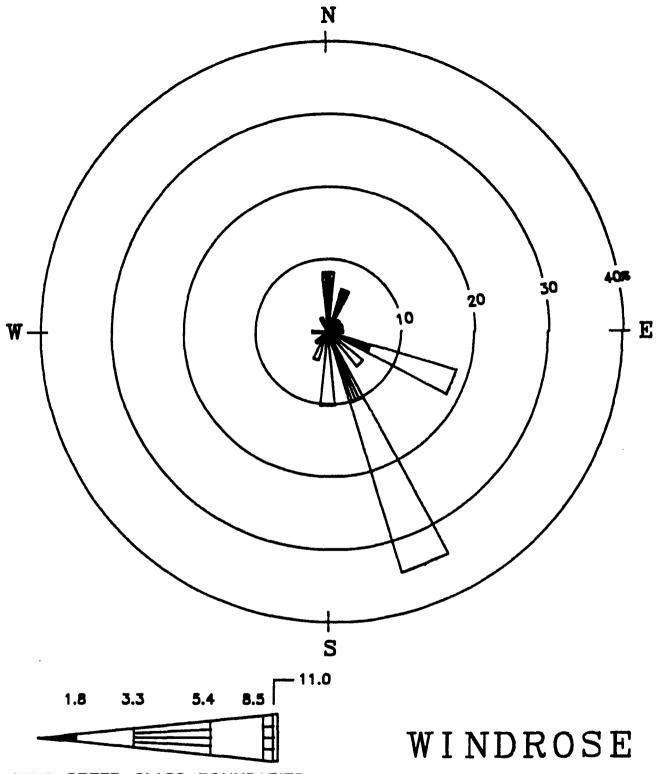

|                |          | SUMMAR   | Y TABLE OF | WINDROSE         | DATA Jul | y 28, 1° | 190             |
|----------------|----------|----------|------------|------------------|----------|----------|-----------------|
| Direction      | Class 1  | Class 2  | Class 3    | Class 4          | Class 5  | Class 6  | TOTAL           |
| O .            | 1.00000  | . 00000  | . 00000    | . 00000          | .00000   | .00000   | 1.00000         |
| 2 <b>2</b> .5  | . 00000  | . 00000  | . 00000    | . 00000          | .00000   | .00000   | . <b>000</b> 0C |
| 45.0           | 2.00000  | .00000   | .00000     | . 0 <b>00</b> 00 | .00000   | . 00000  | 2.0000C         |
| 6 <b>7</b> .5  | . 00000  | . 00000  | .00000     | . 00000          | .00000   | . 00000  | . <b>0000</b> C |
| 90.0           | 2.00000  | 4.00000  | .00000     | .00000           | . 00000  | . 00000  | 6.0000C         |
| 112.5          | 2.00000  | 9.00000  | .00000     | .00000           | .00000   | .00000   | 11.0000C        |
| 135.0          | 3.00000  | . 00000  | 1.00000    | . 00000          | .00000   | . 00000  | 4.00000         |
| 1 <b>57</b> .5 | . 00000  | 1.00000  | . 00000    | .00000           | . 00000  | . 00000  | 1.00000         |
| 180.0          | 4.00000  | . 00000  | . 00000    | . 00000          | .00000   | . 00000  | 4.0000C         |
| 202.3          | 3.00000  | . 00000  | . 00000    | .00000           | ,00000   | .00000   | 3.00000         |
| 225.0          | 5.00000  | .00000   | . 00000    | . 00000          | .00000   | .00000   | 5.00000         |
| 247.5          | 6.00000  | . 00000  | . 00000    | . 00000          | .00000   | . 00000  | 6.00000         |
| 270.0          | 1.00000  | . 00000  | . 00000    | .00000           | .00000   | .00000   | 4.00000         |
| 292.5          | 1.00000  | . 00000  | . 00000    | . 00000          | . 00000  | .00000   | 1.00000         |
| 315.0          | .00000   | .00000   | .00000     | . 00000          | .00000   | . 00000  | .00000          |
| <b>337</b> .5  | 1.00000  | . 00000  | . 00000    | . 00000          | .00000   | .00000   | 1.00000         |
| TOTAL          | 34.00000 | 14.00000 | 1.00000    | . 00000          | . 00000  | . 00000  | 49.00000        |

Ref. #23 p. 20 of a

Windrose Graphs

recycled paper

enegy and environment

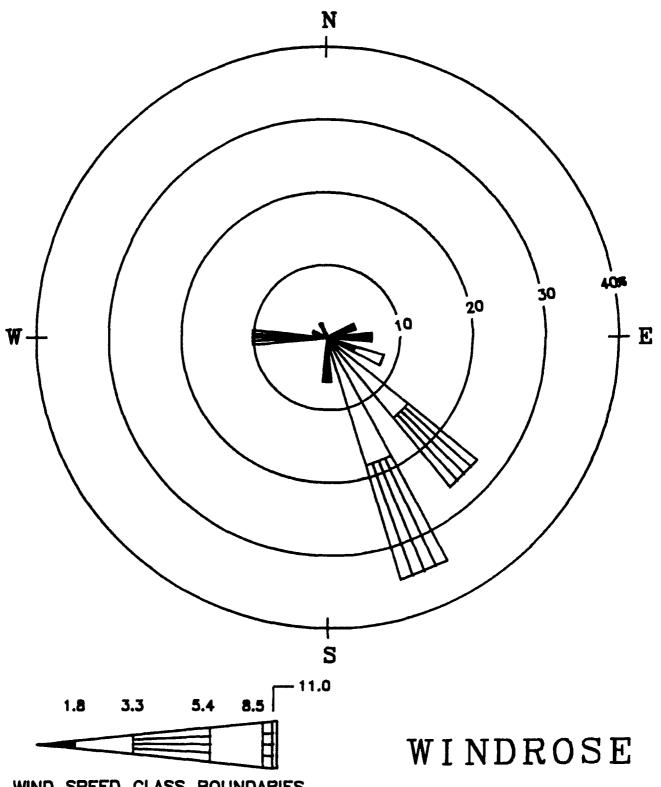



WIND SPEED CLASS BOUNDARIES (METERS/SECOND)

NOTES:
DIAGRAM OF THE FREQUENCY OF
OCCURRENCE FOR EACH WIND DIRECTION.
WIND DIRECTION IS THE DIRECTION
FROM WHICH THE WIND IS BLOWING.
EXAMPLE — WIND IS BLOWING FROM THE
NORTH 14.3 PERCENT OF THE TIME.

BIG RIVER
PERIOD: 7/23/90

-Dowman -Environmental Engineering

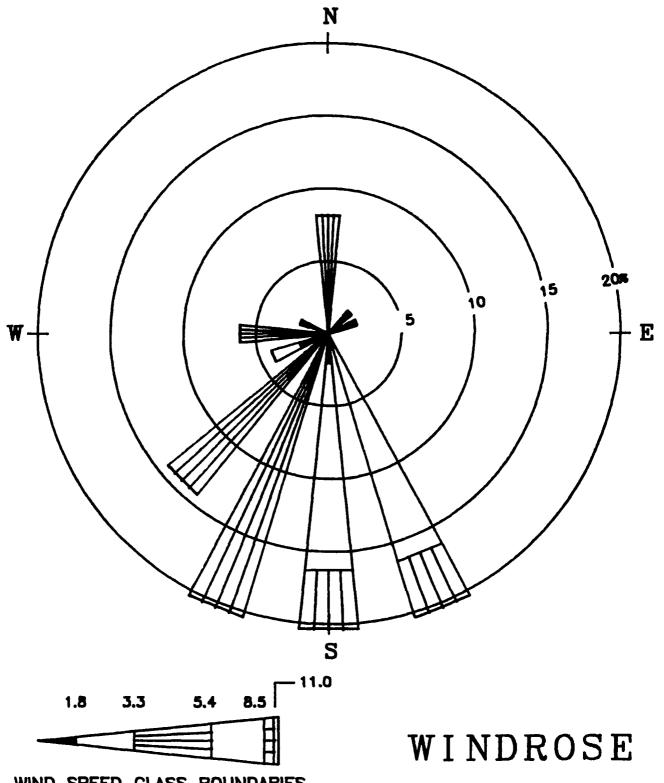



WIND SPEED CLASS BOUNDARIES (METERS/SECOND)

DIAGRAM OF THE FREQUENCY OF OCCURRENCE FOR EACH WIND DIRECTION. WIND DIRECTION IS THE DIRECTION FROM WHICH THE WIND IS BLOWING. EXAMPLE — WIND IS BLOWING FROM THE NORTH 8.2 PERCENT OF THE TIME.

BIG RIVER PERIOD: 7/24/90

> Environmental Engineering



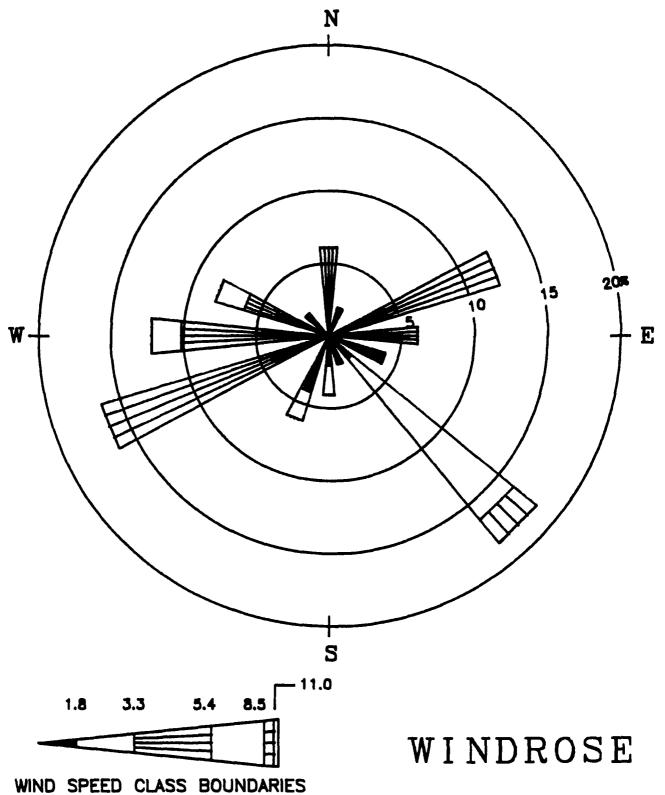

WIND SPEED CLASS BOUNDARIES (METERS/SECOND)

DIAGRAM OF THE FREQUENCY OF OCCURRENCE FOR EACH WIND DIRECTION. WIND DIRECTION IS THE DIRECTION FROM WHICH THE WIND IS BLOWING. EXAMPLE — WIND IS BLOWING FROM THE NORTH .0 PERCENT OF THE TIME.

BIG RIVER PERIOD: 7/25/90

Dowman Environmental
Engineering



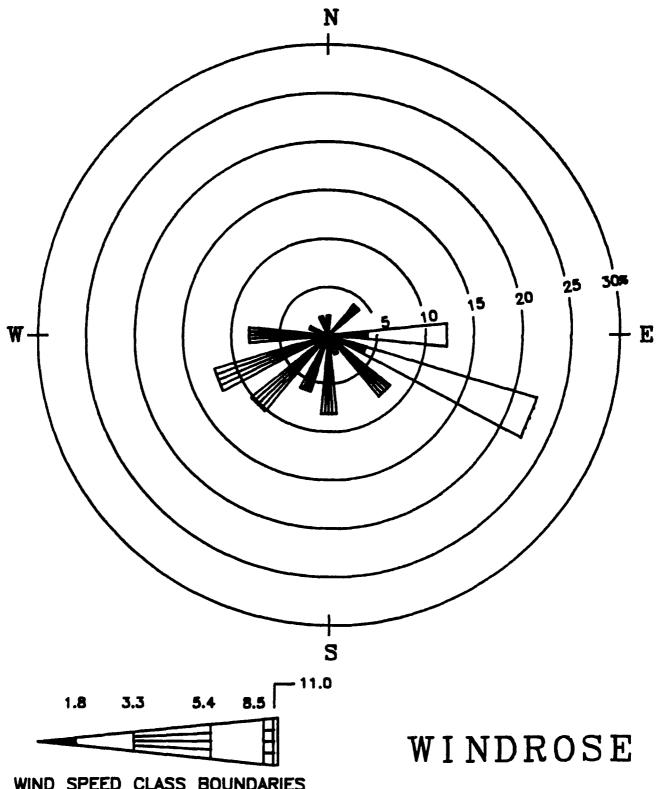

WIND SPEED CLASS BOUNDARIES (METERS/SECOND)

NOTES:

DIAGRAM OF THE FREQUENCY OF OCCURRENCE FOR EACH WIND DIRECTION. WIND DIRECTION IS THE DIRECTION FROM WHICH THE WIND IS BLOWING. EXAMPLE — WIND IS BLOWING FROM THE NORTH 8.2 PERCENT OF THE TIME.

BIG RIVER
PERIOD: 7/26/90

environmental Engineering




(METERS/SECOND)

DIAGRAM OF THE FREQUENCY OF OCCURRENCE FOR EACH WIND DIRECTION. WIND DIRECTION IS THE DIRECTION FROM WHICH THE WIND IS BLOWING. EXAMPLE - WIND IS BLOWING FROM THE NORTH 6.1 PERCENT OF THE TIME.

BIG RIVER PERIOD: 7/27/90

Engineering



WIND SPEED CLASS BOUNDARIES (METERS/SECOND)

DIAGRAM OF THE FREQUENCY OF OCCURRENCE FOR EACH WIND DIRECTION. WIND DIRECTION IS THE DIRECTION FROM WHICH THE WIND IS BLOWING. EXAMPLE — WIND IS BLOWING FROM THE NORTH 2.0 PERCENT OF THE TIME.

BIG RIVER
PERIOD: 7/28/90

Dowman Environmental
Engineering

| HT AO | L SAMPLER | CALIBRATION | DATA | SHEET |
|-------|-----------|-------------|------|-------|
|-------|-----------|-------------|------|-------|

PROJECT: BIG RIVER MINE TOILINGS

CALIBRATION ORIFICE UNIT NO. 8 061189

CALIBRATED BY: W. McColl/Roseris

SAMPLER NO. BR-  $\Delta M$ -  $\Delta M$ 

| Run            | Manometer     | AH (negative) Manometer (pressure) in. Water |               | ΔP (x)<br>(positive pressure)         |       |           | Q <sub>r</sub> (y) |                  |
|----------------|---------------|----------------------------------------------|---------------|---------------------------------------|-------|-----------|--------------------|------------------|
| Number         | Left<br>Right | Total                                        | Left<br>Right | Tötaı                                 | VΔP   | Flow Rate | e#<br>cfm          | i                |
| 1              | 0.0           | 1,8                                          | 1.5           | 1.5                                   | 1.22  | 0.850     | 30                 | -                |
| 2              | 0.0<br>2.65   | 7.65                                         | Ø.£5<br>7-3   | Z-3                                   | 1.52  | 0.991     | 35                 | <del>-</del>     |
| 3              | 6.0<br>3.45   | 3.45                                         | <u>6.0</u>    | 3.\$                                  | 1 73  | 1.133     | 40                 | -<br>-<br>-<br>- |
| 4              | 0.0           | 4.40                                         | 0.0           | 3.7¢                                  | 192   | 1.775     | 45                 |                  |
| 5              | 0.0<br>\$.45  | 5.45                                         | 4-40          | 4.40                                  | Z.1 Ø | 1.420     | 50                 |                  |
| 6              |               |                                              |               |                                       |       |           |                    |                  |
| 7              |               |                                              |               |                                       |       |           |                    |                  |
| D <b>UP</b> -1 |               |                                              |               | · · · · · · · · · · · · · · · · · · · |       |           |                    |                  |
| D <b>UP</b> -2 |               |                                              |               |                                       |       |           | <u></u>            |                  |
|                |               |                                              |               |                                       |       |           |                    |                  |

<sup>\*</sup> Flow rates from orifice unit calibration chart of equation comments and environment

### HI VOL SAMPLER CALIBRATION DATA SHEET

|                                                 | DATE JULY 29,90                                                                                                                |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| PROJECT: BIG RIVER MING TA                      |                                                                                                                                |
| CALIBRATION ORIFICE UNIT NO. & DG11 K9          | CALIBRATED BY: W. McCall /P. ROBERTS                                                                                           |
| SAMPLER NO. BR-DM-ØZ                            | DATE                                                                                                                           |
| CORRELATION COEFFICIENT (>0.99) OF r = 0.994142 | $Q_r = a\sqrt{\Delta P} \pm b = 0.577 \sqrt{\Delta P} + 0.111$ $Q_r = 1.133$ $\Delta P = [\frac{QR - b}{2}]^2 \Delta P = 3.13$ |

| Run         | Manometer in. Water | ΔH (negative)  Manometer (pressure)  in. Water |       | ΔP (x) (positive pressure) |          |          | у)  |
|-------------|---------------------|------------------------------------------------|-------|----------------------------|----------|----------|-----|
| Number      | Left                | 7                                              | Left  | <b></b>                    | (-B-     | Flow Rat |     |
| <del></del> | Right               | Total                                          | Right | Total                      | IVAP     | Ст       | cfm |
| 1           | 1.8                 | 1.8                                            | 0,00  | 1.6                        | 1.26     | 0.850    | 30  |
|             | 0.0                 |                                                | Ø.Ø   |                            |          |          |     |
| 2           | 7.65                | 2.65                                           | 2-5   | 7-5                        | 1-28     | 0.991    | 35  |
|             | 0.0                 |                                                | 0.0   |                            |          |          |     |
| 3           | 3.45                | 3.45                                           | 31    | 31                         | 1.76     | 1.133    | 40  |
|             | 0.0                 |                                                | 0.0   | _                          |          |          | _   |
| 4           | 4.40                | 4.40                                           | 3.9   | 3.9                        | 1.97     | 1.275    | 45  |
|             | 0.0                 | 5.10                                           | 0.0   |                            |          | 1.374    |     |
| 5           | 545                 | 5.45                                           | 0.0   | 4.9                        | 7.21     | 1400     | 50  |
|             |                     |                                                |       |                            | ļ        |          |     |
| 6           |                     |                                                |       |                            |          |          |     |
|             |                     |                                                |       |                            |          |          |     |
| 7           |                     | <del> </del>                                   |       |                            | <u> </u> |          |     |
|             |                     |                                                |       |                            |          |          |     |
| DUP-1       |                     | <del> </del>                                   |       |                            | <u> </u> |          |     |
| num c       |                     |                                                |       |                            |          |          |     |
| DUP-2       |                     |                                                |       |                            | ļ        |          |     |
|             |                     |                                                |       |                            | •        |          |     |
|             |                     | 1                                              | 1     | 1                          |          |          |     |

<sup>\*</sup> Flow rateeofrem orifice unit calibration chart of equation enterings and enteringen

## FIGURE 3.1.2 HI VOL SAMPLER CALIBRATION DATA SHEET

|                                                       | DATE JULY 29,70                                                                                                |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| PROJECT: BIG RIVER MINE T                             | dilings                                                                                                        |
| CALIBRATION ORIFICE UNIT NO. 8061189                  | CALIBRATED BY: WCS McColl                                                                                      |
| SAMPLER NO. BR-DM-03                                  | DATE                                                                                                           |
| CORRELATION COEFFICIENT (>0.99)  OF r = 0.99 + 39 + 3 | $Q_r = a\sqrt{AP} \pm b = 0.659 (AP + 0.0104)$ $Q_r = 1.133$ $\Delta P = [\frac{QR - b}{a}]^2 \Delta P = 2.94$ |

| Run    | ΔΗ (negative)  Manometer (pressure)  in. Water |       | ΔP (x)<br>(positive pressure) |       |      | Q <sub>r</sub> (y) |      |  |
|--------|------------------------------------------------|-------|-------------------------------|-------|------|--------------------|------|--|
| Number | Left<br>Right                                  | Total | Left<br>Right                 | Total | √AP  | Flow Rate          | fm : |  |
| 1      | 0.0                                            | 1-8   | 1.55                          | 1.55  |      | 0.850              | 30   |  |
| 2      | 0.0<br>2.65                                    | 2.65  | 0.ø<br>2.3                    | z.36  | 1.52 | 0.991              | 35   |  |
| 3      | 0.D<br>34\$                                    | 3.45  | Ø.10<br>2.95                  | 2.95  | 1.72 | 1.133              | 40 } |  |
| 4      | 0.0 <del>8.45</del><br>4.40                    | 4.40  | \$.\$<br>3.7\$                | 3.70  | 192  | 1.275              | 45   |  |
| 5      | 5.45                                           | 5.45  | Ø.Ø<br>4.d                    | 4.5\$ | 2.12 | 1.420              | 50   |  |
| 6      |                                                |       |                               |       |      |                    |      |  |
| 7      |                                                |       |                               |       |      |                    |      |  |
| DUP-1  |                                                |       |                               |       |      |                    |      |  |
| DUP-2  |                                                |       |                               |       |      |                    |      |  |
|        |                                                | -     |                               |       |      |                    |      |  |

<sup>\*</sup> Flow ratesoftom orifice unit calibration chart of equation, and environment

| HI | VOL | SAMPLER | CALIBRATION | DATA | SHEET |
|----|-----|---------|-------------|------|-------|

1 29 29 DATE JULY 38,90

| •                                                | DATE JULY 38,90                                                                                                                                |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT: Big River Mine Toi                      | lings                                                                                                                                          |
| CALIBRATION ORIFICE UNIT NO. 8 06 1189           | CALIBRATED BY: W. McCall / P. Rosen &                                                                                                          |
| SAMPLER NO. 13 R - DM - 104                      | DATE                                                                                                                                           |
| CORRELATION COEFFICIENT (>0.99)  OF r = 0.994476 | $Q_r = a\sqrt{\Delta P} \pm b  0.618  \boxed{\Delta P} + 0.120$ $Q_r = \frac{1.133}{\Delta P} = \frac{(QR-b)^2}{a}  \Delta P = \frac{7.69}{a}$ |

| Run            | ΔH (negative)  Manometer (pressure)  in. Water |       | ΔP (x) (positive pressure) |       |      |          | (y)       |
|----------------|------------------------------------------------|-------|----------------------------|-------|------|----------|-----------|
| Number         | Left<br>Right                                  | Total | Left<br>Right              | Total | (A B | Flow Rat | e*<br>cfm |
| 1              | 0.0                                            | 8.1   | <b>4.</b> \$               | ,     |      |          |           |
|                | 1.8                                            | 1.8   | 1-30                       | 1.30  | 1.17 | 0.850    | 30        |
| 2              | 0.0<br>Z.6S                                    | 2.65  | 2.1                        | 7.1   | 1.45 | 0.991    | 35        |
| 3              | 0.0<br>3.45                                    | 3.45  | 7.8                        | 2.8   | 1.67 | 1.1 33   | 40        |
| 4              | 0.0<br>4.4D                                    | 4 40  | Ø-Ø<br>3.5                 | 3.5   | 1.87 | 1.275    | 45        |
| 5              | 0.0<br>5.45                                    | 5.45  | 4.0                        | 4.3   | 2.04 | 1.420    | 50        |
| 6              |                                                |       |                            |       |      |          |           |
| 7              |                                                |       |                            |       |      |          |           |
| DUP-1          |                                                |       |                            |       |      |          |           |
| D <b>UP</b> -2 |                                                |       |                            |       |      |          |           |
|                |                                                |       |                            |       |      |          |           |

<sup>\*</sup> Flow rate of equation chart of equation contents of equation of

#### HI VOL SAMPLER CALIBRATION DATA SHEET

|                                                   | DATE July 29,90                                               |
|---------------------------------------------------|---------------------------------------------------------------|
| PROJECT: BIG RIVER MING TO                        |                                                               |
| CALIBRATION ORIFICE UNIT NO. 806/189              | CALIBRATED BY: N. McCOll P. RUBCASS                           |
| SAMPLER NO. BRAM-\$5                              | DATE                                                          |
| ·                                                 | Q = a AP + b 0 59 + VAP + 0.03 51                             |
| CORRELATION COEFFICIENT (>0.99) OF r = 0.9966 762 | $Q_r = 1.133$                                                 |
| Ur r = 0 100 76                                   | $\Delta P = \left[\frac{QR - b}{a}\right]^2  \Delta P = 3.38$ |

| Run           | ΔH (negative)  Manometer (pressure)  in. Water |       | ΔP (x)<br>(positive pressure) |        |      | L       | (y)        |
|---------------|------------------------------------------------|-------|-------------------------------|--------|------|---------|------------|
| Number        | Left<br>Right                                  | Total | Left<br>Right                 | Total  | √AP  | Flow Ra | te*<br>cfm |
| 1 .           | 0.0                                            | 8.1   | 0.0<br>1.80                   | 1.86   | 1.34 | 0.850   | 30         |
| 2             | 2.65                                           | 2.65  | \$ B<br>26\$                  | 05 Z6# | 1.61 | 0,991   | 35         |
| 3             | 0,0                                            | 3.45  | 3.5                           | 3.5    | 1.37 | 1.133   | 40         |
| 4             | 0.0                                            | 440   | Ø.\$                          | 4.4    | 2.10 | 1.275   | 45         |
| 5             | 0,0<br>5.45                                    | 5.45  | 0.0<br>5.20                   | 5.2    | 7.28 | 1.420   | 50         |
| 6             |                                                |       |                               |        |      |         |            |
| 7             |                                                |       |                               |        |      |         |            |
| DUP-1         |                                                |       |                               |        |      |         |            |
| <b>DUP</b> -2 |                                                |       |                               |        |      |         |            |
|               |                                                |       |                               |        |      |         |            |

<sup>\*</sup> Flow rateeofrem orifice unit calibration chart of equation.

# FIGURE 3.1.2 HI VOL SAMPLER CALIBRATION DATA SHEET

|                                                 | DATE JULY 29,90                                                                   |
|-------------------------------------------------|-----------------------------------------------------------------------------------|
| PROJECT: BIG RIVCE MINE TAI                     |                                                                                   |
| CALIBRATION ORIFICE UNIT NO. 8061189            | CALIBRATED BY: W. McCall/P. LUBERTS                                               |
| SAMPLER NO. BR-AM-06                            | DATE                                                                              |
| (                                               | Q = a/AP + b 0.65601AP -0.0182                                                    |
| CORRELATION COEFFICIENT (>0.99) OF r = 0.997427 | $Q_r = 1.133$                                                                     |
| ***************************************         | $\Delta P = \left[\frac{QR - b}{a}\right]^2  \Delta P = \underline{\hspace{1cm}}$ |

| Run    | AH (negative) Manometer (pressure) in. Water |       | ΔP (x) (positive pressure) |       |               | Q <sub>r</sub> (y) |     |             |
|--------|----------------------------------------------|-------|----------------------------|-------|---------------|--------------------|-----|-------------|
| Number | Left<br>Right                                | Total | Left<br>Right              | Total | VΔP           | Flow Rate          | cfw | <u>.</u>    |
| 1      | 0                                            | 1-8   | 9<br>1.70                  | 1.70  | 1.30          | 0.850              | 30  | -<br>-<br>- |
| 2      | 2.65                                         | 2.65  | <u> </u>                   | 2.4   | J. <b>S</b> S | 0.991              | 35  | ا<br>ت      |
| 3      | 3.45                                         | 3.45  | 3.2                        | S     | 1.79          | [.133              | 40  | £           |
| 4      | 4.40                                         | 440   | 3.9                        | 3.9   | 197           | 1.275              | 45  | 1           |
| 5      | 5.45                                         | 548   | 0_                         | 4.7   | 2.17          | 1.470              | 50  | i           |
| 6      |                                              |       |                            |       |               |                    |     |             |
| 7      |                                              |       |                            | -,.,, |               |                    |     | -           |
| DUP-1  |                                              |       |                            |       |               |                    |     |             |
| DUP-2  |                                              |       |                            |       |               |                    |     |             |
|        |                                              |       |                            |       |               |                    |     |             |

<sup>\*</sup> Flow rates from orifice unit calibration chart of equation environment

### HI VOL SAMPLER CALIBRATION DATA SHEET

|                                                                       | DATE July 29,90                                        |
|-----------------------------------------------------------------------|--------------------------------------------------------|
| PROJECT: BIG RIVER MINE                                               | Tailings                                               |
| CALIBRATION ORIFICE UNIT NO. 8061189                                  | CALIBRATED BY: McCAll/208625                           |
| SAMPLER NO. BQ-AM-\$7                                                 | DATE                                                   |
|                                                                       | Q = avaP + b 0.614 VAP + 0.000 x ZZ                    |
| CORRELATION COEFFICIENT (>0.99) OF $r = \frac{0.969369}{0.9814050.5}$ | $Q_r = 1.133$ $\Delta P = [QR - b]^2  \Delta P = 3.40$ |

| Run    | ΔΗ (negative) Manometer (pressure) in. Water |       | ΔP (x) (positive pressure) |       |      | Q <sub>r</sub> (y) |                  |             |
|--------|----------------------------------------------|-------|----------------------------|-------|------|--------------------|------------------|-------------|
| Number | Left<br>Right                                | Total | Left<br>Right              | Total | √AP  | Flow Rate          | cfm <sup>-</sup> | •           |
| 1      | Ø.ø<br>1.8                                   | 1.8   | 0.0<br>2.0                 | z.\$  | 1.47 | <u> </u>           | 30               | <u>-</u>    |
| . : 2  | Ø.Ø<br>2-65                                  | 7-65  | 0.Ø                        | z.7\$ | 164  |                    | <b>3</b> \$      | x<br>1<br>: |
| 3      | 3.42                                         | 345   | 9.0<br>3.10                | 3.1\$ | 1.76 | 1.133              | 40               | *           |
| 4      | Ø. Ø<br>4 40                                 | 4-40  | 4.4                        | 4.4   | Z.10 | 1.275              | 45               | !<br>:<br>: |
| 5      | 545                                          | 5.45  | Ø.Ø<br>5.4                 | 5.4   | Z.32 | 1.420              | می               | 1           |
| 6      | 0.00.5                                       |       |                            |       |      |                    |                  |             |
| 7      |                                              |       |                            |       |      |                    |                  |             |
| DUP-1  | 1.8<br>\$-\$                                 | 1.8   | 2.4                        | z.Ø   | HI   | 0.850              | 30               |             |
| DUP-2  | 3.45                                         | 3.45  | 3.5                        | 3.5   | 1.87 | 1.133              | 40               |             |
|        |                                              |       |                            |       |      |                    |                  |             |

<sup>\*</sup> Flow ratesoform orifice unit calibration chart of equation, and environment